1
|
Zhao C, Zhu X. Microcrack Healing Mechanism within Metals under Ultrasonic Cavitation Revealed by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6592-6602. [PMID: 40053383 DOI: 10.1021/acs.langmuir.4c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This study employs molecular dynamics to simulate the atomic-level effects of ultrasonic cavitation on microcrack-containing aluminum blocks, aiming to deepen our understanding of its mechanism on metallic materials. The results indicate that the microcrack size tends to decrease or close after impact. Following cavitation impact, many dislocations form around the microcrack tip, facilitating partial and complete closure through dislocation shielding and atomic diffusion. The crack healing process is intricately linked to the external forces generated by the impact and the changes in surface energy within the crack. Following crack healing, stresses in the matrix tend to concentrate around the healed microcrack area, stacking faults, and grain boundaries. Additionally, cracks, grain size, grain boundaries, and grain orientation influence stress distribution. This study investigates the atomic-scale microstructural evolution and mechanical behavior changes of aluminum blocks containing microcracks under cavitation impact. The findings offer valuable insights into the effects of cavitation on metals with microcracks, providing theoretical support for future applications of ultrasonic cavitation technology in the processing of metallic materials with cracks.
Collapse
Affiliation(s)
- Chunmiao Zhao
- Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan, Shanxi 030051, China
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Xijing Zhu
- Shanxi Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan, Shanxi 030051, China
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
2
|
Gao Q, Yang YQ, Nie HN, Wang BQ, Peng X, Wang N, Li JK, Rao JJ, Xue YL. Investigating the impact of ultrasound on the structural, physicochemical, and emulsifying characteristics of Dioscorin: Insights from experimental data and molecular dynamics simulation. Food Chem 2024; 453:139581. [PMID: 38754354 DOI: 10.1016/j.foodchem.2024.139581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
This study investigated the impact of ultrasound treatment on dioscorin, the primary storage protein found in yam tubers. Three key factors, namely ultrasound power, duration, and frequency, were focused on. The research revealed that ultrasound-induced cavitation effects disrupted non-covalent bonds, resulting in a reduction in α-helix and β-sheet contents, decreased thermal stability, and a decrease in the apparent hydrodynamic diameter (Dh) of dioscorin. Additionally, previously hidden amino acid groups within the molecule became exposed on its surface, resulting in increased surface hydrophobicity (Ho) and zeta-potential. Under specific ultrasound conditions (200 W, 25 kHz, 30 min), Dh decreased while Ho increased, facilitating the adsorption of dioscorin molecules onto the oil-water interface. Molecular dynamics (MD) simulations showed that at lower frequencies and pressures, the structural flexibility of dioscorin's main chain atoms increased, leading to more significant fluctuations between amino acid residues. This transformation improved dioscorin's emulsifying properties and its oil-water interface affinity.
Collapse
Affiliation(s)
- Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, China; Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, China
| | - Yu-Qi Yang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Hao-Nan Nie
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Bing-Qing Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Ning Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Jiang-Kuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China
| | - Jia-Jia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
3
|
Ma X, Yamaguchi A, Maeshige N, Tanida K, Uemura M, Lu F, Kondo H, Fujino H. Facilitatory effect of low-pulse repetition frequency ultrasound on release of extracellular vesicles from cultured myotubes. J Med Ultrason (2001) 2024; 51:397-405. [PMID: 38575766 PMCID: PMC11272820 DOI: 10.1007/s10396-024-01429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/11/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Extracellular vesicles (EVs) serve as carriers of intracellular factors with therapeutic effects, including tissue regeneration and attenuation of inflammatory responses. The majority of EVs in vivo are derived from skeletal muscle, which is reported to have anti-inflammatory effects. While high-intensity pulsed ultrasound (US) irradiation has been shown to promote EV secretion from myotubes, the impact of pulse repetition frequency, a US parameter affecting pulse length, on EV release remains unclear. This study aimed to investigate the impact of pulse repetition frequency of US on the release of EVs from myotubes. METHODS C2C12 myoblasts were used in this study. After differentiation into C2C12 myotubes, US was performed for 5 min at an intensity of 3.0 W/cm2, duty cycle of 20%, acoustic frequency of 1 MHz, and different pulse repetition frequencies (100 Hz, 10 Hz, or 1 Hz). After 12 h, EVs and cells were collected for subsequent analyses. RESULTS US did not cause a reduction in cell viability across all US groups compared to the control. The concentration of EVs was significantly higher in all US groups compared to the control group. In particular, the highest increase was observed in the 1-Hz group on EV concentration as well as intracellular Ca2+ level. CONCLUSION This study investigated the effect of three different pulse repetition frequencies of US on the release of EVs from cultured myotubes. It is concluded that a low-pulse repetition frequency of 1 Hz is the most effective for enhancing EV release from cultured myotubes with pulsed ultrasound.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| | - Kento Tanida
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Fuwen Lu
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, 2209 Guangxing Rd., Songjiang District, Shanghai, 201619, China
| | - Hiroyo Kondo
- Faculty of Health and Nutrition, Shubun University, 72 Momo Higashiyashiki, Yamato-cho, Ichinomiya, Aichi, 491-0932, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 10-2 Tomogaoka 7-chome, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| |
Collapse
|
4
|
Xu W, Zhao Y, Wang X, Lu J. Effect of Shock-Wave-Mediated Collapse on Nanobubble Characteristics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:426-438. [PMID: 38150539 DOI: 10.1021/acs.langmuir.3c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
To enhance the comprehension of the cavitation mechanism and explore its practical use in industrial production, this study developed models involving oxygen, varying bubble radii, and bubble quantities. This study uses molecular dynamics simulations coupled with the momentum mirror method to examine the collapse characteristics of bubbles during ultrasonic cavitation. The investigation uncovers patterns in the fluctuation of the maximum local density of water molecules, released pressure, and temperature. The findings demonstrate that, when oxygen-containing bubbles collapse at identical radii, the local density is notably higher and diminishes more rapidly. Moreover, the changes in the shape exhibit greater regularity. During the bubble collapse, a depression forms on the bubble's surface, coinciding with a notable surge in local density around the depression. As bubble radii and quantities increase, so does the local density along with a concurrent rise in the maximum pressure. Intriguingly, the model demonstrates the lowest pressure at Z = 35 Å accompanied by the emergence of a small crescent-shaped region with a reduced density. Throughout the pressure ascension phase, the rate of the maximum pressure change escalates with an increase in the number of bubbles. Conversely, during the pressure descent phase, the rate of the maximum pressure change diminishes with a growing number of bubbles. However, it is important to note that the maximum pressure does not exhibit a direct correlation with the number of bubbles. Ultimately, this study provides valuable technical guidance and a theoretical foundation for the integration of ultrasonic cavitation in industrial production processes.
