1
|
Reinhardt M, Bruce NJ, Kokh DB, Wade RC. Brownian Dynamics Simulations of Proteins in the Presence of Surfaces: Long-Range Electrostatics and Mean-Field Hydrodynamics. J Chem Theory Comput 2021; 17:3510-3524. [PMID: 33784462 DOI: 10.1021/acs.jctc.0c01312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Simulations of macromolecular diffusion and adsorption in confined environments can offer valuable mechanistic insights into numerous biophysical processes. In order to model solutes at atomic detail on relevant time scales, Brownian dynamics simulations can be carried out with the approximation of rigid body solutes moving through a continuum solvent. This allows the precomputation of interaction potential grids for the solutes, thereby allowing the computationally efficient calculation of forces. However, hydrodynamic and long-range electrostatic interactions cannot be fully treated with grid-based approaches alone. Here, we develop a treatment of both hydrodynamic and electrostatic interactions to include the presence of surfaces by modeling grid-based and long-range interactions. We describe its application to simulate the self-association and many-molecule adsorption of the well-characterized protein hen egg-white lysozyme to mica-like and silica-like surfaces. We find that the computational model can recover a number of experimental observables of the adsorption process and provide insights into their determinants. The computational model is implemented in the Simulation of Diffusional Association (SDA) software package.
Collapse
Affiliation(s)
- Martin Reinhardt
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Daria B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Uttinger MJ, Jung D, Dao N, Canziani H, Lübbert C, Vogel N, Peukert W, Harting J, Walter J. Probing sedimentation non-ideality of particulate systems using analytical centrifugation. SOFT MATTER 2021; 17:2803-2814. [PMID: 33554981 DOI: 10.1039/d0sm01805h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Analytical centrifugation is a versatile technique for the quantitative characterization of colloidal systems including colloidal stability. The recent developments in data acquisition and evaluation allow the accurate determination of particle size, shape anisotropy and particle density. High precision analytical centrifugation is in particular suited for the study of particle interactions and concentration-dependent sedimentation coefficients. We present a holistic approach for the quantitative determination of sedimentation non-ideality via analytical centrifugation for polydisperse, plain and amino-functionalized silica particles spanning over one order of magnitude in particle size between 100 nm and 1200 nm. These systems typically behave as neutral hard spheres as predicted by auxiliary lattice Boltzmann simulations. The extent of electrostatic interactions and their impact on sedimentation non-ideality can be quantified by the repulsion range, which is the ratio of the Debye length and the average interparticle distance. Experimental access to the repulsion range is provided through conductivity measurements. With the experimental repulsion range at hand, we estimate the effect of polydispersity on concentration-dependent sedimentation properties through a combination of lattice Boltzmann and Brownian dynamics simulations. Finally, we determine the concentration-dependent sedimentation properties of charge-stabilized, fluorescently-labeled silica particles with a nominal particle size of 30 nm and reduced interparticle distance, hence an elevated repulsion range. Overall, our results demonstrate how the influence of hard-sphere type and electrostatic interactions can be quantified when probing sedimentation non-ideality of particulate systems using analytical centrifugation even for systems exhibiting moderate sample heterogeneity and complex interactions.
Collapse
Affiliation(s)
- M J Uttinger
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - D Jung
- Forschungszentrum Jülich, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany
| | - N Dao
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - H Canziani
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - C Lübbert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - N Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - W Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| | - J Harting
- Forschungszentrum Jülich, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Fürther Straße 248, 90429 Nürnberg, Germany and Department of Chemical and Biological Engineering and Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fürther Straße 248, 90429 Nürnberg, Germany
| | - J Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany. and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Haberstraße 9a, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies. Molecules 2020; 25:molecules25092047. [PMID: 32353995 PMCID: PMC7249052 DOI: 10.3390/molecules25092047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 11/24/2022] Open
Abstract
Monoclonal antibodies (mAbs) are an important class of biotherapeutics; as of 2020, dozens are commercialized medicines, over a hundred are in clinical trials, and many more are in preclinical developmental stages. Therapeutic mAbs are sequence modified from the wild type IgG isoforms to varying extents and can have different intrinsic structural stability. For chronic treatments in particular, high concentration (≥ 100 mg/mL) aqueous formulations are often preferred for at-home administration with a syringe-based device. MAbs, like any globular protein, are amphiphilic and readily adsorb to interfaces, potentially causing structural deformation and even unfolding. Desorption of structurally perturbed mAbs is often hypothesized to promote aggregation, potentially leading to the formation of subvisible particles and visible precipitates. Since mAbs are exposed to numerous interfaces during biomanufacturing, storage and administration, many studies have examined mAb adsorption to different interfaces under various mitigation strategies. This review examines recent published literature focusing on adsorption of bioengineered mAbs under well-defined solution and surface conditions. The focus of this review is on understanding adsorption features driven by distinct antibody domains and on recent advances in establishing model interfaces suitable for high resolution surface measurements. Our summary highlights the need to further understand the relationship between mAb interfacial adsorption and desorption, solution aggregation, and product instability during fill-finish, transport, storage and administration.
Collapse
|
4
|
Duan M, Wu J, Xiong Y, Fang S, Chen J. Characterization and differentiation of the adsorption behavior of crystal violet and methylene blue at the silica/water interface using near field evanescent wave. SOFT MATTER 2018; 14:7516-7525. [PMID: 30124718 DOI: 10.1039/c8sm01385c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Different molecular structures lead to different adsorption performances. In this work, the adsorption behavior of two organic dyes, namely, crystal violet (CV, triphenylmethane dye of symmetric structure) and methylene blue (MB, azo dye of linear structure), were investigated, characterized and differentiated at the silica/water interface using the total internal reflection induced near field evanescent wave (TIR-NFEW) platform. According to the change in the evanescent wave intensity and following Beer's law, the adsorption behaviors of CV and MB can be monitored real time and sensitively. On one hand, the Langmuir adsorption model was applied to obtain the related thermodynamic data (including adsorption equilibrium constant (Kads) and adsorption free energy (ΔG)). With ΔG(MB) = -25.7 ± 1.7 kJ mol-1 < ΔG(CV) = -21.5 ± 0.6 kJ mol-1 < 0, the linear MB showed a higher spontaneous adsorption ability than the symmetric CV at the silica/water interface. On the other hand, a two-step adsorption kinetic model was applied to obtain the dynamics data including the linear adsorption rate constant (k1) and the exponential adsorption rate constant (k2). With k1(CV) < k1(MB) and k2(CV) ≈ k2(MB), MB diffused faster than CV at the first diffusion step but had nearly the same interaction speed as CV in the second adsorption step. A molecular-aligned-mechanism was successfully proposed to describe the interfacial interaction process for both CV and MB that includes molecular reactions involving electrostatic attraction of type I SiO- and H-bonds of type II SiOH. This work provides new insights into the molecular-level interpretation of the adsorption of the azo and triphenylmethane dyes at the silica-water interface.
