1
|
Tsuchii T, Kaneko K, Morita K, Nishino T, Maruyama T. Rewritable Surface on a Plastic Substrate Using Fluorous Affinity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3255-3263. [PMID: 34923822 DOI: 10.1021/acsami.1c18633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorous chemistry has unique features and high potential applicability, which are distinct from those of nonfluorinated organic compounds. However, there are limited reports detailing the applications of fluorous-fluorous interactions (fluorophilicity or fluorous affinity), likely because these interactions are not found in nature. In the present study, we describe the rewritable surface functionalization of a plastic substrate based on fluorous affinity. Plastic substrates were dip-coated with a series of methacrylate-based fluoropolymers to generate fluorous surfaces. Fluorous-tagged small molecules [perfluoroalkyl (Rf) amines] were immobilized on the fluorous surfaces via fluorous-fluorous interactions, thereby introducing reactive functional groups (amino moieties) on the surface. The amino groups displayed on the surface (accessible by a reactant) were successfully quantified using a reactive fluorophore, which enabled quantitative analysis of the Rf-amines immobilized on the fluorous surface that were available for the subsequent reaction. The effects of the molecular structures of the fluoropolymers and Rf-amines on the surface immobilization of Rf-amines were also investigated quantitatively. The surface coated with a fluoropolymer containing -C8F17 most effectively immobilized an Rf-amine comprising two -C6F13 chains. The adhered Rf-amines were easily removed by washing the surface with methanol, and then, they could successfully be re-immobilized on the surface. Finally, the presented approach enabled the rewritable micropatterning of an Rf-tagged biomolecule on a plastic surface through microcontact printing.
Collapse
Affiliation(s)
- Takane Tsuchii
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kazuki Kaneko
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Tao DD, Wei JH, Yan XS, Wang Q, Kou BH, Chen N, Jiang YB. Helical nanofibers of N-(perfluorooctanoyl)cysteine ethyl ester in coordination polymers of Ag . Chem Commun (Camb) 2020; 56:15133-15136. [PMID: 33165457 DOI: 10.1039/d0cc05989g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We propose using the formation of coordination polymers of Ag+ to probe differences between the perfluorinated alkyl chain and the alkyl chain by deriving a thiol ligand, N-(perfluoroalkanoyl)cysteine. Rapid formation in EtOH of P-/M-helical nanofibrils of high thermostability was found for N-(perfluorooctanoyl)-l-/d-cysteine ethyl esters at the μM level upon mixing with Ag+, but not for the octanoyl counterpart. This difference was also observed in terms of circular dichroism-enantiomeric excess dependence.
Collapse
Affiliation(s)
- Dan-Dan Tao
- Department of Chemistry, College of Chemistry and Chemical Engineering, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and iChEM, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Kaneko K, Hara M, Nishino T, Maruyama T. One-Step Biotinylation of Cellulose Paper by Polymer Coating to Prepare a Paper-Based Analytical Device. Anal Chem 2020; 92:1978-1987. [PMID: 31876140 DOI: 10.1021/acs.analchem.9b04373] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellulose paper has strong potential as an analytical platform owing to its unique characteristics. In the present study, we investigated a procedure for functionalizing the surface of cellulose paper by dip-coating a mixture of a functional polymer and a perfluoroalkylated surfactant (surfactant 1). The functional polymer comprised a mixture of methyl methacrylate and poly(ethylene glycol) methacrylate monomers. The monomer ratio in the functional polymer affected the hydrophilicity and water absorbance of the cellulose paper after dip-coating. Furthermore, the presence of surfactant 1 during dip-coating promoted the surface segregation of poly(ethylene glycol) (PEG) moieties in the polymer, which enhanced the hydrophilicity, prevented nonspecific protein adsorption, and maintained the water absorbance of the dip-coated cellulose paper. Dip-coating with another functional polymer containing biotin groups produced a cellulose paper with a biotin-decorated surface in a one-step procedure. The displayed biotin groups immobilized avidin on the surface, and the PEG moieties in the polymer prevented nonspecific protein adsorption. We then immobilized a thrombin-binding DNA aptamer on the avidin-immobilized cellulose paper to prepare a paper-based analytical device. It is possible to visualize thrombin in model solutions and serum using the paper-based analytical device.