Collapse
Affiliation(s)
- Wei Xu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education, Chengdu 610039, China
| | - Yuanyuan Zhao
- Research Center of Fluid Machinery Engineering and Technology, Zhenjiang 212013, China
| | - Xiuli Wang
- Research Center of Fluid Machinery Engineering and Technology, Zhenjiang 212013, China
| | - Jiaxing Lu
- Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education, Chengdu 610039, China
| |
Collapse
|
5
|
Kaykanat SI, Uguz AK. The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. BIOMICROFLUIDICS 2023; 17:021502. [PMID: 37153864 PMCID: PMC10162024 DOI: 10.1063/5.0130769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
Targeted drug delivery is proposed to reduce the toxic effects of conventional therapeutic methods. For that purpose, nanoparticles are loaded with drugs called nanocarriers and directed toward a specific site. However, biological barriers challenge the nanocarriers to convey the drug to the target site effectively. Different targeting strategies and nanoparticle designs are used to overcome these barriers. Ultrasound is a new, safe, and non-invasive drug targeting method, especially when combined with microbubbles. Microbubbles oscillate under the effect of the ultrasound, which increases the permeability of endothelium, hence, the drug uptake to the target site. Consequently, this new technique reduces the dose of the drug and avoids its side effects. This review aims to describe the biological barriers and the targeting types with the critical features of acoustically driven microbubbles focusing on biomedical applications. The theoretical part covers the historical developments in microbubble models for different conditions: microbubbles in an incompressible and compressible medium and bubbles encapsulated by a shell. The current state and the possible future directions are discussed.
Collapse
Affiliation(s)
- S. I. Kaykanat
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Türkiye
| | | |
Collapse
|
6
|
Linh NH, Man VH, Li MS, Wang J, Derreumaux P, Mai TL, Nguyen PH. Molecular dynamics simulation of cancer cell membrane perforated by shockwave induced bubble collapse. J Chem Phys 2022; 157:225102. [PMID: 36546791 DOI: 10.1063/5.0105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
It has been widely accepted that cancer cells are softer than their normal counterparts. This motivates us to propose, as a proof-of-concept, a method for the efficient delivery of therapeutic agents into cancer cells, while normal cells are less affected. The basic idea of this method is to use a water jet generated by the collapse of the bubble under shockwaves to perforate pores in the cell membrane. Given a combination of shockwave and bubble parameters, the cancer membrane is more susceptible to bending, stretching, and perforating than the normal membrane because the bending modulus of the cancer cell membrane is smaller than that of the normal cell membrane. Therefore, the therapeutic agent delivery into cancer cells is easier than in normal cells. Adopting two well-studied models of the normal and cancer membranes, we perform shockwave induced bubble collapse molecular dynamics simulations to investigate the difference in the response of two membranes over a range of shockwave impulse 15-30 mPa s and bubble diameter 4-10 nm. The simulation shows that the presence of bubbles is essential for generating a water jet, which is required for perforation; otherwise, pores are not formed. Given a set of shockwave impulse and bubble parameters, the pore area in the cancer membrane is always larger than that in the normal membrane. However, a too strong shockwave and/or too large bubble results in too fast disruption of membranes, and pore areas are similar between two membrane types. The pore closure time in the cancer membrane is slower than that in the normal membrane. The implications of our results for applications in real cells are discussed in some details. Our simulation may be useful for encouraging future experimental work on novel approaches for cancer treatment.