Collapse
Affiliation(s)
- Ming Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | | | | | | | | |
Collapse
|
5
|
Xiong Y, Wang Q, Duan M, Tan J, Fang S, Wu J. Real-Time Monitoring of Azo Dye Interfacial Adsorption at Silica-Water Interface by Total Internal Reflection-Induced Surface Evanescent Wave. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7612-7623. [PMID: 29916716 DOI: 10.1021/acs.langmuir.8b00722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An interface research method based on total internal reflection induced evanescent wave (TIR-EW) is developed to monitor the adsorption behavior of azo dye at the silica-water interface. The monitoring system is constructed by employing silica optical fiber (SOF) as both charged substrate for dye adsorption and light transmission waveguide for evanescent wave production. According to the change of evanescent wave intensity and followed by Beer's law, the methylene blue (MB) adsorption behavior can be real-time monitored at the silica-water interface. Langmuir adsorption model and pseudo-first-order model are applied to obtain the related thermodynamic and kinetic data. The adsorption equilibrium constant ( Kads) and adsorption free energy (Δ G) of MB at the silica-water interface are determined to be (3.3 ± 0.5) × 104 M-1 and -25.7 ± 1.7 kJ mol-1. Meanwhile, this method is highlighted to isolate elementary processes of adsorption and desorption under steady-state conditions, and gives adsorption rate constant ( ka) and desorption rate constant ( kd) of 8585 ± 19.8 min-1 and 0.26 ± 0.0006 min-1 for 15 r/min flow rate. The surface interaction process is revealed and adsorption mechanism is proposed, indicating MB first adsorbed on Si-O- sites through electrostatic attraction and then on Si-OH sites through hydrogen bond with increasing MB concentrations. Our findings from this study provided molecular-level interpretation of azo dye adsorption at silica-water interface, and the results provide important insight into how MB adsorption can be controlled at the interface.
Collapse
Affiliation(s)
- Yan Xiong
- School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , 610500 , China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province , Southwest Petroleum University , Chengdu , 610500 , China
| | - Qing Wang
- School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , 610500 , China
| | - Ming Duan
- School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , 610500 , China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province , Southwest Petroleum University , Chengdu , 610500 , China
| | - Jun Tan
- School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , 610500 , China
| | - Shenwen Fang
- School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , 610500 , China
| | - Jiayi Wu
- School of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu , 610500 , China
| |
Collapse
|
6
|
Mulheran PA, Connell DJ, Kubiak-Ossowska K. Steering protein adsorption at charged surfaces: electric fields and ionic screening. RSC Adv 2016. [DOI: 10.1039/c6ra16391b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein adsorption at charged surfaces is a common process in the development of functional technological devices.
Collapse
Affiliation(s)
- Paul A. Mulheran
- Department of Chemical and Process Engineering
- University of Strathclyde
- Glasgow G1 1XJ
- UK
| | - David J. Connell
- Department of Chemical and Process Engineering
- University of Strathclyde
- Glasgow G1 1XJ
- UK
| | | |
Collapse
|
7
|
Jin J, Han Y, Zhang C, Liu J, Jiang W, Yin J, Liang H. Effect of grafted PEG chain conformation on albumin and lysozyme adsorption: A combined study using QCM-D and DPI. Colloids Surf B Biointerfaces 2015; 136:838-44. [PMID: 26546889 DOI: 10.1016/j.colsurfb.2015.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/20/2015] [Accepted: 10/19/2015] [Indexed: 12/23/2022]
Abstract
In this study, elucidation of protein adsorption mechanism is performed using dual polarization interferometry (DPI) and quartz crystal microbalance with dissipation (QCM-D) to study adsorption behaviors of bovine serum albumin (BSA) and lysozyme (LYZ) on poly (ethylene glycol) (PEG) layers. From the analysis of DPI, PEG2000 and PEG5000 show tight and loose mushroom conformations, respectively. Small amount of LYZ could displace the interfacial water surrounding the tight mushroomed PEG2000 chains by hydrogen bond attraction, leading to protein adsorption. The loose mushroomed PEG5000 chains exhibit a more flexible conformation and high elastic repulsion energy that could prevent protein adsorption of all BSA and most of LYZ. From the analysis of QCM, PEG2000 and PEG5000 show tight and extended brush conformations. The LYZ adsorbed mass has critical regions of PEG2000 (0.19 chain/nm(2)) and PEG5000 (0.16 chain/nm(2)) graft density. When graft density of PEG is higher than the critical region (brush conformations), the attraction of hydrogen bonds between PEG and LYZ is the dominant factor. When graft density of PEG is lower than the critical region (mushroom conformations), elastic repulsion between PEG and proteins is driven by the high conformation entropy of PEG chains, which is the dominant force of steric repulsion in PEG-protein systems. Therefore, the adsorption of BSA is suppressed by the high elastic repulsion energy of PEG chains, whereas the adsorption of LYZ is balanced by the interactions between the repulsion of entropy elasticity and the attraction of hydrogen bonds.
Collapse
Affiliation(s)
- Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yuanyuan Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Chang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jingchuan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Haojun Liang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| |
Collapse
|
8
|
Kubiak-Ossowska K, Cwieka M, Kaczynska A, Jachimska B, Mulheran PA. Lysozyme adsorption at a silica surface using simulation and experiment: effects of pH on protein layer structure. Phys Chem Chem Phys 2015; 17:24070-7. [PMID: 26315945 DOI: 10.1039/c5cp03910j] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hen Egg White Lysozyme (HEWL) is a widely used exemplar to study protein adsorption on surfaces and interfaces. Here we use fully atomistic Molecular Dynamics (MD) simulations, Multi-Parametric Surface Plasmon Resonance (MP-SPR), contact angle and zeta potential measurements to study HEWL adsorption at a silica surface. The simulations provide a detailed description of the adsorption mechanism and indicate that at pH7 the main adsorption driving force is electrostatics, supplemented by weaker hydrophobic forces. Moreover, they reveal the preferred orientation of the adsorbed protein and show that its structure is only slightly altered at the interface with the surface. This provides the basis for interpreting the experimental results, which indicate the surface adsorbs a close-packed monolayer at about pH10 where the surface has a large negative zeta potential and the HEWL is positively charged. At higher pH, the adsorption amount of the protein layer is greatly reduced due to the loss of charge on the protein. At lower pH, the smaller zeta potential of the surface leads to lower HEWL adsorption. These interpretations are complemented by the contact angle measurements that show how the hydrophobicity of the surface is greatest when the surface coverage is highest. The simulations provide details of the hydrophobic residues exposed to solution by the adsorbed HEWL, completing the picture of the protein layer structure.
Collapse
Affiliation(s)
- Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK.
| | | | | | | | | |
Collapse
|
9
|
Adsorption of virus-like particles on ion exchange surface: Conformational changes at different pH detected by dual polarization interferometry. J Chromatogr A 2015; 1408:161-8. [PMID: 26189208 DOI: 10.1016/j.chroma.2015.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/29/2015] [Accepted: 07/05/2015] [Indexed: 11/21/2022]
Abstract
Disassembling of virus-like particles (VLPs) like hepatitis B virus surface antigen (HB-VLPs) during chromatographic process has been identified as a major cause of loss of antigen activity. In this study, dual polarization interferometry (DPI) measurement, together with chromatography experiments, were performed to study the adsorption and conformational change of HB-VLPs on ion exchange surface at three different pHs. Changes in pH values of buffer solution showed only minimal effect on the HB-VLPs assembly and antigen activity, while significantly different degree of HB-VLPs disassembling was observed after ion exchange chromatography (IEC) at different pHs, indicating the conformational change of HB-VLPs caused mainly by its interactions with the adsorbent surface. By creating an ion exchange surface on chip surface, the conformational changes of HB-VLPs during adsorption to the surface were monitored in real time by DPI for the first time. As pH increased from 7.0 to 9.0, strong electrostatic interactions between oppositely charged HB-VLPs and the ion exchange surface make the HB-VLPs spread thinly or even adsorbed in disassembled formation on the surface as revealed by significant decrease in thickness of the adsorbed layer measured by DPI. Such findings were consistent with the results of IEC experiments operated at different pHs, that more disassembled HB-VLPs were detected in the eluted proteins at pH 9.0. At low pH like pH 5.0, however, possible bi-layer adsorption was involved as evidenced by an adsorbed layer thickness higher than average diameter of the HB-VLPs. The "lateral" protein-protein interactions might be unfavorable and would make additional contribution to the disassembling of HB-VLPs besides the primary mechanism related to the protein-surface interactions; therefore, the lowest antigen activity was observed after IEC at pH 5.0. Such real-time information on conformational change of VLPs is helpful for better understanding the real mechanism for the disassembling of VLPs on the solid-liquid interface.