Collapse
Affiliation(s)
- Kazuki Kaneko
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai, Nada-ku , Kobe 657-8501 , Japan
| | - Manami Hara
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai, Nada-ku , Kobe 657-8501 , Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai, Nada-ku , Kobe 657-8501 , Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai, Nada-ku , Kobe 657-8501 , Japan
| |
Collapse
|
4
|
Nishimori K, Kitahata S, Nishino T, Maruyama T. Controlling Surface Segregation of a Polymer To Display Carboxy Groups on an Outermost Surface Using Perfluoroacyl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6396-6404. [PMID: 29745670 DOI: 10.1021/acs.langmuir.8b00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Controlling the surface properties of solid polymers is important for practical applications. We here succeeded in controlling the surface segregation of polymers to display carboxy groups on an outermost surface, which allowed the covalent immobilization of functional molecules via the carboxy groups on a substrate surface. Random methacrylate-based copolymers containing carboxy groups, which were protected with perfluoroacyl (Rf) groups, were dip-coated on acrylic substrate surfaces. X-ray photoelectron spectroscopy and contact-angle measurements revealed that the Rf groups were segregated to the outermost surface of the dip-coated substrates. The Rf groups were removed by hydrolysis of the Rf esters in the copolymers, resulting in the display of carboxy groups on the surface. The quantification of carboxy groups on a surface revealed that the carboxy groups were reactive to a water-soluble solute in an aqueous solution. The surface segregation was affected by the molecular structure of the copolymer used for dip-coating.
Collapse
Affiliation(s)
- Keisuke Nishimori
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai , Nada-ku, Kobe 657-8501 , Japan
| | - Shigeru Kitahata
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai , Nada-ku, Kobe 657-8501 , Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai , Nada-ku, Kobe 657-8501 , Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai , Nada-ku, Kobe 657-8501 , Japan
| |
Collapse
|
5
|
Yamamoto S, Kitahata S, Shimomura A, Tokuda K, Nishino T, Maruyama T. Surfactant-induced polymer segregation to produce antifouling surfaces via dip-coating with an amphiphilic polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:125-131. [PMID: 25479252 DOI: 10.1021/la5043712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We propose a rational strategy to control the surface segregation of an amphiphilic copolymer in its dip-coating with a low-molecular-weight surfactant. We synthesized a water-insoluble methacrylate-based copolymer containing oligo(ethylene glycol) (OEG) (copolymer 1) and a perfluoroalkylated surfactant (surfactant 1) containing OEG. The dip-coating of copolymer 1 with surfactant 1 resulted in the segregation of surfactant 1 on the top surface of the dip-coated layer due to the high hydrophobicity of its perfluoroalkyl group. OEG moieties of surfactant 1 were accompanied by those of copolymer 1 in its segregation, allowing the OEG moieties of copolymer 1 to be located just below the top surface of the dip-coated layer. The removal of surfactant 1 produced the surface covered by the OEG moieties of the copolymer that exhibited antifouling properties. Using this strategy, we also succeeded in the introduction of carboxy groups on the dip-coated surface and demonstrated that the carboxy groups were available for the immobilization of functional molecules on the surface.
Collapse
Affiliation(s)
- Shunsuke Yamamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University , 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Ellinas K, Pujari SP, Dragatogiannis DA, Charitidis CA, Tserepi A, Zuilhof H, Gogolides E. Plasma micro-nanotextured, scratch, water and hexadecane resistant, superhydrophobic, and superamphiphobic polymeric surfaces with perfluorinated monolayers. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6510-24. [PMID: 24749933 DOI: 10.1021/am5000432] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Superhydrophobic and superamphiphobic toward superoleophobic polymeric surfaces of polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), and polydimethyl siloxane (PDMS) are fabricated in a two-step process: (1) plasma texturing (i.e., ion-enhanced plasma etching with simultaneous roughening), with varying plasma chemistry depending on the polymer, and subsequently (2) grafting of self-assembled perfluorododecyltrichlorosilane monolayers (SAMs). Depending on the absence or not of an etch mask (i.e., colloidal microparticle self-assembly on it), random or ordered hierarchical micro-nanotexturing can be obtained. We demonstrate that stable organic monolayers can be grafted onto all these textured polymeric surfaces. After the monolayer deposition, the initially hydrophilic polymeric surfaces become superamphiphobic with static contact angles for water and oils>153°, for hexadecane>142°, and hysteresis<10° for all surfaces. This approach thus provides a simple and generic method to obtain superamphiphobicity on polymers toward superoleophobicity. Hydrolytic and hexadecane immersion tests prove that superamphiphobicity is stable for more than 14 days. We also perform nanoscratch and post nanoscratch tests to prove the scratch resistance of both the texture and the SAM and demonstrate lower coefficient of friction of the SAM compared to the uncoated surface. Scanning electron microscope observation after the nanoscratch tests confirms the scratch resistance of the surfaces.
