1
|
3-(3-Hydroxypropyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxaldehyde Methyl Hemiacetal. MOLBANK 2021. [DOI: 10.3390/m1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The synthesis of 3-(3-hydroxypropyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxaldehyde as a stable methyl hemiacetal through a convenient 3-step procedure is reported. The molecule is multifunctional as it contains a formyl group, a hydroxyl group and the imide moiety. Each of these groups can play a role in specific transformations or uses.
Collapse
|
2
|
Indumathi K, Abiram A, Praveena G. Effect of peptidic backbone on the nucleic acid dimeric strands. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1584682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- K. Indumathi
- Department of Physics, PSGR Krishnammal College for Women, Coimbatore, India
| | - A. Abiram
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - G. Praveena
- Department of Physics, PSGR Krishnammal College for Women, Coimbatore, India
| |
Collapse
|
3
|
Movilli J, Di Iorio D, Rozzi A, Hiltunen J, Corradini R, Huskens J. "Plug-n-Play" Polymer Substrates: Surface Patterning with Reactive-Group-Appended Poly-l-lysine for Biomolecule Adhesion. ACS APPLIED POLYMER MATERIALS 2019; 1:3165-3173. [PMID: 32954353 PMCID: PMC7493307 DOI: 10.1021/acsapm.9b00814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 06/11/2023]
Abstract
The immobilization of biomolecules onto polymeric surfaces employed in the fabrication of biomedical and biosensing devices is generally a challenging issue, as the absence of functional groups in such materials does not allow the use of common surface chemistries. Here we report the use of modified poly-l-lysine (PLL) as an effective method for the selective modification of polymeric materials with biomolecules. Cyclic olefin polymer (COP), Ormostamp, and polydimethylsiloxane (PDMS) surfaces were patterned with modified PLLs displaying either biotin or maleimide functional groups. Different patterning techniques were found to provide faithful microscale pattern formation, including micromolding in capillaries (MIMIC) and a hydrogel-based stamping device with micropores. The surface modification and pattern stability were tested with fluorescence microscopy, contact angle and X-ray photoelectron spectroscopy (XPS), showing an effective functionalization of substrates stable for over 20 days. By exploiting the strong biotin-streptavidin interaction or the thiol-maleimide coupling, DNA and PNA probes were displayed successfully on the surface of the materials, and these probes maintained the capability to specifically recognize complementary DNA sequences from solution. The printing of three different PNA-thiol probe molecules in a microarray fashion allowed selective DNA detection from a mixture of DNA analytes, demonstrating that the modified PLL methodology can potentially be used for multiplexed detection of DNA sequences.
Collapse
Affiliation(s)
- Jacopo Movilli
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Daniele Di Iorio
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| | - Andrea Rozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Jussi Hiltunen
- VTT
Technical Research Center of Finland, 90570 Oulu, Finland
| | - Roberto Corradini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, P.O. Box 217, 7500
AE Enschede, The Netherlands
| |
Collapse
|
4
|
Saadati A, Hassanpour S, Guardia MDL, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Veerbeek J, Steen R, Vijselaar W, Rurup WF, Korom S, Rozzi A, Corradini R, Segerink L, Huskens J. Selective Functionalization with PNA of Silicon Nanowires on Silicon Oxide Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11395-11404. [PMID: 30179484 PMCID: PMC6158678 DOI: 10.1021/acs.langmuir.8b02401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/29/2018] [Indexed: 06/02/2023]
Abstract
Silicon nanowire chips can function as sensors for cancer DNA detection, whereby selective functionalization of the Si sensing areas over the surrounding silicon oxide would prevent loss of analyte and thus increase the sensitivity. The thermal hydrosilylation of unsaturated carbon-carbon bonds onto H-terminated Si has been studied here to selectively functionalize the Si nanowires with a monolayer of 1,8-nonadiyne. The silicon oxide areas, however, appeared to be functionalized as well. The selectivity toward the Si-H regions was increased by introducing an extra HF treatment after the 1,8-nonadiyne monolayer formation. This step (partly) removed the monolayer from the silicon oxide regions, whereas the Si-C bonds at the Si areas remained intact. The alkyne headgroups of immobilized 1,8-nonadiyne were functionalized with PNA probes by coupling azido-PNA and thiol-PNA by click chemistry and thiol-yne chemistry, respectively. Although both functionalization routes were successful, hybridization could only be detected on the samples with thiol-PNA. No fluorescence was observed when introducing dye-labeled noncomplementary DNA, which indicates specific DNA hybridization. These results open up the possibilities for creating Si nanowire-based DNA sensors with improved selectivity and sensitivity.