Collapse
|
10
|
Delivopoulos E, Ouberai MM, Coffey PD, Swann MJ, Shakesheff KM, Welland ME. Serum protein layers on parylene-C and silicon oxide: effect on cell adhesion. Colloids Surf B Biointerfaces 2014; 126:169-77. [PMID: 25555155 PMCID: PMC4342411 DOI: 10.1016/j.colsurfb.2014.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022]
Abstract
We studied how cell adhesion is affected by serum protein adsorbed on parylene-C. Serum proteins form distinct layers when adsorbed onto parylene-C or silicon oxide. Biosensing technique elucidates contrasting protein layer densities and thicknesses. Fibronectin supports cell adhesion on both surfaces. Albumin outcompetes fibronectin on parylene-C and vice versa on silicon oxide.
Among the range of materials used in bioengineering, parylene-C has been used in combination with silicon oxide and in presence of the serum proteins, in cell patterning. However, the structural properties of adsorbed serum proteins on these substrates still remain elusive. In this study, we use an optical biosensing technique to decipher the properties of fibronectin (Fn) and serum albumin adsorbed on parylene-C and silicon oxide substrates. Our results show the formation of layers with distinct structural and adhesive properties. Thin, dense layers are formed on parylene-C, whereas thicker, more diffuse layers are formed on silicon oxide. These results suggest that Fn acquires a compact structure on parylene-C and a more extended structure on silicon oxide. Nonetheless, parylene-C and silicon oxide substrates coated with Fn host cell populations that exhibit focal adhesion complexes and good cell attachment. Albumin adopts a deformed structure on parylene-C and a globular structure on silicon oxide, and does not support significant cell attachment on either surface. Interestingly, the co-incubation of Fn and albumin at the ratio found in serum, results in the preferential adsorption of albumin on parylene-C and Fn on silicon oxide. This finding is supported by the exclusive formation of focal adhesion complexes in differentiated mouse embryonic stem cells (CGR8), cultured on Fn/albumin coated silicon oxide, but not on parylene-C. The detailed information provided in this study on the distinct properties of layers of serum proteins on substrates such as parylene-C and silicon oxide is highly significant in developing methods for cell patterning.
Collapse
Affiliation(s)
- Evangelos Delivopoulos
- Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, UK; School of Systems Engineering, University of Reading, Reading RG6 6AY, UK
| | - Myriam M Ouberai
- Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, UK.
| | - Paul D Coffey
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Marcus J Swann
- Farfield, Biolin Scientific, 62 Wellington Road South, Stockport SK1 3SU, Cheshire, UK
| | - Kevin M Shakesheff
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Mark E Welland
- Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, UK
| |
Collapse
|
11
|
Escorihuela J, González-Martínez MÁ, López-Paz JL, Puchades R, Maquieira Á, Gimenez-Romero D. Dual-Polarization Interferometry: A Novel Technique To Light up the Nanomolecular World. Chem Rev 2014; 115:265-94. [DOI: 10.1021/cr5002063] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jorge Escorihuela
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Miguel Ángel González-Martínez
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - José Luis López-Paz
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Rosa Puchades
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Ángel Maquieira
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - David Gimenez-Romero
- Physical
Chemistry Department, Faculty of Chemistry, Universitat de València, Avenida Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
12
|
Wang X, Herting G, Wallinder IO, Blomberg E. Adsorption of lysozyme on silver and its influence on silver release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13877-13889. [PMID: 25363360 DOI: 10.1021/la503170x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silver is increasingly used in antimicrobial coatings of biomedical devices and implants to hinder infections. As proteins have been shown to largely influence the extent of released metals from various metal surfaces at biological conditions, silver may also be influenced in the same way. The aim of this study is to relate the structure of adsorbed lysozyme (LSZ) to the release of silver from metallic silver surfaces. Simultaneous adsorption measurements were performed in real time on the same surface using combined ellipsometry and quartz crystal microbalance with dissipation monitoring measurements to provide a more comprehensive understanding on the adsorption kinetics and the layer structures. The concentration of LSZ in 0.15 M NaNO3 solution (pH 7, 25 °C) influences the structure of the adsorbed layer. Monolayer coverage is obtained at concentrations ≤0.1 g/L, while a bilayer structure with a rigid inner layer and a relatively loosely adsorbed outer layer is formed at 1 g/L. The inner layer of LSZ is assumed to bind firmly to silver via disulfide bridges, which makes it irreversibly adsorbed with respect to dilution. The amount of released silver is further influenced by the structure of the LSZ layer. At low LSZ concentrations (≤0.1 g/L) the amount of released silver is not significantly different compared with non-protein-containing NaNO3 solutions; however, noticeable reduction was observed at higher concentrations (1 g/L). This reduction in silver release has several possible explanations, including (i) surface complexation between LSZ and silver ions that may result in the incorporation of silver in the irreversible adsorbed layer and, hence, reduce the amount of released silver into solution, and (ii) net charge reversal at the protein/solution interface to slightly positive surface potentials. Any release of silver will therefore exhibit an electrostatic repulsion during transportation through the protein layer results in a reduced amount of silver in solution.
Collapse
Affiliation(s)
- Xin Wang
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Division of Surface and Corrosion Science, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | | | | | | |
Collapse
|
13
|
Immobilizing PEO–PPO–PEO triblock copolymers on hydrophobic surfaces and its effect on protein and platelet: A combined study using QCM-D and DPI. Colloids Surf B Biointerfaces 2014; 123:892-9. [DOI: 10.1016/j.colsurfb.2014.10.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/20/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023]
|
14
|
Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosens Bioelectron 2014; 58:287-307. [DOI: 10.1016/j.bios.2014.02.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 02/04/2023]
|
15
|
Effect of the interplay between protein and surface on the properties of adsorbed protein layers. Biomaterials 2014; 35:6157-63. [PMID: 24780165 PMCID: PMC4051990 DOI: 10.1016/j.biomaterials.2014.04.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/05/2014] [Indexed: 11/23/2022]
Abstract
Although protein adsorption to surface is a common phenomenon, investigation of the process is challenging due to the complexity of the interplay between external factors, protein and surface properties. Therefore experimental approaches have to measure the properties of adsorbed protein layers with high accuracy in order to achieve a comprehensive description of the process. To this end, we used a combination of two biosensing techniques, dual polarization interferometry and quartz crystal microbalance with dissipation. From this, we are able to extract surface coverage values, layer structural parameters, water content and viscoelastic properties to examine the properties of protein layers formed at the liquid/solid interface. Layer parameters were examined upon adsorption of proteins of varying size and structural properties, on surfaces with opposite polarity. We show that “soft” proteins such as unfolded α-synuclein and high molecular weight albumin are highly influenced by the surface polarity, as they form a highly diffuse and hydrated layer on the hydrophilic silica surface as opposed to the denser, less hydrated layer formed on a hydrophobic methylated surface. These layer properties are a result of different orientations and packing of the proteins. By contrast, lysozyme is barely influenced by the surface polarity due to its intrinsic structural stability. Interestingly, we show that for a similar molecular weight, the unfolded α-synuclein forms a layer with the highest percentage of solvation not related to surface coverage but resulting from the highest water content trapped within the protein. Together, these data reveal a trend in layer properties highlighting the importance of the interplay between protein and surface for the design of biomaterials.
