1
|
Martin N, Costa N, Wien F, Winnik FM, Ortega C, Herbet A, Boquet D, Tribet C. Refolding of Aggregation-Prone ScFv Antibody Fragments Assisted by Hydrophobically Modified Poly(sodium acrylate) Derivatives. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Nicolas Martin
- Ecole normale supérieure; PSL Research University; UPMC Univ Paris 06; CNRS, Département de Chimie; PASTEUR, 24, rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; ENS, CNRS, PASTEUR; 75005 Paris France
| | - Narciso Costa
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Frank Wien
- Synchrotron Soleil; Saint-Aubin; F-91192 Gif-sur-Yvette France
| | - Françoise M. Winnik
- Department of Chemistry; Faculty of Pharmacy; Université de Montréal; CP 6128 Succursale Centre Ville Montréal QC H3C 3J7 Canada
- World Premier Initiative (WPI) International Research Center Initiative; International Center for Materials Nanoarchitectonics (MANA) and National Institute for Materials Science (NIMS) 1-1Namiki; Tsukuba 305-0044 Japan
- Department of Chemistry and Faculty of Pharmacy; University of Helsinki; Helsinki FI 00014 Finland
| | - Céline Ortega
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Amaury Herbet
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Didier Boquet
- CEA, iBiTecS, SPI; Laboratoire d'Ingénierie des Anticorps pour la Santé (LIAS); Bt. 136, CEA Saclay F-91191 Gif sur Yvette France
| | - Christophe Tribet
- Ecole normale supérieure; PSL Research University; UPMC Univ Paris 06; CNRS, Département de Chimie; PASTEUR, 24, rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; ENS, CNRS, PASTEUR; 75005 Paris France
| |
Collapse
|
2
|
Martin N, Li M, Mann S. Selective Uptake and Refolding of Globular Proteins in Coacervate Microdroplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5881-9. [PMID: 27268140 DOI: 10.1021/acs.langmuir.6b01271] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Intrinsic differences in the molecular sequestration of folded and unfolded proteins within poly(diallyldimethylammonium) (PDDA)/poly(acrylate) (PAA) coacervate microdroplets are exploited to establish membrane-free microcompartments that support protein refolding, facilitate the recovery of secondary structure and enzyme activity, and enable the selective uptake and exclusion of folded and unfolded biomolecules, respectively. Native bovine serum albumin, carbonic anhydrase, and α-chymotrypsin are preferentially sequestered within positively charged coacervate microdroplets, and the unfolding of these proteins in the presence of increasing amounts of urea results in an exponential decrease in the equilibrium partition constants as well as the kinetic release of unfolded molecules from the droplets into the surrounding continuous phase. Slow refolding in the presence of positively charged microdroplets leads to the resequestration of functional proteins and the restoration of enzymatic activity; however, fast refolding results in protein aggregation at the droplet surface. In contrast, slow and fast refolding in the presence of negatively charged PDDA/PAA droplets gives rise to reduced protein aggregation and misfolding by interactions at the droplet surface to give increased levels of protein renaturation. Together, our observations provide new insights into the bottom-up design and construction of self-assembling microcompartments capable of supporting the selective uptake and refolding of globular proteins.
Collapse
Affiliation(s)
- Nicolas Martin
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| |
Collapse
|
3
|
Martin N, Ruchmann J, Tribet C. Prevention of aggregation and renaturation of carbonic anhydrase via weak association with octadecyl- or azobenzene-modified poly(acrylate) derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:338-349. [PMID: 25495869 DOI: 10.1021/la503643q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The prevention of aggregation during renaturation of urea-denatured carbonic anhydrase B (CAB) via hydrophobic and Coulomb association with anionic polymers was studied in mixed solutions of CAB and amphiphilic poly(acrylate) copolymers. The polymers were derivatives of a parent poly(acrylic acid) randomly grafted with hydrophobic side groups (either 3 mol % octadecyl group, or 1-5 mol % alkylamidoazobenzene photoresponsive groups). CAB:polymer complexes were characterized by light scattering and fluorescence correlation spectroscopy in aqueous buffers (pH 7.75 or 5.9). Circular dichroism and enzyme activity assays enabled us to study the kinetics of renaturation. All copolymers, including the hydrophilic PAA parent chain, provided a remarkable protective effect against CAB aggregation during renaturation, and most of them (but not the octadecyl-modified one) markedly enhanced the regain of activity as compared to CAB alone. The significant role of Coulomb binding in renaturation and comparatively the lack of efficacy of hydrophobic association was highlighted by measurements of activity regain before and after in situ dissociation of hydrophobic complexes (achieved by phototriggering the polarity of azobenzene-modified polymers under exposure to UV light). In the presence of polymers (CAB:polymer of 1:1 w/w ratio) at concentration ∼0.6 g L(-1), the radii of the largest complexes were similar to the radii of the copolymers alone, suggesting that the binding of CAB involves one or a few polymer chain(s). These complexes dissociated by dilution (0.01 g L(-1)). It is concluded that prevention of irreversible aggregation and activity recovery were achieved when marginally stable complexes are formed. Reaching a balanced stability of the complex plays the main role in CAB renaturation, irrespective of the nature of the binding (by Coulomb association, with or without contribution of hydrophobic association).