Collapse
Affiliation(s)
- Janneke Veerbeek
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, and BIOS Lab on a
Chip group, MESA+ Institute for Nanotechnology, TechMed Centre and
Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Raymond Steen
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, and BIOS Lab on a
Chip group, MESA+ Institute for Nanotechnology, TechMed Centre and
Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter Vijselaar
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, and BIOS Lab on a
Chip group, MESA+ Institute for Nanotechnology, TechMed Centre and
Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. Frederik Rurup
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, and BIOS Lab on a
Chip group, MESA+ Institute for Nanotechnology, TechMed Centre and
Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Saša Korom
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea Rozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Roberto Corradini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Loes Segerink
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, and BIOS Lab on a
Chip group, MESA+ Institute for Nanotechnology, TechMed Centre and
Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular NanoFabrication group, MESA+ Institute for Nanotechnology, and BIOS Lab on a
Chip group, MESA+ Institute for Nanotechnology, TechMed Centre and
Max Planck Center for Complex Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
6
|
D'Agata R, Giuffrida MC, Spoto G. Peptide Nucleic Acid-Based Biosensors for Cancer Diagnosis. Molecules 2017; 22:E1951. [PMID: 29137122 PMCID: PMC6150339 DOI: 10.3390/molecules22111951] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
Abstract
The monitoring of DNA and RNA biomarkers freely circulating in the blood constitutes the basis of innovative cancer detection methods based on liquid biopsy. Such methods are expected to provide new opportunities for a better understanding of cancer disease at the molecular level, thus contributing to improved patient outcomes. Advanced biosensors can advance possibilities for cancer-related nucleic acid biomarkers detection. In this context, peptide nucleic acids (PNAs) play an important role in the fabrication of highly sensitive biosensors. This review provides an overview of recently described PNA-based biosensors for cancer biomarker detection. One of the most striking features of the described detection approaches is represented by the possibility to detect target nucleic acids at the ultra-low concentration with the capability to identify single-base mutations.
Collapse
Affiliation(s)
- Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
| | - Maria Chiara Giuffrida
- Consorzio Interuniversitario "Istituto Nazionale di Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
- Consorzio Interuniversitario "Istituto Nazionale di Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy.
| |
Collapse
|
7
|
Castagna R, Bertucci A, Prasetyanto EA, Monticelli M, Conca DV, Massetti M, Sharma PP, Damin F, Chiari M, De Cola L, Bertacco R. Reactive Microcontact Printing of DNA Probes on (DMA-NAS-MAPS) Copolymer-Coated Substrates for Efficient Hybridization Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3308-3313. [PMID: 26972953 DOI: 10.1021/acs.langmuir.5b04669] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High-performing hybridization platforms fabricated by reactive microcontact printing of DNA probes are presented. Multishaped PDMS molds are used to covalently bind oligonucleotides over a functional copolymer (DMA-NAS-MAPS) surface. Printed structures with minimum width of about 1.5 μm, spaced by 10 μm, are demonstrated, with edge corrugation lower than 300 nm. The quantification of the immobilized surface probes via fluorescence imaging gives a remarkable concentration of 3.3 × 10(3) oligonucleotides/μm(2), almost totally active when used as probes in DNA-DNA hybridization assays. Indeed, fluorescence and atomic force microscopy show a 95% efficiency in target binding and uniform DNA hybridization over printed areas.
Collapse
Affiliation(s)
- Rossella Castagna
- Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
| | - Alessandro Bertucci
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg , 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Eko Adi Prasetyanto
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg , 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Marco Monticelli
- Dipartimento di Fisica, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
| | - Dario Valter Conca
- Dipartimento di Fisica, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
| | - Matteo Massetti
- Dipartimento di Fisica, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
| | | | - Francesco Damin
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche , Via Mario Bianco 9, 20131, Milano, Italy
| | - Marcella Chiari
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche , Via Mario Bianco 9, 20131, Milano, Italy
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg , 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Riccardo Bertacco
- Dipartimento di Fisica, Politecnico di Milano , Via G. Colombo 81, 20133, Milano, Italy
- IFN-CNR Via Colombo 81, 20133 Milano, Italy
| |
Collapse
|
8
|
Appel EA, Larson BL, Luly KM, Kim JD, Langer R. Non-cell-adhesive substrates for printing of arrayed biomaterials. Adv Healthc Mater 2015; 4:501-5. [PMID: 25430948 PMCID: PMC4447497 DOI: 10.1002/adhm.201400594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/04/2014] [Indexed: 01/07/2023]
Abstract
Cellular microarrays have become extremely useful in expediting the investigation of large libraries of (bio)materials for both in vitro and in vivo biomedical applications. An exceedingly simple strategy is developed for the fabrication of non-cell-adhesive substrates supporting the immobilization of diverse (bio)material features, including both monomeric and polymeric adhesion molecules (e.g., RGD and polylysine), hydrogels, and polymers.