Collapse
|
16
|
Zheng Y, Yang C, Yang F, Yang X. Real-time study of interactions between cytosine-cytosine pairs in DNA oligonucleotides and silver ions using dual polarization interferometry. Anal Chem 2014; 86:3849-55. [PMID: 24611666 DOI: 10.1021/ac403992r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The real-time conformational changes of cytosine (C)-rich ssDNA oligonucleotides upon binding with silver ions (Ag(+)) were studied using dual polarization interferometry (DPI). Upon the addition of Ag(+), Ag(+) selectively bound to cytosine-cytosine mismatches and formed C-Ag(+)-C complexes, inducing change of the structure of the C-rich ssDNA from random coil conformation to duplex conformation, whereas the control ssDNA without cytosine-cytosine mismatches had no such signal, which was consistent with circular dichroism (CD) characterization. The conformational change of DNA was reflected on the changes of the mass, thickness, and density values resolved by DPI. The calibration curves showed that as the concentration of Ag(+) increased from 10 nM to 8 μM, the thickness and mass values increased linearly while the density values decreased linearly. Other metal ions such as K(+), Ca(2+), Na(+), Mg(2+), Zn(2+), Mn(2+), Ni(2+), and Pb(2+) did not interfere with the interaction between Ag(+) and C-rich ssDNA, indicating that this method had a good selectivity. The practical application of this biosensor was also investigated in real samples such as drinking water. Besides, cysteine could specifically capture Ag(+) from C-Ag(+)-C complexes and transformed the structure of the C-rich DNA back from rigid double-stranded conformation to random coil conformation, which allowed cysteine to be detected selectively as well. It is expected that this biosensing strategy may be utilized to study the interaction of DNA with other molecules.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | | | | | | |
Collapse
|
17
|
Xia Y, He X, Cao M, Chen C, Xu H, Pan F, Lu JR. Thermoresponsive Microgel Films for Harvesting Cells and Cell Sheets. Biomacromolecules 2013; 14:3615-25. [DOI: 10.1021/bm4009765] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yongqing Xia
- State
Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering
and Biotechnology, China University of Petroleum, East China, Qingdao, 266555, China
| | - Xinlong He
- State
Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering
and Biotechnology, China University of Petroleum, East China, Qingdao, 266555, China
| | - Meiwen Cao
- State
Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering
and Biotechnology, China University of Petroleum, East China, Qingdao, 266555, China
| | - Cuixia Chen
- State
Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering
and Biotechnology, China University of Petroleum, East China, Qingdao, 266555, China
| | - Hai Xu
- State
Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering
and Biotechnology, China University of Petroleum, East China, Qingdao, 266555, China
| | - Fang Pan
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jian Ren Lu
- Biological
Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
18
|
Westwood M, Noel TR, Parker R. The effect of poly-L-lysine structure on the pH response of polygalacturonic acid-based multilayers. Carbohydr Polym 2013; 94:137-46. [PMID: 23544522 DOI: 10.1016/j.carbpol.2012.12.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 11/30/2022]
Abstract
The effect of poly-L-lysine (PLL) molecular weight and structure on pH stability of polygalacturonic acid (PGaLA)-based multilayer films is studied over a pH cycle 7.0-1.6-7.0. The multilayer assembled with the lowest molecular weight PLL (1 kDa) showed the largest pH response. Only 12% of the mass remained and a preferential loss of PLL was observed. Extensive structural reorganisation of the layer as the pH was increased was due to the PGaLA reionisation leading to extensive net loss of hydrated mass. The multilayers assembled with the higher molecular weight linear PLLs (10 kDa, 200 kDa) showed loss of about 50% of their initial polymer mass. The multilayer assembled with the dendrimer (22 kDa) showed a stronger response to pH compared to the linear higher molecular weight PLLs. Over the pH cycle a loss of about 60% polymer mass and a decrease in the film thickness was observed. Despite having a reduced density at pH 1.6, the density substantially recovered to 0.54 g mL(-1) on return to pH 7.0.
Collapse
Affiliation(s)
- Marta Westwood
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | | | | |
Collapse
|
19
|
Feng X, Gao F, Qin P, Ma G, Su Z, Ge J, Wang P, Zhang S. Real time monitoring of on-chip coenzyme regeneration with SPR and DPI. Anal Chem 2013; 85:2370-6. [PMID: 23339632 DOI: 10.1021/ac303392a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report in this work real time characterization of enzyme-coenzyme binding by using surface plasmon resonance (SPR) and dual polarization interferometry (DPI) analyses. Results showed that diaphorase (DP) and lactate dehydrogenases (LDH) had distinct binding selectivity and preference over reduced and oxidized states of coenzyme NAD(H). On the basis of that, DP and LDH were chosen as indicator enzymes to distinguish the specific state of surface-bound NAD(H). The transformation between NADH and NAD(+) during enzyme-catalyzed redox reactions was therefore transduced into variation in interaction signals as indicated via the binding status of the indicator enzymes as detected with both SPR and DPI. This real time molecule-specific detection strategy revealed quick and direct reflection of the state and reactivity of the coenzyme, promising a unique way of precise molecular interaction analysis.
Collapse
Affiliation(s)
- Xiaoyi Feng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Xu K, Ouberai MM, Welland ME. A comprehensive study of lysozyme adsorption using dual polarization interferometry and quartz crystal microbalance with dissipation. Biomaterials 2012. [PMID: 23195491 DOI: 10.1016/j.biomaterials.2012.10.078] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm² corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed.
Collapse
Affiliation(s)
- Kairuo Xu
- Nanoscience Centre, Department of Engineering, University of Cambridge, Cambridge CB3 0FF, UK
| | | | | |
Collapse
|
21
|
Jachimska B, Kozłowska A, Pajor-Świerzy A. Protonation of lysozymes and its consequences for the adsorption onto a mica surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:11502-10. [PMID: 22783827 DOI: 10.1021/la301558u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Several physicochemical properties of chicken egg white lysozyme (LSZ) in electrolyte solutions were determined. The hydrodynamic diameter of LSZ at an ionic strength of 0.15 M was found to be 4.0 nm. Using the determined parameters, the number of uncompensated (electrokinetic) charges, N(c), on the molecule surface was calculated from the electrophoretic mobility data. It was found that the N(c) = 2.8 at pH = 3.0 and an ionic strength of I = 0.15 M. At the lower ionic strength, I = 1 × 10(-3) M, this positive charge increased to N(c) = 5.6 at a pH = 3.0 The physicochemical characteristics were supplemented by the dynamic viscosity measurements. The intrinsic viscosity and the hydrodynamic diameter results were compared with theoretical predictions from Brenner's model. Using this approach, it was found that the effective molecule length of LSZ is equal to L(ef) = 5.6 nm. Additional information on the LSZ adsorbed films was obtained by the contact angle measurements. The notably large contact angles were measured on LSZ films formed under the conditions where both the LSZ and the mica were oppositely charged. The higher the positive zeta potential of LSZ, the greater the contact angle measured, which indicates that LSZ affinity for the adsorption on mica increases with its uncompensated charge. The adsorption dependence on the zeta potential of LSZ was explained, assuming a roughly uniform distribution of the net charge on the molecule surface. This assumption is supported by the results of depositing negatively charged, fluorescent latex particles onto the mica surface, which had been modified by LSZ adsorption. The highest latex coverage was formed on mica surfaces that had first been coated with LSZ solutions of lower pH, as a result of the increasing charge of LSZ monolayers in this condition.