Collapse
Affiliation(s)
- Kosmas Ellinas
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos" , Aghia Paraskevi,153 10 Attiki, Greece
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Shimomura A, Nishino T, Maruyama T. Display of amino groups on substrate surfaces by simple dip-coating of methacrylate-based polymers and its application to DNA immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:932-938. [PMID: 23276150 DOI: 10.1021/la303752x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The implementation of a reactive functional group onto a material surface is of great importance. Reactive functional groups (e.g., an amino group and a hydroxyl group) are usually hydrophilic, which makes it difficult to display them on a dry polymer surface. We here propose a novel method for displaying amino groups on the surfaces of polymeric substrates through dip-coating of a methacrylate-based copolymer. We synthesized copolymers composed of methyl methacrylate and 2-aminoethyl methacrylate with different protecting groups or ion-complexes on their amino groups, then dip-coated the copolymers onto a poly(methyl methacrylate) (PMMA) substrate. Evaluation using a cleavable fluorescent compound, which was synthesized in the present study to quantify a small amount (pmol/cm(2)) of amino groups on a solid surface, revealed that the protection of amino groups affected their surface segregation in the copolymer coating. p-Toluenesulfonate ion-complex and tert-butoxycarbonyl (Boc) protection of amino groups were found to effectively display amino groups on the surface (more than 70 pmol/cm(2)). The density of amino groups displayed on a surface can be easily controlled by mixing the copolymer and PMMA before dip-coating. Dip-coating of the copolymer with Boc protection on various polymeric substrates also successfully displayed amino groups on their surfaces. Finally, we demonstrated that the amino groups displayed can be utilized for the immobilization of a DNA oligonucleotide on a substrate surface.
Collapse
Affiliation(s)
- Ayane Shimomura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Japan
| | | | | |
Collapse
|
9
|
Pujari SP, Spruijt E, Cohen Stuart MA, van Rijn CJM, Paulusse JMJ, Zuilhof H. Ultralow adhesion and friction of fluoro-hydro alkyne-derived self-assembled monolayers on H-terminated Si(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17690-17700. [PMID: 23234602 DOI: 10.1021/la303893u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
New fluorine-containing terminal alkynes were synthesized and self-assembled onto Si(111) substrates to obtain fluorine-containing organic monolayers. The monolayers were analyzed in detail by ellipsometry, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS), static water contact angle measurements (CA), and atomic force microscopy (AFM). The SAMs exhibit excellent hydrophobicity, with static water contact angles of up to 119° and low critical surface tensions of 5-20 mN/m depending on the number of F atoms per molecule. IRRAS confirmed the formation of highly ordered monolayers, as indicated by the antisymmetric and symmetric stretching vibrations of the CH(2) moieties at 2918-2920 and 2850-2851 cm(-1), respectively. Upon increasing the number of fluorine atoms in the alkyne chains from 0 to 17, the adhesion of bare silica probes to the SAMs in air decreases from 11.6 ± 0.20 mJ/m(2) for fluorine-free (F0) alkyne monolayers to as low as 3.2 ± 0.03 mJ/m(2) for a heptadecafluoro-hexadecyne (F17)-based monolayer. Likewise, the friction coefficient decreases from 5.7 × 10(-2) to 1.2 × 10(-2). The combination of high ordering, excellent hydrophobicity, low adhesion, and low friction makes these fluoro-hydro alkyne-derived monolayers highly promising candidates for use in high-performance microelectronic devices.