Collapse
Affiliation(s)
- Nguyen Hoang Linh
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | - Thi Ly Mai
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
7
|
Man VH, He X, Wang J. Stable Cavitation Interferes with Aβ 16-22 Oligomerization. J Chem Inf Model 2022; 62:3885-3895. [PMID: 35920625 DOI: 10.1021/acs.jcim.2c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrasound and microbubbles are used for many medical applications nowadays. Scanning ultrasound can remove amyloid-β (Aβ) aggregates in the mouse brain and restores memory in an Alzheimer's disease mouse model. In vitro studies showed that amyloid fibrils are fragmented due to the ultrasound-induced bubble inertial cavitation, and ultrasonic pulses accelerate the depolymerization of Aβ fibrils into monomers at 1 μM of concentration. Under applied ultrasound, microbubbles can be in a stable oscillating state or unstable inertial cavitation state. The latter occurs when ultrasound causes a dramatic change of bubble sizes above a certain acoustic pressure. We have developed and implemented a nonequilibrium molecular dynamics simulation algorithm to the AMBER package, to facilitate the investigation of the molecular mechanism of Aβ oligomerization under stable cavitation. Our results indicated that stable cavitation not only inhibited oligomeric formation, but also prevented the formation of β-rich oligomers. The network analysis of state transitions revealed that stable cavitation altered the oligomerization pathways of Aβ16-22 peptides. Our simulation tool may be applied to optimize the experimental conditions to achieve the best therapeutical effect.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
8
|
Xu W, Zhu R, Fu Q, Wang X, Zhao Y, Zhao G, Wang J. Analysis of the influence of factor parameters on bubble collapse in a heavy metal complex system. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ma X, Yamaguchi A, Maeshige N, Uemura M, Noguchi H, Kondo H, Fujino H. Enhancement of astaxanthin incorporation by pulsed high-intensity ultrasound in LPS-stimulated macrophages. J Med Ultrason (2001) 2022; 49:125-132. [PMID: 35089476 DOI: 10.1007/s10396-022-01189-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/22/2021] [Indexed: 01/23/2023]
Abstract
PURPOSE Ultrasound (US) has been reported to improve the permeability of cell membranes to pharmaceuticals by causing cavitation. Astaxanthin (AX) potently terminates the induction of inflammation, but it has low oral bioavailability, which limits its incorporation in local cells and organs and its therapeutic potential. In this study, we aimed to investigate the contribution of US to AX incorporation to compensate for the limited incorporation of AX, and regulation of the pro-inflammatory factor interleukin-1β (IL-1β) by AX. METHODS Murine bone marrow-derived macrophages were stimulated by lipopolysaccharide (LPS). After 2 h, cells were treated with 10 μM AX and/or pulsed high-intensity US irradiation. The cells were then incubated for another 3 h and harvested. AX incorporation in cells was measured by absorbance, and the expression of IL-1β was measured by qPCR. All values are expressed as means ± standard error of the mean. RESULTS The combination of AX and US significantly increased AX incorporation in cells compared to AX alone (p < 0.05). In addition, this combination further suppressed the expression of IL-1β compared to AX alone (p < 0.05). CONCLUSION Pulsed high-intensity US irradiation combined with AX treatment promoted AX incorporation in cells and enhanced the anti-inflammatory effect on macrophages.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan.
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Hikari Noguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, Hyogo, 654-0142, Japan
| |
Collapse
|
10
|
Man VH, Li MS, Derreumaux P, Wang J, Nguyen PH. Molecular Mechanism of Ultrasound-Induced Structural Defects in Liposomes: A Nonequilibrium Molecular Dynamics Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7945-7954. [PMID: 34161100 DOI: 10.1021/acs.langmuir.1c00555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of ultrasound in combination with liposomes is a promising approach to improve drug delivery. To achieve an optimal drug release rate, it is important to understand how ultrasound induces pathways on the liposome surface where drugs can be released from the liposome. To this end, we carry out large-scale ultrasound-induced molecular dynamics simulations for three single lipid component liposomes formed from the commonly used phospholipids: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoylphosphatidylcholine (DPPC), or phosphatidylcholine (POPC). The results show that ultrasound induces the detachment of two leaflets of the DOPC surface, suggesting that the drug release pathway may be through the low lipid packing areas on the stretched surface. In contrast, ultrasound induces pore formation on the surface of DPPC and DOPC, where drugs could escape from the liposomes. While the leaflet detachment and transient pore formation are the mechanisms of DOPC and DPPC, respectively, in both liquid-ordered and liquid-disordered phases, the leaflet detachment mechanism is switched to the transient pore formation mechanism on going from the liquid-ordered phase to the liquid-disordered phase in the POPC liposome. By adding 30% mol cholesterol, the leaflet detachment mechanism is observed in all liposomes. We found that the molecular origin that determines a mechanism is the competition between the intraleaflet and interleaflet interacting energy of lipids. The connection to experimental and theoretical modeling is discussed in some detail.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Philippe Derreumaux
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Phuong H Nguyen
- CNRS, Université de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| |
Collapse
|
11
|