Collapse
Affiliation(s)
- Eric A. Appel
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin L. Larson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kathryn M. Luly
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jinseong D. Kim
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Shi H, Yang F, Li W, Zhao W, Nie K, Dong B, Liu Z. A review: fabrications, detections and applications of peptide nucleic acids (PNAs) microarray. Biosens Bioelectron 2014; 66:481-9. [PMID: 25499661 DOI: 10.1016/j.bios.2014.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
Abstract
Peptide nucleic acid (PNA) is a mimic of DNA that shows a high chemical stability and can survive the enzymatic degradation of nucleases and proteases. The superior binding properties of PNA enable the formation of PNA/DNA or PNA/RNA duplex with excellent thermal stability and unique ionic strength effect. The introduction of microarray makes it possible to achieve accurate, high throughput parallel analysis of DNA or RNA with a highly integrated and low reagents consuming device. This powerful tool expands the applications of PNA in genotyping based on single nucleotide polymorphism (SNP) detection, the monitoring of disease-related miRNA expression and pathogen detection. This review paper discusses the fabrications of PNA microarrays through in situ synthesis strategy or spotting method by automatic devices, the various detection methods for the microarray-based hybridization and the current applications of PNA microarrays.
Collapse
Affiliation(s)
- Huanhuan Shi
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Feipeng Yang
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Wenjia Li
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Weiwei Zhao
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Kaixuan Nie
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Bo Dong
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
| | - Zhengchun Liu
- Institute of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
| |
Collapse
|
10
|
Totsingan F, Marchelli R, Corradini R. Molecular computing by PNA:PNA duplex formation. ARTIFICIAL DNA, PNA & XNA 2014; 2:16-22. [PMID: 21686248 DOI: 10.4161/adna.2.1.15459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 11/19/2022]
Abstract
Molecular computing is potentially one of the most powerful tools for the development of massive parallel computing protocols. In the present paper, a first example of the use of PNA:PNA interactions in molecular computing is described. A series of short PNA sequences have been designed with a four base stretch coding for variables and solutions. Hybridization of the components in different combinations was tested both in solution and in a microarray format. A series of PNA representing the solutions were spotted on a microarray surface in order to simulate the hardware. A series of PNA representing the variables, labeled with TAMRA, were used to interrogate the device enabling to solve non-deterministic logic operations. The system was shown to be able to solve a two-variable equation with a high signal to noise ratio. This paper intends to provide a proof of principle that PNA, on account of their stability and specificity of binding, are most suitable for constructing organic-type computers.
Collapse
|
11
|
Moore E, Delalat B, Vasani R, Thissen H, Voelcker NH. Patterning and Biofunctionalization of Antifouling Hyperbranched Polyglycerol Coatings. Biomacromolecules 2014; 15:2735-43. [DOI: 10.1021/bm500601z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Eli Moore
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, GPO Box
2471, Adelaide, South Australia 5001, Australia
- CSIRO Materials
Science and Engineering, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Bahman Delalat
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, GPO Box
2471, Adelaide, South Australia 5001, Australia
| | - Roshan Vasani
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, GPO Box
2471, Adelaide, South Australia 5001, Australia
| | - Helmut Thissen
- CSIRO Materials
Science and Engineering, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Nicolas H. Voelcker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia, GPO Box
2471, Adelaide, South Australia 5001, Australia
| |
Collapse
|
12
|
Advances in contact printing technologies of carbohydrate, peptide and protein arrays. Curr Opin Chem Biol 2014; 18:1-7. [DOI: 10.1016/j.cbpa.2013.10.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022]
|
13
|
Meyer R, Giselbrecht S, Rapp BE, Hirtz M, Niemeyer CM. Advances in DNA-directed immobilization. Curr Opin Chem Biol 2014; 18:8-15. [DOI: 10.1016/j.cbpa.2013.10.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 12/18/2022]
|
14
|
Roling O, Mardyukov A, Lamping S, Vonhören B, Rinnen S, Arlinghaus HF, Studer A, Ravoo BJ. Surface patterning with natural and synthetic polymers via an inverse electron demand Diels–Alder reaction employing microcontact chemistry. Org Biomol Chem 2014; 12:7828-35. [DOI: 10.1039/c4ob01379d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioorthogonal ligation methods are the focus of current research due to their versatile applications in biotechnology and materials science for post-functionalization and immobilization of biomolecules.