Collapse
Affiliation(s)
- Sidharam P Pujari
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Dikić T, Ming W, van Benthem RATM, Esteves ACC, de With G. Self-replenishing surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3701-3704. [PMID: 22700365 DOI: 10.1002/adma.201200807] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Indexed: 06/01/2023]
Abstract
Damaged surfaces self-replenish their chemical composition by the spontaneous re-orientation of functional groups chemically bonded to the polymer network. The repair of the surface chemistry leads to the recovery of surface functionality. This self-replenishing approach is suitable to recover many surface-related properties and constitutes a major breakthrough in extending the service life-time of functional materials.
Collapse
Affiliation(s)
- T Dikić
- Dow Benelux B.V., PO Box 48, 4530 AA, Terneuzen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Chandekar A, Sengupta SK, Whitten JE. Template-directed patterning of polymers and biomaterials. Microsc Res Tech 2007; 70:506-12. [PMID: 17479983 DOI: 10.1002/jemt.20474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel method of patterning surfaces with synthetic or biological polymers is demonstrated. It consists of using microcontact printing to pattern a gold surface with an adsorbate that imparts hydrophilicity; the remainder of the surface is covered with one that imparts hydrophobicity. 16-Mercaptohexadecanoic acid (MHDA) and 1H,1H,2H,2H-perfluorodecanethiol, respectively, have been used as the hydrophilic and hydrophobic adsorbates. This functionalized gold surface then serves as a template for patterning hydrophilic polymers and biomaterials, which are either spin-coated or drop-cast onto the surface. Using this methodology, it is shown by atomic force microscopy, scanning electron microscopy (SEM), and fluorescence microscopy that micron-scale patterns of a poly(ethylene)-block-poly(ethylene oxide) copolymer, poly-L-tryptophan, and bovine collagen can be fabricated, with these mimicking the MHDA patterns. For the block copolymer, it is found by atomic force microscopy that the heights of the polymer patterns decrease as their widths decrease. This is believed to be due to the inherent instability of tall, narrow polymer structures and the tendency of the polymer to minimize its exposed surface area. For poly-L-tryptophan, two different molecular weights of this polyamino acid have been studied, and different morphologies within the patterned regions are observed. While oligomeric poly-L-tryptophan (1,000-5,000 g/mol) gives smooth MHDA-covered patterns, the higher molecular weight (15,000-50,000 g/mol) yields fibrous ones.
Collapse
Affiliation(s)
- Amol Chandekar
- Department of Chemistry and Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, Massachusetts 01854-5047, USA
| | | | | |
Collapse
|
12
|
Dou Q, Wang C, Cheng C, Han W, Thüne PC, Ming W. PDMS-Modified Polyurethane Films with Low Water Contact Angle Hysteresis. MACROMOL CHEM PHYS 2006. [DOI: 10.1002/macp.200600375] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
van de Grampel RD, Ming W, Gildenpfennig A, van Gennip WJH, Laven J, Niemantsverdriet JW, Brongersma HH, de With G, van der Linde R. The outermost atomic layer of thin films of fluorinated polymethacrylates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:6344-6351. [PMID: 15248721 DOI: 10.1021/la049519p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this paper, we investigate the surface properties of a series of copolymers of perfluoroalkyl methacrylate (CH2 = C(CH3)COOCH2CnF(2n + 1), n = 1, 6, or 10) and methyl methacrylate (MMA) and of blends of perfluorooctyl-end-capped poly(methyl methacrylate) (PMMA) and pure PMMA. The introduction of perfluoroalkyl groups significantly lowers the polymer surface energy as determined by the acid-base approach. X-ray photoelectron spectroscopy (XPS) confirms a higher fluorine concentration in the surface region (the outer 3.8 nm) as compared to in the bulk. The fluorine density in the outermost atomic layer is quantitatively determined by low-energy ion scattering (LEIS). A linear relationship is found between the fluorine density in the outermost atomic layer and the surface energy of the partially fluorinated polymethacrylates, irrespective of the length of the perfluoroalkyl chain. This linearity confirms Langmuir's "principle of independent surface action". Deviation from this linear relationship exists for both highly and sparsely fluorinated polymethacrylates and can be ascribed to the local (surface) ordering of the fluorinated tails and MMA units, respectively. This study may offer one further step toward a deeper understanding of the correlations between macroscopic surface properties and microscopic surface chemical composition.
Collapse
Affiliation(s)
- R D van de Grampel
- Laboratory of Coatings Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|