Man VH, Li MS, Derreumaux P, Wang J, Nguyen TT, Nangia S, Nguyen PH. Molecular mechanism of ultrasound interaction with a blood brain barrier model. J Chem Phys 2021; 153:045104. [PMID: 32752695 DOI: 10.1063/5.0010667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The brain is strictly protected by the blood brain barrier preventing the crossing of therapeutics to treat brain diseases. The high and low intensity focused ultrasound methods have been used to temporarily open the blood brain barrier, facilitating the transport of drugs. The methods are very promising because the opening is transient, localized, and noninvasive. However, the molecular mechanism of the opening is unknown, and this limits the development and application of these methods. With this in mind, we carry out a molecular dynamics simulation study to understand the interaction of ultrasound with the cell membrane and the tight junction. Our minimal blood brain barrier model is composed of two lipid bilayers, mimicking two portions of neighboring cells, connected together by a tight junction formed by a pair of two cis-dimers of the claudin-5 protein. Using an experimental ultrasound frequency of 50 MHz, simulations show that at low intensities, ultrasound does not impact the structure of the cell membranes and tight junction, implying that the direct interaction of ultrasound with the blood brain barrier is not responsible for the experimentally observed opening. At high intensities, the ultrasound pulls the monolayers of individual cell membrane lipid bilayers apart, creating air compartments inside the bilayers. This reduces the free energy barrier for the translocation of drugs across the lipid bilayer and enhances drug permeability. At very high intensities, the two monolayers are largely separated, resulting in cell damage and implying that the blood brain barrier is primarily opened at the experimentally observed damaged areas.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Philippe Derreumaux
- CNRS, Universite de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France
| | - Junmei Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Toan T Nguyen
- Key Laboratory for Multiscale Simulation of Complex Systems, VNU University of Science, Vietnam National University, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam
| | - S Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, USA
| | - Phuong H Nguyen
- CNRS, Universite de Paris, UPR9080, Laboratoire de Biochimie Théorique, Paris, France
| |
Collapse
|
12
|
Marsh JL, Bentil SA. Cerebrospinal Fluid Cavitation as a Mechanism of Blast-Induced Traumatic Brain Injury: A Review of Current Debates, Methods, and Findings. Front Neurol 2021; 12:626393. [PMID: 33776887 PMCID: PMC7994250 DOI: 10.3389/fneur.2021.626393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
Cavitation has gained popularity in recent years as a potential mechanism of blast-induced traumatic brain injury (bTBI). This review presents the most prominent debates on cavitation; how bubbles can form or exist within the cerebrospinal fluid (CSF) and brain vasculature, potential mechanisms of cellular, and tissue level damage following the collapse of bubbles in response to local pressure fluctuations, and a survey of experimental and computational models used to address cavitation research questions. Due to the broad and varied nature of cavitation research, this review attempts to provide a necessary synthesis of cavitation findings relevant to bTBI, and identifies key areas where additional work is required. Fundamental questions about the viability and likelihood of CSF cavitation during blast remain, despite a variety of research regarding potential injury pathways. Much of the existing literature on bTBI evaluates cavitation based off its prima facie plausibility, while more rigorous evaluation of its likelihood becomes increasingly necessary. This review assesses the validity of some of the common assumptions in cavitation research, as well as highlighting outstanding questions that are essential in future work.
Collapse
Affiliation(s)
- Jenny L Marsh
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| | - Sarah A Bentil
- The Bentil Group, Department of Mechanical Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Maeshige N, Langston PK, Yuan ZM, Kondo H, Fujino H. High-intensity ultrasound irradiation promotes the release of extracellular vesicles from C2C12 myotubes. ULTRASONICS 2021; 110:106243. [PMID: 32961400 DOI: 10.1016/j.ultras.2020.106243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Skeletal muscle is an important secretory organ in mammals, producing myriad chemical mediators ("myokines") with distinct biological action in different tissues, including anti-inflammatory activity. Extracellular vesicles (EVs) have recently been identified as a mode of myokine transport from muscle, facilitating such anti-inflammatory activity. In this report, we have demonstrated that high-intensity ultrasound (US) strongly induces EV secretion from cultured myotubes without a reduction in cell viability. High-intensity US of 3.0 W/cm2 with 20% duty cycle increased the number of EVs by 2-fold compared to control at 6 h. This effect was specific to EVs in the 100-150 nm size range. Thus, high-intensity US is a novel modality for inducing myocellular EV release and may hold therapeutic value.
Collapse
Affiliation(s)
- Noriaki Maeshige
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| | - P Kent Langston
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Immunology, Harvard Medical School and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Zhi-Min Yuan
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hiroyo Kondo
- Department of Food Sciences and Nutrition, Nagoya Women's University, Nagoya, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
14
|
Zhang L, Liu X, Gao L, Ji Y, Wang L, Zhang C, Dai L, Liu J, Ji Z. Activation of Piezo1 by ultrasonic stimulation and its effect on the permeability of human umbilical vein endothelial cells. Biomed Pharmacother 2020; 131:110796. [PMID: 33152952 DOI: 10.1016/j.biopha.2020.110796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023] Open
Abstract
The acoustic radiation forces produced by ultrasonic stimulation induce shear stress on objects in the acoustic field. Piezo1, a mechanosensitive ion channel protein that is expressed on the plasma membranes of vertebrate cells, can sense shear stress and transduce it into downstream signaling. In this study, we examined the sensitivity of Piezo1 to ultrasonic stimulation and assessed its downstream biological functions in human umbilical vein endothelial cells (HUVECs). Ultrasonic stimulation using a stimulation power of 0.2 W and a frequency of 1 MHz for 10 s did not induce cell damage. However, ultrasonic stimulation induced an influx of calcium ions, which increased with an increase in the stimulation duration. Knockdown of Piezo1 protein decreased the influx of calcium ions during ultrasonic stimulation, which demonstrated that Piezo1 may be activated by the shear stress produced by ultrasonic stimulation. The influx of calcium ions in response to ultrasonic stimulation could be modulated by the Piezo1 protein level. Additionally, ultrasonic stimulation reduced the levels of downstream factors such as MLCK and ATP, which are involved in the Ca2+/CaM/MLCK pathway, by suppressing Piezo1. As the Ca2+/CaM/MLCK pathway influences the permeability of the cell membrane, the internalization of FITC-Dextran into cells under ultrasonic stimulation was validated. Ultrasonic stimulation was demonstrated to promote the increase in cell permeability, and the suppression of Piezo1 was shown to induce the decrease in cell permeability. Therefore, this study shows that ultrasonic stimulation may modulate the permeability of the membrane of HUVECs by modulating the expression of Piezo1 protein.