Collapse
Affiliation(s)
- B Jachimska
- J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences (PAS), Cracow, Poland.
| | | | | |
Collapse
|
22
|
Westwood M, Kirby AR, Parker R, Morris VJ. Combined QCMD and AFM studies of lysozyme and poly-L-lysine-poly-galacturonic acid multilayers. Carbohydr Polym 2012; 89:1222-31. [PMID: 24750935 DOI: 10.1016/j.carbpol.2012.03.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/31/2012] [Accepted: 03/31/2012] [Indexed: 11/15/2022]
Abstract
A quartz crystal microbalance with dissipation monitoring (QCMD) has been used to monitor the adsorption and structure of lysozyme monolayers and multilayers, and poly-L-lysine (PLL)-polygalacturonic acid (PGalA) multilayers at a solid-liquid interface using freshly-cleaved mica as a substrate. QCMD measurements were complemented with atomic force microscopy (AFM). AFM images revealed that lysozyme formed incomplete monolayers and provided a basis for calculation of the thickness of the protein film. Comparative studies of adsorption onto standard and mica-coated quartz crystals showed higher areal mass adsorption and a longer-time adsorption process for mica-coated quartz crystals. Simultaneous AFM images and QCMD data were obtained for lysozyme, linear PLL-PGalA and 7 nm PLL dendrimer-PGalA multilayers. The layer-by-layer deposited multilayer films exhibited viscoelastic properties and their growth followed a non-linear regime, associated with the PLL diffusion in and out of the film formation for linear PLL-PGalA films. For the PLL 7 nm dendrimer-PGalA films the AFM images revealed marked changes in surface roughness during layer by layer deposition: these changes influence the interpretation of the QCMD data and provide additional information on the growth and structure of the multilayers.
Collapse
Affiliation(s)
- Marta Westwood
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | | | | | | |
Collapse
|
23
|
Zhao X, Pan F, Cowsill B, Lu JR, Garcia-Gancedo L, Flewitt AJ, Ashley GM, Luo J. Interfacial immobilization of monoclonal antibody and detection of human prostate-specific antigen. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7654-62. [PMID: 21612249 DOI: 10.1021/la201245q] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Antibody orientation and its antigen binding efficiency at interface are of particular interest in many immunoassays and biosensor applications. In this paper, spectroscopic ellipsometry (SE), neutron reflection (NR), and dual polarization interferometry (DPI) have been used to investigate interfacial assembly of the antibody [mouse monoclonal anti-human prostate-specific antigen (anti-hPSA)] at the silicon oxide/water interface and subsequent antigen binding. It was found that the mass density of antibody adsorbed at the interface increased with solution concentration and adsorption time while the antigen binding efficiency showed a steady decline with increasing antibody amount at the interface over the concentration range studied. The amount of antigen bound to the interfacial immobilized antibody reached a maximum when the surface-adsorbed amount of antibody was around 1.5 mg/m(2). This phenomenon is well interpreted by the interfacial structural packing or crowding. NR revealed that the Y-shaped antibody laid flat on the interface at low surface mass density with a thickness around 40 Å, equivalent to the short axial length of the antibody molecule. The loose packing of the antibody within this range resulted in better antigen binding efficiency, while the subsequent increase of surface-adsorbed amount led to the crowding or overlapping of antibody fragments, hence reducing the antigen binding due to the steric hindrance. In situ studies of antigen binding by both NR and DPI demonstrated that the antigen inserted into the antibody layer rather than forming an additional layer on the top. Stability assaying revealed that the antibody immobilized at the silica surface remained stable and active over the monitoring period of 4 months. These results are useful in forming a general understanding of antibody interfacial behavior and particularly relevant to the control of their activity and stability in biosensor development.
Collapse
Affiliation(s)
- Xiubo Zhao
- Biological Physics Lab, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Solidified liquid layer model makes quartz crystal microbalance a convenient molecular ruler. Colloids Surf B Biointerfaces 2011; 85:92-6. [DOI: 10.1016/j.colsurfb.2010.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 11/21/2022]
|
25
|
Westwood M, Roberts D, Parker R. Enzymatic degradation of poly-l-lysine-polygalacturonic acid multilayers. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.12.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Westwood M, Noel TR, Parker R. Environmental Responsiveness of Polygalacturonic Acid-Based Multilayers to Variation of pH. Biomacromolecules 2010; 12:359-69. [DOI: 10.1021/bm1011213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marta Westwood
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Timothy R. Noel
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | - Roger Parker
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| |
Collapse
|
27
|
Zwang TJ, Fletcher WR, Lane TJ, Johal MS. Quantification of the layer of hydration of a supported lipid bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:4598-4601. [PMID: 20187648 DOI: 10.1021/la100275v] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dual polarization interferometry (DPI) and quartz-crystal microgravimetry (QCM-D) were used to investigate the adsorption of DOPC vesicles to a solid hydrophilic surface. The layer of hydration formed between a self-assembled DOPC bilayer and a silica solid support was probed in assemblies constructed using H(2)O and D(2)O buffers. We used QCM-D to measure the mass of the bilayer, including the mass contribution of the coupled solvent that resides between the membrane-solid interface. The mass of only the DOPC in the bilayer was resolved using DPI. By comparing these two measurements, and also accounting for the bulk phase effects on mass, we have been able to determine the mass of water below the bilayer. The thickness of this hydration layer, calculated by relating its mass to the density of the layer, was determined to be 10.46 A +/- 0.15 A for trapped D(2)O and 10.21 A +/- 0.40 A for trapped H(2)O, in agreement with measurements obtained by other methods. This work establishes the feasibility of concurrently using DPI and QCM-D to gauge the extent of hydration in thin films.