Collapse
Affiliation(s)
- Oliver Roling
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Artur Mardyukov
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Sebastian Lamping
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Benjamin Vonhören
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Stefan Rinnen
- Physikalisches Institut
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Graduate School of Chemistry
- Westfälische Wilhelms-Universität Münster
- 48149 Münster, Germany
| |
Collapse
|
15
|
Römhildt L, Pahlke C, Zörgiebel F, Braun HG, Opitz J, Baraban L, Cuniberti G. Patterned biochemical functionalization improves aptamer-based detection of unlabeled thrombin in a sandwich assay. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12029-35. [PMID: 24171544 DOI: 10.1021/am4038245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Here we propose a platform for the detection of unlabeled human α-thrombin down to the picomolar range in a fluorescence-based aptamer assay. In this concept, thrombin is captured between two different thrombin binding aptamers, TBA1 (15mer) and TBA2 (29mer), each labeled with a specific fluorescent dye. One aptamer is attached to the surface, the second one is in solution and recognizes surface-captured thrombin. To improve the limit of detection and the comparability of measurements, we employed and compared two approaches to pattern the chip substrate-microcontact printing of organosilanes onto bare glass slides, and controlled printing of the capture aptamer TBA1 in arrays onto functionalized glass substrates using a nanoplotter device. The parallel presence of functionalized and control areas acts as an internal reference. We demonstrate that both techniques enable the detection of thrombin concentrations in a wide range from 0.02 to 200 nM with a detection limit at 20 pM. Finally, the developed method could be transferred to any substrate to probe different targets that have two distinct possible receptors without the need for direct target labeling.
Collapse
Affiliation(s)
- Lotta Römhildt
- Institute for Materials Science and Max Bergmann Center of Biomaterials and §Center for Advancing Electronics Dresden, TU Dresden , 01062 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Ghosh S, Mishra S, Banerjee T, Mukhopadhyay R. Facilitating mismatch discrimination by surface-affixed PNA probes via ionic regulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3370-3379. [PMID: 23414328 DOI: 10.1021/la400125x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
There has been a search for alternative nucleic acids that can be more effectively used in nucleic acid detection technologies compared to the DNA probes. Peptide nucleic acid (PNA), which contains a non-ionic peptidic backbone, offers such possibilities since it is nuclease-resistant, it binds to DNA with high affinity, and it can be readily self-assembled onto solid substrates, e.g., gold(111), with a molecular backbone orientation away from the substrate. Although application of PNA as a sensor probe has been exemplified, so far there is little or no account of the ionic modulation of single base mismatch discrimination capacity of surface-tethered PNA probes. Herein, we report "on-surface" melting temperatures of PNA-DNA duplexes formed on gold(111) surface, as obtained from fluorescence measurements. We show that surface-tethered PNA forms a stabler duplex than DNA, and is more effective in single base mismatch discrimination than DNA. Importantly, although PNA backbone is non-ionic, variation in the ionic components in hybridization buffer, i.e., varying concentration of monovalent sodium ion, and the nature of anion and the cation, exhibits clear effects on the mismatch discrimination capacity of PNA probes. In general, with decreasing cation concentration, PNA-DNA duplexes are stabilized and mismatch discrimination capacity of the PNA probes is enhanced. The stabilizing/destabilizing effects of anions are found to follow the Hofmeister series, emphasizing the importance of hydrophobic interaction between nucleobases for stability of the PNA-DNA duplexes. Interestingly, the nature of ionic dependence of "on-surface" mismatch detection ability of PNA probes differs significantly from the "solution" behavior of these probes.