Collapse
Affiliation(s)
- Liguo Zhang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Xiaojie Liu
- School of Basic Medical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Lu Gao
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Yun Ji
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Lulu Wang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Can Zhang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Liping Dai
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Jingjing Liu
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China
| | - Zhenyu Ji
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450007, China; Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, China.
| |
Collapse
|
15
|
Han YY, Lin YC, Cheng WC, Lin YT, Teng LJ, Wang JK, Wang YL. Rapid antibiotic susceptibility testing of bacteria from patients' blood via assaying bacterial metabolic response with surface-enhanced Raman spectroscopy. Sci Rep 2020; 10:12538. [PMID: 32719444 PMCID: PMC7385103 DOI: 10.1038/s41598-020-68855-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Blood stream infection is one of the major public health issues characterized with high cost and high mortality. Timely effective antibiotics usage to control infection is crucial for patients’ survival. The standard microbiological diagnosis of infection however can last days. The delay in accurate antibiotic therapy would lead to not only poor clinical outcomes, but also to a rise in antibiotic resistance due to widespread use of empirical broad-spectrum antibiotics. An important measure to tackle this problem is fast determination of bacterial antibiotic susceptibility to optimize antibiotic treatment. We show that a protocol based on surface-enhanced Raman spectroscopy can obtain consistent antibiotic susceptibility test results from clinical blood-culture samples within four hours. The characteristic spectral signatures of the obtained spectra of Staphylococcus aureus and Escherichia coli—prototypic Gram-positive and Gram-negative bacteria—became prominent after an effective pretreatment procedure removed strong interferences from blood constituents. Using them as the biomarkers of bacterial metabolic responses to antibiotics, the protocol reported the susceptibility profiles of tested drugs against these two bacteria acquired from patients’ blood with high specificity, sensitivity and speed.
Collapse
Affiliation(s)
- Yin-Yi Han
- Department of Anesthesia, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Traumatology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Yi-Chun Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Chih Cheng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Tzu Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Lee-Jene Teng
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Juen-Kai Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan. .,Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan. .,Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, Taiwan.
| | - Yuh-Lin Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan. .,Department of Physics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Effects of Bubble Size and Gas Density on the Shock-induced Collapse of Nanoscale Cavitation Bubble. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42493-020-00040-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Miceli M, Muscat S, Morbiducci U, Cavaglià M, Deriu MA. Ultrasonic waves effect on S-shaped β-amyloids conformational dynamics by non-equilibrium molecular dynamics. J Mol Graph Model 2020; 96:107518. [DOI: 10.1016/j.jmgm.2019.107518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
|
18
|
Man VH, Li MS, Wang J, Derreumaux P, Nguyen PH. Interaction mechanism between the focused ultrasound and lipid membrane at the molecular level. J Chem Phys 2019; 150:215101. [PMID: 31176320 PMCID: PMC7043851 DOI: 10.1063/1.5099008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022] Open
Abstract
Focused ultrasound (FUS) has a wide range of medical applications. Nowadays, the diagnostic and therapeutic ultrasound procedures are routinely used; effects of ultrasound on biological systems at the molecular level are, however, not fully understood. Experimental results on the interaction of the cell membrane, a simplest but important system component, with ultrasound are controversial. Molecular dynamics (MD) simulations could provide valuable insights, but there is no single study on the mechanism of the FUS induced structural changes in cell membranes. With this in mind, we develop a simple method to include FUS into a standard MD simulation. Adopting the 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid membrane as a representative model described by the MARTINI coarse-grained force field, and using experimental values of the ultrasound frequency and intensity, we show that the heat and bubble cavitation are not the primary direct mechanisms that cause structural changes in the membrane. The spatial pressure gradients between the focused and free regions and between the parallel and perpendicular directions to the membrane are the origin of the mechanism. These gradients force lipids to move out of the focused region, forming a lipid flow along the membrane diagonal. Lipids in the free region move in the opposite direction due to the conservation of the total momentum. These opposite motions create wrinkles along the membrane diagonal at low FUS intensities and tear up the membrane at high FUS intensities. Once the membrane is torn up, it is not easy to reform. The implication of our findings in the FUS-induced drug delivery is discussed in some detail.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
19
|
Abstract
This Review illustrates the evaluation of permeability of lipid membranes from molecular dynamics (MD) simulation primarily using water and oxygen as examples. Membrane entrance, translocation, and exit of these simple permeants (one hydrophilic and one hydrophobic) can be simulated by conventional MD, and permeabilities can be evaluated directly by Fick's First Law, transition rates, and a global Bayesian analysis of the inhomogeneous solubility-diffusion model. The assorted results, many of which are applicable to simulations of nonbiological membranes, highlight the limitations of the homogeneous solubility diffusion model; support the utility of inhomogeneous solubility diffusion and compartmental models; underscore the need for comparison with experiment for both simple solvent systems (such as water/hexadecane) and well-characterized membranes; and demonstrate the need for microsecond simulations for even simple permeants like water and oxygen. Undulations, subdiffusion, fractional viscosity dependence, periodic boundary conditions, and recent developments in the field are also discussed. Last, while enhanced sampling methods and increasingly sophisticated treatments of diffusion add substantially to the repertoire of simulation-based approaches, they do not address directly the critical need for force fields with polarizability and multipoles, and constant pH methods.