Collapse
Affiliation(s)
- Theodore J Zwang
- Chemistry Department, Pomona College, 645 North College Avenue, Claremont, California 91711, USA
| | | | | | | |
Collapse
|
28
|
Wang Q, Tam KC. Dual polarization interferometric analysis on the interaction between fullerene grafted polymer and nonionic surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:9898-9902. [PMID: 19606829 DOI: 10.1021/la901052b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interaction between polyelectrolyte grafted fullerenes and surfactants was elucidated using a dual polarization interferometer (DPI). The deposition of poly(2-(dimethylamino)ethyl methacrylate) (PDMA(50)-b-C(60)) at pH 6 on the surface of silicon oxynitride induced by electrostatic interaction between charged PDMA segments and negatively charged surface revealed an adsorption thickness similar to the diameter of a fullerene molecule. A second deposition of poly(acrylic acid)-block-C(60) (PAA(83)-b-C(60)) on adsorbed PDMA(50)-b-C(60) at pH 6 was facilitated by electrostatic interaction between negatively and positively charged PAA and PDMA segments, respectively. A monolayer of PAA(83)-b-C(60) adsorbed on PDMA(50)-b-C(60) layer yielded a thickness twice the diameter of C(60) molecules. As a comparison, a two end-capped C(60)-PAA(83)-C(60) was examined, where the packing thickness and mass were smaller than the monocapped system due to steric hindrance effect of fullerene molecules. The adsorption of two nonionic surfactants (i.e., polyoxyethylene 9 lauryl ether (Brij 76) and octyl phenol ethoxylate (Triton X-100 or TX100)) on the adsorbed PDMA-C(60) layer was examined. Both Brij 76 and TX100 interacted with the PDMA-C(60) layer. For TX100, the interaction was promoted by pi-pi interaction between the C(60) headgroup and phenyl ring of the surfactant. Beyond the critical micellar concentration of TX100, the adsorption was greatly reduced. The concentration effect of first layer PDMA-C(60) was evaluated, where the PDMA-C(60) molecules adsorbed on the chip at higher density, resulting in a larger layer thickness. The densely packed fullerene headgroup hindered the penetration of TX100 aromatic ring into the first layer.
Collapse
Affiliation(s)
- Qiqiang Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | | |
Collapse
|
29
|
Sörensen MH, Samoshina Y, Claesson PM, Alberius P. Sustained Release of Ibuprofen from Polyelectrolyte Encapsulated Mesoporous Carriers. J DISPER SCI TECHNOL 2009. [DOI: 10.1080/01932690802644095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Zhao X, Pan F, Coffey P, Lu JR. Cationic copolymer-mediated DNA immobilization: interfacial structure and composition as determined by ellipsometry, dual polarization interferometry, and neutron reflection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:13556-13564. [PMID: 18986183 DOI: 10.1021/la8024974] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
DNA immobilization onto support surfaces is required in biotechnological applications such as microarrays and gene delivery. This important interfacial molecular process can be mediated from a preadsobred cationic polymer. There is, however, a lack of understanding over the control of the interfacial composition and structural distribution of the DNA immobilized. We have used a combined approach of spectroscopic ellipsometry (SE), dual polarization interferometry (DPI) and neutron reflection (NR) to determine the interfacial polymer adsorption and the subsequent DNA binding. Cationic diblock copolymers incorporating 30 phosphorylcholine (PC) groups and different diethylaminoethyl groups, referred to as MPC30-DEAn, were chosen because of their well-defined molecular architecture. While our studies revealed different effects of surface charge and hydrophobicity, the amount of copolymers adsorbed on both model surfaces showed a broad trend of increase with solution pH, indicating a strong effect arising from pH-dependent charge density on the copolymers. In contrast, the copolymer structure and solution concentration showed a weak effect under the conditions studied. The subsequent DNA binding at pH 7 showed that on both surfaces the amount of DNA immobilized followed an approximate 1:1 charge interaction for all different DNA samples studied, irrespective of single or double strand, or different DNA size, indicating the dominant effect of electrostatic interaction between the two species. Both DPI and NR revealed consistent thickness increase upon DNA binding. Furthermore, with increasing DNA size, the interfacial layer became much thicker, and charge interaction drove more extensive interfacial mixing between the two species. Our results show that the amount of DNA immobilized is controlled by the amount of cationic copolymer preadsorbed that is in turn controlled by the solution pH and surface chemistry but that is barely affected by the type and concentration of DNA or cationic copolymer.
Collapse
Affiliation(s)
- XiuBo Zhao
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Schuster Building, Manchester M13 9PL, UK
| | | | | | | |
Collapse
|
31
|
Pellenc D, Bennett RA, Green RJ, Sperrin M, Mulheran PA. New insights on growth mechanisms of protein clusters at surfaces: an AFM and simulation study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9648-9655. [PMID: 18671416 DOI: 10.1021/la801246k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite its relevance to a wide range of technological and fundamental areas, a quantitative understanding of protein surface clustering dynamics is often lacking. In inorganic crystal growth, surface clustering of adatoms is well described by diffusion-aggregation models. In such models, the statistical properties of the aggregate arrays often reveal the molecular scale aggregation processes. We investigate the potential of these theories to reveal hitherto hidden facets of protein clustering by carrying out concomitant observations of lysozyme adsorption onto mica surfaces, using atomic force microscopy, and Monte Carlo simulations of cluster nucleation and growth. We find that lysozyme clusters diffuse across the substrate at a rate that varies inversely with size. This result suggests which molecular scale mechanisms are responsible for the mobility of the proteins on the substrate. In addition the surface diffusion coefficient of the monomer can also be extracted from the comparison between experiments and simulations. While concentrating on a model system of lysozyme-on-mica, this 'proof of concept' study successfully demonstrates the potential of our approach to understand and influence more biomedically applicable protein-substrate couples.
Collapse
Affiliation(s)
- D Pellenc
- Department of Physics, and School of Pharmacy, University of Reading, Whiteknights Park, Reading RG6 6AF, U.K
| | | | | | | | | |
Collapse
|
32
|
Azemi E, Stauffer WR, Gostock MS, Lagenaur CF, Cui XT. Surface immobilization of neural adhesion molecule L1 for improving the biocompatibility of chronic neural probes: In vitro characterization. Acta Biomater 2008; 4:1208-17. [PMID: 18420473 DOI: 10.1016/j.actbio.2008.02.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/24/2007] [Accepted: 02/26/2008] [Indexed: 12/12/2022]
Abstract
Silicon-based implantable neural electrode arrays are known to experience failure during long-term recording, partially due to host tissue responses. Surface modification and immobilization of biomolecules may provide a means to improve their biocompatibility and integration within the host brain tissue. Previously, the laminin biomolecule or laminin fragments have been used to modify the neural probe's silicon surface to promote neuronal attachment and growth. Here we report the successful immobilization of the L1 biomolecule on a silicon surface. L1 is a neuronal adhesion molecule that can specifically promote neurite outgrowth and neuronal survival. Silane chemistry and the heterobifunctional coupling agent 4-maleimidobutyric acid N-hydroxysuccinimide ester (GMBS) were used to covalently bind these two biomolecules onto the surface of silicon dioxide wafers, which mimic the surface of silicon-based implantable neural probes. After covalent binding of the biomolecules, polyethylene glycol (PEG)-NH(2) was used to cap the unreacted GMBS groups. Surface immobilization was verified by goniometry, dual polarization interferometry, and immunostaining techniques. Primary murine neurons or astrocytes were used to evaluate the modified silicon surfaces. Both L1- and laminin-modified surfaces promoted neuronal attachment, while the L1-modified surface demonstrated significantly enhanced levels of neurite outgrowth (p<0.05). In addition, the laminin-modified surface promoted astrocyte attachment, while the L1-modified surface showed significantly reduced levels of astrocyte attachment relative to the laminin-modified surface and other controls (p<0.05). These results demonstrate the ability of the L1-immobilized surface to specifically promote neuronal growth and neurite extension, while inhibiting the attachment of astrocytes, one of the main cellular components of the glial sheath. Such unique properties present vast potentials to improve the biocompatibility and chronic recording performance of neural probes.