Collapse
Affiliation(s)
- Nicolas Martin
- Département de Chimie, Ecole Normale Supérieure-PSL Research University , 24, rue Lhomond, 75005, Paris, France
| | | | | |
Collapse
|
4
|
Gautam S, Dubey P, Singh P, Varadarajan R, Gupta MN. Simultaneous refolding and purification of recombinant proteins by macro-(affinity ligand) facilitated three-phase partitioning. Anal Biochem 2012; 430:56-64. [DOI: 10.1016/j.ab.2012.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/25/2012] [Accepted: 07/19/2012] [Indexed: 11/25/2022]
|
5
|
Gautam S, Dubey P, Varadarajan R, Gupta MN. Role of smart polymers in protein purification and refolding. Bioengineered 2012; 3:286-8. [PMID: 22892577 DOI: 10.4161/bioe.21372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Affinity precipitation is a non-chromatographic method which is useful for purification and refolding of proteins. Quite often, a stimuli-sensitive polymer can be identified which selectively binds to the desired protein. For separation, the protein can be recovered from the precipitate of the protein-smart polymer complex. In case of a refolding experiment, binding of the solubilized protein (in its denatured form) with the polymer leads to the refolding of the protein.
Collapse
Affiliation(s)
- Saurabh Gautam
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | | | | |
Collapse
|
6
|
Ye C, Ilghari D, Niu J, Xie Y, Wang Y, Wang C, Li X, Liu B, Huang Z. A comprehensive structure–function analysis shed a new light on molecular mechanism by which a novel smart copolymer, NY-3-1, assists protein refolding. J Biotechnol 2012; 160:169-75. [DOI: 10.1016/j.jbiotec.2012.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/18/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022]
|
7
|
Gautam S, Dubey P, Singh P, Kesavardhana S, Varadarajan R, Gupta MN. Smart polymer mediated purification and recovery of active proteins from inclusion bodies. J Chromatogr A 2012; 1235:10-25. [DOI: 10.1016/j.chroma.2012.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
8
|
Chemical assistance in refolding of bacterial inclusion bodies. Biochem Res Int 2011; 2011:631607. [PMID: 21822494 PMCID: PMC3148444 DOI: 10.1155/2011/631607] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins but insoluble expression of heterologous proteins is a major bottleneck in production of recombinant proteins in E. coli. In vitro refolding of inclusion body into proteins with native conformations is a solution for this problem but there is a need for optimization of condition for each protein specifically. Several approaches have been described for in vitro refolding; most of them involve the use of additives for assisting correct folding. Cosolutes play a major role in refolding process and can be classified according to their function as aggregation suppressors and folding enhancers. This paper presents a review of additives that are used in refolding process of insoluble recombinant proteins in small scale and industrial processes.
Collapse
|
9
|
Huang Z, Ni C, Zhou X, Liu Y, Tan Y, Xiao J, Feng W, Li X, Yang S. Mechanism of pH-sensitive polymer-assisted protein refolding and its application in TGF-β1 and KGF-2. Biotechnol Prog 2009; 25:1387-95. [DOI: 10.1002/btpr.218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Molecular-assisted refolding: Study of two different ionic forms of recombinant human fibroblast growth factors. J Biotechnol 2009; 142:157-63. [DOI: 10.1016/j.jbiotec.2009.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 04/01/2009] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
|
11
|
Raghava S, Singh PK, Ranga Rao A, Dutta V, Gupta MN. Nanoparticles of unmodified titanium dioxide facilitate protein refolding. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b817306k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Singh PK, Gupta MN. Simultaneous refolding and purification of a recombinant lipase with an intein tag by affinity precipitation with chitosan. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1825-9. [DOI: 10.1016/j.bbapap.2008.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/03/2008] [Accepted: 07/29/2008] [Indexed: 10/21/2022]
|
13
|
Dexter AF, Malcolm AS, Zeng B, Kennedy D, Middelberg APJ. Mixed system of Eudragit s-100 with a designed amphipathic peptide: control of interfacial elasticity by solution composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:3045-3052. [PMID: 18275234 DOI: 10.1021/la703252r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report an interfacially active system based on an informational peptide surfactant mixed with an oppositely charged polyelectrolyte. The 21-residue cationic peptide, AM1, has previously been shown to respond reversibly to pH and metal ions at fluid interfaces, forming elastic films that can be rapidly switched to collapse foams or emulsions on demand. Here we report the reversible association of AM1 with the methacrylate-based anionic polymer Eudragit S-100. The strength of the association, in bulk aqueous solution, is modulated by added metal ions and by ionic strength. Addition of zinc ions to the peptide-polymer system promotes complex formation and phase separation, while addition of a chelating agent reverses the association. The addition of salt weakens peptide-polymer interactions in the presence or absence of zinc. At the air-water interface, Eudragit S-100 forms an elastic mixed film with AM1 in the absence of metal, under conditions where the peptide alone does not show interfacial elasticity. When zinc is present, the elasticity of the mixed film is increased, but the rate of interfacial adsorption slows due to formation of peptide-polymer complexes in bulk solution. An understanding of these interactions can be used to identify favorable foam-forming conditions in the mixed system.
Collapse
Affiliation(s)
- Annette F Dexter
- Centre for Biomolecular Engineering, School of Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia QLD 4072 Australia
| | | | | | | | | |
Collapse
|