Collapse
Affiliation(s)
- Richard M Venable
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Andreas Krämer
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
20
|
Visualizing Biological Membrane Organization and Dynamics. J Mol Biol 2019; 431:1889-1919. [DOI: 10.1016/j.jmb.2019.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022]
|
21
|
Wang L, Boussetta N, Lebovka N, Lefebvre C, Vorobiev E. Correlations between disintegration degree of fruit skin cells induced by ultrasound and efficiency of bio-compounds extraction. ULTRASONICS SONOCHEMISTRY 2019; 52:280-285. [PMID: 30555040 DOI: 10.1016/j.ultsonch.2018.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/18/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The ultrasound (US) assisted extraction of bio-compounds from different fruit skins (apples, bananas and persimmons) was studied. The aqueous suspensions of skins were treated by US with different energy inputs (0.033-0.299 kW·h/kg) and total time of aqueous extraction was up to 2700 s. The ionic, Zi, and total polyphenol, Zp, extraction indexes of the liquid extracts were analyzed. From microscopic images the cell wall disintegration index, Zm, was determined. Increase in US energy input caused the increase of values of Zi, Zp and Zm. The correlations between extraction parameters and the disintegration index, Zm, were discussed.
Collapse
Affiliation(s)
- Lu Wang
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France
| | - Nadia Boussetta
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France.
| | - Nikolai Lebovka
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France; Institute of Biocolloidal Chemistry named after F. D. Ovcharenko, NAS of Ukraine, 42, blvr. Vernadskogo, Kyiv 03142, Ukraine
| | - Caroline Lefebvre
- Sorbonne Universités, Université de Technologie de Compiègne, Service d'Analyse Physico-Chimique, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France
| | - Eugène Vorobiev
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France
| |
Collapse
|
22
|
Ogawa K, Fuchigami Y, Hagimori M, Fumoto S, Maruyama K, Kawakami S. Ultrasound-responsive nanobubble-mediated gene transfection in the cerebroventricular region by intracerebroventricular administration in mice. Eur J Pharm Biopharm 2019; 137:1-8. [PMID: 30738859 DOI: 10.1016/j.ejpb.2019.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/06/2023]
Abstract
AIM Intracerebroventricular (ICV) administration of ultrasound-responsive bubbles and cranial ultrasound irradiation is reported as a transfection system for the cerebroventricular region. This study aimed to characterize the transfection system with respect to transfection efficiency, spatial distribution of transgene expression, and safety. METHODS Plasmid DNA was transfected to mouse brain by ICV injection of ultrasound-responsive nanobubbles, followed by ultrasound irradiation to brain. Spatial distribution of transgene expression in the cerebroventricular region was investigated using multicolor deep imaging. RESULT This transfection system efficiently transferred the transgene to the choroid plexus with no morphological change or cerebral hemorrhage. Moreover, sustained secretion of transgenic protein was achieved by transferring the transgene encoding the secretable protein. CONCLUSION We successfully developed an ultrasound-responsive nanobubbles-mediated method for gene transfection into the cerebroventricular region via ICV administration in mice.
Collapse
Affiliation(s)
- Koki Ogawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Yuki Fuchigami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Masayori Hagimori
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| | - Kazuo Maruyama
- Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashiku, Tokyo 173-8605, Japan.
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8588, Japan.
| |
Collapse
|
23
|
Man VH, Truong PM, Li MS, Wang J, Van-Oanh NT, Derreumaux P, Nguyen PH. Molecular Mechanism of the Cell Membrane Pore Formation Induced by Bubble Stable Cavitation. J Phys Chem B 2018; 123:71-78. [DOI: 10.1021/acs.jpcb.8b09391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Phan Minh Truong
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Nguyen-Thi Van-Oanh
- Laboratoire de Chimie Physique, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
24
|
Nan N, Si D, Hu G. Nanoscale cavitation in perforation of cellular membrane by shock-wave induced nanobubble collapse. J Chem Phys 2018; 149:074902. [DOI: 10.1063/1.5037643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nan Nan
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Dongqing Si
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| | - Guohui Hu
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
| |
Collapse
|
25
|
Pan D, Zhao G, Lin Y, Shao X. Mesoscopic modelling of microbubble in liquid with finite density ratio of gas to liquid. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/122/20003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Effect of Wettability on Collapsing Cavitation Bubble near Solid Surface Studied by Multi-Relaxation-Time Lattice Boltzmann Model. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Wu YT, Adnan A. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain. Sci Rep 2017; 7:5323. [PMID: 28706307 PMCID: PMC5509702 DOI: 10.1038/s41598-017-05790-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/23/2017] [Indexed: 01/13/2023] Open
Abstract
The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuan-Ting Wu
- Mechanical and Aerospace Engineering, the University of Texas at Arlington, Arlington, 76010, USA
| | - Ashfaq Adnan
- Mechanical and Aerospace Engineering, the University of Texas at Arlington, Arlington, 76010, USA.