Collapse
|
33
|
|
34
|
Parida SK, Dash S, Patel S, Mishra BK. Adsorption of organic molecules on silica surface. Adv Colloid Interface Sci 2006; 121:77-110. [PMID: 16879799 DOI: 10.1016/j.cis.2006.05.028] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 11/29/2022]
Abstract
The adsorption behaviour of various organic adsorbates on silica surface is reviewed. Most of the structural information on silica is obtained from IR spectral data and from the characteristics of water present at the silica surface. Silica surface is generally embedded with hydroxy groups and ethereal linkages, and hence considered to have a negative charged surface prone to adsorption of electron deficient species. Adsorption isotherms of the adsorbates delineate the nature of binding of the adsorbate with silica. Aromatic compounds are found to involve the pi-cloud in hydrogen bonding with silanol OH group during adsorption. Cationic and nonionic surfactants adsorb on silica surface involving hydrogen bonding. Sometimes, a polar part of the surfactants also contributes to the adsorption process. Styryl pyridinium dyes are found to anchor on silica surface in flat-on position. On modification of the silica by treating with alkali, the adsorption behaviour of cationic surfactant or polyethylene glycol changes due to change in the characteristics of silica or modified silica surface. In case of PEG-modified silica, adsolubilization of the adsorbate is observed. By using a modified adsorption equation, hemimicellization is proposed for these dyes. Adsorptions of some natural macromolecules like proteins and nucleic acids are investigated to study the hydrophobic and hydrophilic binding sites of silica. Artificial macromolecules like synthetic polymers are found to be adsorbed on silica surface due to the interaction of the multifunctional groups of the polymers with silanols. Preferential adsorption of polar adsorbates is observed in case of adsorbate mixtures. When surfactant mixtures are considered to study competitive adsorption on silica surface, critical micelle concentration of individual surfactant also contributes to the adsorption isotherm. The structural study of adsorbed surface and the thermodynamics of adsorption are given some importance in this review.
Collapse
Affiliation(s)
- Sudam K Parida
- Centre of Studies in Surface Science and Technology, Department of Chemistry, Jyoti Vihar, 768 019, Orissa, India
| | | | | | | |
Collapse
|
35
|
Popplewell JF, Swann MJ, Freeman NJ, McDonnell C, Ford RC. Quantifying the effects of melittin on liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:13-20. [PMID: 17092481 DOI: 10.1016/j.bbamem.2006.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 05/12/2006] [Accepted: 05/19/2006] [Indexed: 11/19/2022]
Abstract
Melittin, the soluble peptide of bee venom, has been demonstrated to induce lysis of phospholipid liposomes. We have investigated the dependence of the lytic activity of melittin on lipid composition. The lysis of liposomes, measured by following their mass and dimensions when immobilised on a solid substrate, was close to zero when the negatively charged lipids phosphatidyl glycerol or phosphatidyl serine were used as the phospholipid component of the liposome. Whilst there was significant binding of melittin to the liposomes, there was little net change in their diameter with melittin binding reversed upon salt injection. For the zwitterionic phosphatidyl choline the lytic ability of melittin is dependent on the degree of acyl chain unsaturation, with melittin able to induce lysis of liposomes in the liquid crystalline state, whilst those in the gel state showed strong resistance to lysis. By directly measuring the dimensions and mass changes of liposomes on exposure to melittin using Dual Polarisation Interferometry, rather than following the florescence of entrapped dyes we attained further information about the initial stages of melittin binding to liposomes.
Collapse
Affiliation(s)
- J F Popplewell
- Farfield Scientific Ltd, Farfield House, Southmere Court, Electra Way, Crewe Business Park, Crewe CW1 6GU2, UK
| | | | | | | | | |
Collapse
|
36
|
Ricard-Blum S, Peel LL, Ruggiero F, Freeman NJ. Dual polarization interferometry characterization of carbohydrate–protein interactions. Anal Biochem 2006; 352:252-9. [PMID: 16545768 DOI: 10.1016/j.ab.2006.02.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 10/25/2022]
Abstract
Dual polarization interferometry (DPI) is an analytical technique that allows the simultaneous determination of thickness, density, and mass of a biological layer on a sensing waveguide surface in real time. The technique was applied to the analysis of carbohydrate-protein interactions. The selected system involved a 12-kDa recombinant fragment of collagen V (HepV) and heparin, a complex polysaccharide. Here we report on the analysis of thickness, density, and mass of surface structures obtained during the binding of HepV to heparin, which is a useful model compound for the sulfated, protein-binding regions of heparan sulfate. This system, which was initially studied for its biological relevance, displayed anomalous behavior in kinetic studies using surface plasmon resonance (SPR) assays that has been attributed to putative conformational changes. It was this putative conformational change that prompted us to investigate the binding using an alternative analytical approach. While using DPI to monitor binding events, a streptavidin layer (surface coverage 2.105 ng mm(-2)) was bound to the sensor surface (92% coverage), which captured 0.105 ng mm(-2) of biotinylated heparin (a stoichiometric ratio of 1:6 heparin-streptavidin). The heparin inserted into the streptavidin layer but was still found to be capable of binding 0.154 ng mm(-2) of HepV, which was also observed to insert into the streptavidin layer. This allowed the reliable calculation of the stoichiometric ratio for the HepV-heparin complex ( approximately 1.7:1.0), which has proved to be difficult to evaluate by SPR assays. Furthermore, real-time analysis of the heparin-HepV interaction by DPI suggested that there was some surface loss (probably of streptavidin) while the binding was occurring rather than the putative conformational change that has been suggested on the basis of kinetic data alone. This gives further insight into the binding mechanism of HepV to heparin.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-UCBL, 7 passage du Vercors 69367, Lyon cedex 07, France
| | | | | | | |
Collapse
|
37
|
Lin S, Lee CK, Lin YH, Lee SY, Sheu BC, Tsai JC, Hsu SM. Homopolyvalent antibody-antigen interaction kinetic studies with use of a dual-polarization interferometric biosensor. Biosens Bioelectron 2006; 22:715-21. [PMID: 16569500 DOI: 10.1016/j.bios.2006.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 01/19/2006] [Accepted: 02/17/2006] [Indexed: 11/15/2022]
Abstract
We used dual-polarization interferometry (DPI) to study the interaction kinetics between a 'homopolyvalent' antigen (Ag) and a monoclonal antibody (Ab). A model system, which uses a monoclonal Ab against a homopentameric Ag, C-reactive protein (CRP), is presented with principle and experiments for the study of the interactions between an Ab and an Ag that has multiple identical epitopes. This allows evaluation of the dissociation constant (K(D)) and of the binding stoichiometry by DPI based on measurements of phase changes of Ab-Ag complexes in the transverse magnetic (TM) and transverse electric (TE) polarization modes. The average experimental value of K(D) found by the DPI technique for anti-CRP Ab was shown to be in close agreement with the value obtained by an indirect competition-enzyme-linked immunosorbent assay (ELISA). Moreover, the total number of Ab combining sites on the DPI sensor chip was calculated, and the binding stoichiometry of the surface Ag-Ab complex was obtained. This study illustrates the advantages of the DPI method in biosensing in its capacity for simultaneous evaluation of the thickness and refractive index (density, mass) of adsorbed layers. This allowed a comprehensive analysis of affinity reactions between an Ab having two binding sites and a multi-sited Ag.