Collapse
Affiliation(s)
- Srabani Ghosh
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | | | | | | |
Collapse
|
17
|
Zanoli LM, Licciardello M, D'Agata R, Lantano C, Calabretta A, Corradini R, Marchelli R, Spoto G. Peptide nucleic acid molecular beacons for the detection of PCR amplicons in droplet-based microfluidic devices. Anal Bioanal Chem 2013; 405:615-24. [PMID: 22212864 DOI: 10.1007/s00216-011-5638-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/05/2011] [Accepted: 12/05/2011] [Indexed: 11/26/2022]
Abstract
The use of droplet-based microfluidics and peptide nucleic acid molecular beacons for the detection of polymerase chain reaction (PCR)-amplified DNA sequences within nanoliter-sized droplets is described in this work. The nanomolar-attomolar detection capabilities of the method were preliminarily tested by targeting two different single-stranded DNA sequences from the genetically modified Roundup Ready soybean and the Olea europaea genomes and detecting the fluorescence generated by peptide nucleic acid molecular beacons with fluorescence microscopy. Furthermore, the detection of 10 nM solutions of PCR amplicon of DNA extracted from leaves of O. europaea L. encapsulated in nanoliter-sized droplets was performed to demonstrate that peptide nucleic acid molecular beacons can discriminate O. europaea L. cultivar species carrying different single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Laura Maria Zanoli
- Scuola Superiore di Catania, c/o Dipartimento di Scienze Chimiche, Università di Catania, Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zheng C, Wang J, Pang Y, Wang J, Li W, Ge Z, Huang Y. High-throughput immunoassay through in-channel microfluidic patterning. LAB ON A CHIP 2012; 12:2487-90. [PMID: 22549364 DOI: 10.1039/c2lc40145b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have developed an integrated microfluidic immunoassay chip for high-throughput sandwich immunoassay tests. The chip creates an array of reactive patterns through mechanical protection by actuating monolithically embedded button valves. We have demonstrated that this chip can achieve highly sensitive immunoassay tests within an hour, and requires only microliter samples.
Collapse
Affiliation(s)
- Chunhong Zheng
- College of Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Bonifazi D, Carloni LE, Corvaglia V, Delforge A. Peptide nucleic acids in materials science. ARTIFICIAL DNA, PNA & XNA 2012; 3:112-22. [PMID: 22925824 PMCID: PMC3581510 DOI: 10.4161/adna.21941] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights the recent methods to prepare PNA-based materials through a combination of self-assembly and self-organization processes. The use of these methods allows easy and versatile preparation of structured hybrid materials showing specific recognition properties and unique physicochemical properties at the nano- and micro-scale levels displaying potential applications in several directions, ranging from sensors and microarrays to nanostructured devices for biochips.
Collapse
Affiliation(s)
- Davide Bonifazi
- Namur Research College, Department of Chemistry, University of Namur, Namur, Belgium.
| | | | | | | |
Collapse
|
20
|
Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development. Anal Bioanal Chem 2012; 402:3071-89. [PMID: 22297860 DOI: 10.1007/s00216-012-5742-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/12/2012] [Indexed: 01/06/2023]
Abstract
Nucleic acid biosensors have a growing number of applications in genetics and biomedicine. This contribution is a critical review of the current state of the art concerning the use of nucleic acid analogues, in particular peptide nucleic acids (PNA) and locked nucleic acids (LNA), for the development of high-performance affinity biosensors. Both PNA and LNA have outstanding affinity for natural nucleic acids, and the destabilizing effect of base mismatches in PNA- or LNA-containing heterodimers is much higher than in double-stranded DNA or RNA. Therefore, PNA- and LNA-based biosensors have unprecedented sensitivity and specificity, with special applicability in DNA genotyping. Herein, the most relevant PNA- and LNA-based biosensors are presented, and their advantages and their current limitations are discussed. Some of the reviewed technology, while promising, still needs to bridge the gap between experimental status and the harder reality of biotechnological or biomedical applications.
Collapse
|
21
|
Takulapalli BR, Morrison ME, Gu J, Zhang P. A nanocontact printing system for sub-100 nm aligned patterning. NANOTECHNOLOGY 2011; 22:285302. [PMID: 21636882 DOI: 10.1088/0957-4484/22/28/285302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Though many aspects of contact printing have been explored extensively since its invention, there are still hurdles to overcome for multilayer printing in the nanometer regime. Here we report on an aligned nanocontact printing (nCP) system that has demonstrated a sub-100 nm alignment capability by means of moiré fringes and microspacers. To address issues in the stamp inking, we have devised a microfluidic apparatus based on the gradient capillary force for transport of ink solutions. The nCP system has been tested by printing nucleoside phosphoramidites on a nanopillar arrayed substrate. Although the nCP system was designed primarily for use in the fabrication of high density DNA nanoarrays, it has the potential to be applied to other fields of nanotechnology for nanoscale patterning.
Collapse
Affiliation(s)
- Bharath R Takulapalli
- Center for Applied Nanobioscience, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|