| |
Collapse
|
28
|
Shen ZY, Liu C, Wu MF, Shi HF, Zhou YF, Zhuang W, Xia GL. Spiral computed tomography evaluation of rabbit VX2 hepatic tumors treated with 20 kHz ultrasound and microbubbles. Oncol Lett 2017; 14:3124-3130. [PMID: 28928850 DOI: 10.3892/ol.2017.6557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to explore the therapeutic effect of 20 kHz ultrasound (US) and microbubbles (MBs) on rabbit VX2 liver tumors by spiral computed tomography (CT) scanning. A total of 16 New Zealand rabbits with hepatic VX2 tumors were divided into four groups: Control, MB, low-frequency US and US + MB. The treatment effect was evaluated by spiral CT scanning prior to, during and following treatment (at 0 weeks and the end of 1 and 2 weeks). The tumor growth rate was recorded. The specimens of VX2 tumors were collected for histological examination and transmission electron microscopy (TEM). No significant differences were observed between tumor areas measured by CT and pathology after 2-week treatment (P>0.05). The mean tumor growth rates in the control, MB, US and US + MB groups after 2 weeks of treatment were 385±21, 353±12, 302±14 and 154±9%, respectively (P<0.05, US + MB vs. the other three groups). Hematoxylin and eosin staining in the US + MB group revealed coagulation necrosis, interstitial hemorrhage and intravascular thrombosis. In the control, MB and US groups, tumor cells exhibited clear nuclear hyperchromatism. TEM of US + MB revealed vascular endothelial cell wall rupture, widened endothelial cell gaps, interstitial erythrocyte leakage and microvascular thrombosis, while intact vascular endothelial cells and normal erythrocytes in the tumor vessels were observed in the control, MB and US groups. A combination of 20 kHz US and MBs may effectively inhibit rabbit VX2 tumors. Spiral CT scanning is an ideal method to evaluate the US treatment on rabbit tumors.
Collapse
Affiliation(s)
- Zhi-Yong Shen
- Department of Radiology, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Chun Liu
- Laboratory Animal Center of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ming-Feng Wu
- Department of Radiology, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Hai-Feng Shi
- Department of Radiology, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Yu-Feng Zhou
- Department of Radiology, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Wei Zhuang
- Department of Radiology, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Gan-Lin Xia
- Department of Radiology, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| |
Collapse
|
29
|
Maeshige N, Koga Y, Tanaka M, Aoyama-Ishikawa M, Miyoshi M, Usami M, Fujino H. Low-Intensity Ultrasound Enhances Histone Acetylation and Inhibition of Interleukin 6 Messenger RNA Expression by the Histone Deacetylase Inhibitor Sodium Butyrate in Fibroblasts. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:879-885. [PMID: 28195362 DOI: 10.7863/ultra.16.04020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES Sodium butyrate, an inhibitor of histone deacetylase, has several therapeutic actions, including anti-inflammation. These actions depend on the concentration of sodium butyrate. In addition, lower concentrations have shown no effect on inflammation. Sonoporation by ultrasound can modify the permeability of the cell plasma membrane. Thus, the effects of sodium butyrate may be enhanced by the ultrasonic acoustics. Therefore, the facilitative effects of low-intensity ultrasound on histone acetylation and interleukin 6 (IL-6) regulation by sodium butyrate were investigated in this study. METHODS Human dermal fibroblasts were treated with 1-mM sodium butyrate for 3 hours with 20 minutes of 0.1-W/cm2 pulsed or continuous ultrasound irradiation at the beginning of the sodium butyrate treatments. RESULTS The combination of treatments with sodium butyrate and ultrasound significantly increased histone acetylation in fibroblasts (P < .05), whereas sodium butyrate could not increase histone acetylation. In addition, this combined treatment significantly suppressed the IL-6 messenger RNA expression level with lipopolysaccharide stimulation for 1 hour (P < .05). Meanwhile, the treatment with sodium butyrate alone could not suppress IL-6 messenger RNA expression in fibroblasts. These effects were achieved with both 20% pulsed and continuous ultrasound but not observed with ultrasound treatment alone. CONCLUSIONS These results suggest that low-intensity ultrasound treatment promotes the physiologic actions of sodium butyrate as a histone deacetylase inhibitor.