Collapse
Affiliation(s)
- Shiming Lin
- Center for Optoelectronic Biomedicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Terry CJ, Popplewell JF, Swann MJ, Freeman NJ, Fernig DG. Characterisation of membrane mimetics on a dual polarisation interferometer. Biosens Bioelectron 2006; 22:627-32. [PMID: 16530399 DOI: 10.1016/j.bios.2006.01.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 01/26/2006] [Accepted: 01/26/2006] [Indexed: 10/24/2022]
Abstract
Dual polarisation interferometry (DPI) has been used to characterise the formation of hybrid bilayer membranes (HBM) on a silicon-oxynitride surface. This technique allows the simultaneous determination of multiple physical properties of an HBM, as the HBM is being formed in a single experiment: mass, thickness in the z-direction (normal to the surface), tilt angle of the first layer and refractive index. Decanoic acid was covalently attached to an amine modified silicon-oxynitride sensor chip surface via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride condensation reaction. The decanoic acid layer was 0.92+/-0.12 nm thick, indicating a tilt angle of 57 degrees from surface normal, and possessed a mass of 1.05+/-0.10 ng mm(-2) and a refractive index (RI) of 1.450+/-0.020. Phospholipid vesicles made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) were injected over the fatty acid surface to form an HBM. The DPPC HBM was 4.32+/-0.68 nm thick, with a total mass of 3.18+/-0.60 ng mm(-2) and a RI of 1.404+/-0.007. The DMPC HBM was 2.12+/-0.34 nm thick, with a total mass of 2.25+/-0.51 ng mm(-2), and a RI of 1.435+/-0.007. DPI thus provides an insight into HBM formation and differences between the structural organisation of HBMs of different composition.
Collapse
Affiliation(s)
- Carla J Terry
- School of Biological Sciences, Biosciences Building, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK.
| | | | | | | | | |
Collapse
|
39
|
Lin S, Lee CK, Wang YM, Huang LS, Lin YH, Lee SY, Sheu BC, Hsu SM. Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor. Biosens Bioelectron 2006; 22:323-7. [PMID: 16510273 DOI: 10.1016/j.bios.2006.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 12/20/2005] [Accepted: 01/12/2006] [Indexed: 10/25/2022]
Abstract
In order to develop the C-reactive protein (CRP) sensor chips for clinical detection of atherosclerosis and coronary heart disease, we used an atomic force microscope (AFM) and a dual polarization interferometric (DPI) biosensor to probe the surface ultrastructure and to measure the dimensions of CRP. A single pentagonal structure was directly visualized by AFM, and quantitative measurements of the dimensions of the protein were provided. The average height calculated for each pentagonal CRP particle was approximately 3.03+/-0.37 nm, which basically corresponds to that (36 A in protomer diameter) previously obtained from the structure of CRP determined by X-ray crystallography. Moreover, a experiment using dual polarization interferometric (DPI) as a biosensor was then performed, and the average monolayer thickness value (3.18+/-0.43 nm) that was calculated basically corresponds to that obtained from the experimental value (3.03+/-0.37 nm) of the height measured by an AFM method for CRP. Further investigations will be performed to study the surface ultrastructure of a single pentagonal CRP molecule, and for this purpose a CRP sample (at low concentration) was scanned in vacuum by AFM. The higher-resolution images clearly revealed the presence of doughnut-shaped CRP molecules. In addition, phase images of CRP molecules were captured simultaneously with their height images, and the lateral dimensions of the doughnut-shaped CRP molecules were then measured. It was found that the average values calculated for the outer diameter (11.13+/-1.47 nm) and pore diameter (3.52+/-0.42 nm) are respectively close to those (102 A in outer diameter and 30 A in pore diameter) previously obtained from the structure of CRP determined by X-ray crystallography. This study represents the first direct characterization of the surface ultrastructure and dimensional measurement of the CRP molecule on the sensor chip.
Collapse
Affiliation(s)
- Shiming Lin
- Centre for Optoelectronic Biomedicine, National Taiwan University, College of Medicine, 1-1 Jen-Ai Road, Taipei 100, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lillis B, Manning M, Berney H, Hurley E, Mathewson A, Sheehan MM. Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support. Biosens Bioelectron 2006; 21:1459-67. [PMID: 16112566 DOI: 10.1016/j.bios.2005.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/16/2005] [Accepted: 06/17/2005] [Indexed: 11/21/2022]
Abstract
Dual polarisation interferometry is an analytical technique that allows the simultaneous determination of thickness, density and mass of a biological layer on a sensing waveguide surface in real time. We evaluated, for the first time, the ability of this technique to characterise the covalent immobilisation of single stranded probe DNA and the selective detection of target DNA hybridisation on a silanised support. Two immobilisation strategies have been evaluated: direct attachment of the probe molecule and a more complex chemistry employing a 1,2 homobifunctional crosslinker molecule. With this technique we demonstrate it was possible to determine probe orientation and measure probe coverage at different stages of the immobilisation process in real time and in a single experiment. In addition, by measuring simultaneously changes in thickness and density of the probe layer upon hybridisation of target DNA, it was possible to directly elucidate the impact that probe mobility had on hybridisation efficiency. Direct covalent attachment of an amine modified 19 mer resulted in a thickness change of 0.68 nm that was consistent with multipoint attachment of the probe molecule to the surface. Blocking with BSA formed a dense layer of protein molecules that absorbed between the probe molecules on the surface. The observed hybridisation efficiency to target DNA was approximately 35%. No further significant reorientation of the probe molecule occurred upon hybridisation. The initial thickness of the probe layer upon attachment to the crosslinker molecule was 0.5 nm. Significant reorientation of the probe molecule surface normal occurred upon hybridisation to target DNA. This indicated that the probe molecule had greater mobility to hybridise to target DNA. The observed hybridisation efficiency for target DNA was approximately 85%. The results show that a probe molecule attached to the surface via a crosslinker group is better able to hybridise to target DNA due to its greater mobility.
Collapse
Affiliation(s)
- B Lillis
- Tyndall Institute, Lee Maltings, Prospect Row, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
41
|
Lee TH, Aguilar MI. Trends in the development and application of functional biomembrane surfaces. BIOTECHNOLOGY ANNUAL REVIEW 2006; 12:85-136. [PMID: 17045193 DOI: 10.1016/s1387-2656(06)12004-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | |
Collapse
|
42
|
Berney H, Oliver K. Dual polarization interferometry size and density characterisation of DNA immobilisation and hybridisation. Biosens Bioelectron 2005; 21:618-26. [PMID: 16202875 DOI: 10.1016/j.bios.2004.12.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 12/21/2004] [Accepted: 12/21/2004] [Indexed: 10/25/2022]
Abstract
Investigation of nucleic acid interactions was performed using dual polarization interferometry, a novel approach to elucidating molecular interactions. This paper presents a preliminary study of adsorption of single stranded DNA onto functionalised silicon oxynitride, compared with covalent linkage, and avidin-biotin immobilisation. The effect of probe concentration on hybridisation efficiency was also examined. We found that increasing the electrolyte concentration resulted in a decrease of adsorbed DNA and that capture of a biotinylated duplex DNA on an adsorbed avidin layer resulted in four times fewer molecules per cm(2) than for duplex DNA covalently bound via an amine end terminal. The rate of thickness increase of a biotin probe layer on an adsorbed avidin capture layer increased 10-fold when the probe concentration was increased from 0.1 microM to 1 microM. The close grafting density of the higher concentration probe meant that the immobilised probes were unavailable for hybridisation.
Collapse
Affiliation(s)
- Helen Berney
- Institute for Nanoscale Science and Technology, Herschel Annex, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|