Collapse
Affiliation(s)
- Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuka Koga
- Division of Nutrition and Metabolism , Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Michiko Aoyama-Ishikawa
- Division of Nutrition and Metabolism , Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Makoto Miyoshi
- Division of Nutrition and Metabolism , Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Makoto Usami
- Division of Nutrition and Metabolism , Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
30
|
Lin Y, Pan D, Li J, Zhang L, Shao X. Application of Berendsen barostat in dissipative particle dynamics for nonequilibrium dynamic simulation. J Chem Phys 2017; 146:124108. [DOI: 10.1063/1.4978807] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuqing Lin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Dingyi Pan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jiaming Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Lingxin Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xueming Shao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Hoang Viet M, Derreumaux P, Nguyen PH. Nonequilibrium all-atom molecular dynamics simulation of the bubble cavitation and application to dissociate amyloid fibrils. J Chem Phys 2016; 145:174113. [PMID: 27825231 PMCID: PMC5106436 DOI: 10.1063/1.4966263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/05/2016] [Indexed: 11/14/2022] Open
Abstract
The cavitation of gas bubbles in liquids has been applied to different disciplines in life and natural sciences, and in technologies. To obtain an appropriate theoretical description of effects induced by the bubble cavitation, we develop an all-atom nonequilibrium molecular-dynamics simulation method to simulate bubbles undergoing harmonic oscillation in size. This allows us to understand the mechanism of the bubble cavitation-induced liquid shear stress on surrounding objects. The method is then employed to simulate an Aβ fibril model in the presence of bubbles, and the results show that the bubble expansion and contraction exert water pressure on the fibril. This yields to the deceleration and acceleration of the fibril kinetic energy, facilitating the conformational transition between local free energy minima, and leading to the dissociation of the fibril. Our work, which is a proof-of-concept, may open a new, efficient way to dissociate amyloid fibrils using the bubble cavitation technique, and new venues to investigate the complex phenomena associated with amyloidogenesis.
Collapse
Affiliation(s)
- Man Hoang Viet
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité, IBPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
32
|
Shock Wave-Induced Damage of a Protein by Void Collapse. Biophys J 2016; 110:147-56. [PMID: 26745418 DOI: 10.1016/j.bpj.2015.11.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/28/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of shock waves on a membrane-bound ion channel. A planar shock wave was found to compress the ion channel upon impact, but the protein geometry resembles the crystal structure as soon as the solvent density begins to dissipate. When a void was placed in close proximity to the membrane, the shock wave proved to be more destructive to the protein due to formation of a nanojet that results from the asymmetric collapse of the void. The nanojet was able to cause significant structural changes to the protein even at low piston velocities that are not able to directly cause poration of the membrane.
Collapse
|
33
|
Duco W, Grosso V, Zaccari D, Soltermann AT. Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications. Methods 2016; 109:141-148. [PMID: 27542338 DOI: 10.1016/j.ymeth.2016.07.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 11/25/2022] Open
Abstract
The thermal decomposition of 9,10 diphenylanthracene peroxide (DPAO2) generates DPA and a mix of triplet and singlet molecular oxygen. For DPAO2 the efficiency to produce singlet molecular oxygen is 0.35. On the other hand, it has shown that many thermal reactions can be carried out through the interaction of molecules with ultrasound. Ultrasound irradiation can create hydrodynamic stress (sonomechanical process), inertial cavitation (pyrolitic process) and long range effects mediated by radicals or ROS. Sonochemical reactions can be originated by pyrolytic like process, shock mechanical waves, thermal reactions and radical and ROS mediated reactions. Sonolysis of pure water can yield hydrogen or hydroxyl radicals and hydrogen peroxide (ROS). When DPAO2 in 1,4 dioxane solution is treated with 20 or 24kHz and different power intensity the production of molecular singlet oxygen is observed. Specific scavengers like tetracyclone (TC) are used to demonstrate it. The efficiency now is 0.85 showing that the sonochemical process is much more efficient that the thermal one. Another endoperoxide, artemisinin was also studied. Unlike the concept of photosensitizer of photodynamic therapy, in spite of large amount of reported results in literature, the term sonosensitizer and the sonosensitization process are not well defined. We define sonosensitized reaction as one in which a chemical species decompose as consequence of cavitation phenomena producing ROS or other radicals and some other target species does undergo a chemical reaction. The concept could be reach rapidly other peroxides which are now under experimental studies. For artemisinin, an important antimalarian and anticancer drug, was established that ultrasound irradiation increases the effectiveness of the treatment but without any explanation. We show that artemisinin is an endoperoxide and behaves as a sonosensitizer in the sense of our definition.
Collapse
Affiliation(s)
- Walter Duco
- Dpto. de Química, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, CP 5800 Río Cuarto, Argentina
| | - Viviana Grosso
- Dpto. de Química, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, CP 5800 Río Cuarto, Argentina
| | - Daniel Zaccari
- Dpto. de Fisica, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, CP 5800 Río Cuarto, Argentina
| | - Arnaldo T Soltermann
- Dpto. de Química, Facultad de Ciencias Exactas Físico Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, CP 5800 Río Cuarto, Argentina.
| |
Collapse
|
34
|
Zhao YZ, Zhang M, Wong HL, Tian XQ, Zheng L, Yu XC, Tian FR, Mao KL, Fan ZL, Chen PP, Li XK, Lu CT. Prevent diabetic cardiomyopathy in diabetic rats by combined therapy of aFGF-loaded nanoparticles and ultrasound-targeted microbubble destruction technique. J Control Release 2016; 223:11-21. [DOI: 10.1016/j.jconrel.2015.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023]
|
35
|
Adhikari U, Goliaei A, Berkowitz ML. Nanobubbles, cavitation, shock waves and traumatic brain injury. Phys Chem Chem Phys 2016; 18:32638-32652. [DOI: 10.1039/c6cp06704b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shock wave induced cavitation denaturates blood–brain barrier tight junction proteins; this may result in various neurological complications.
Collapse
Affiliation(s)
- Upendra Adhikari
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Ardeshir Goliaei
- Department of Biochemistry and Biophysics and Program in Molecular and Cellular Biophysics
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Max L. Berkowitz
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|