1
|
Zheng F, Zhang Y, Dong L, Zhao D, Feng R, Tao P, Shang W, Fu B, Song C, Deng T. The impact of surface chemistry on the interfacial evaporation-driven self-assembly of thermoplasmonic gold nanoparticles. NANOSCALE 2021; 13:20521-20530. [PMID: 34854858 DOI: 10.1039/d1nr05729d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper reports an interfacial evaporation-driven approach for self-assembly of a gold nanoparticle (AuNP) film at the interface of liquid/air. We have designed colloidal plasmonic AuNPs capped with different types and surface coverage densities of ligands (i.e. purified and unpurified oleylamine-capped or thiol-protected AuNPs) and studied the impact of surface chemistry on the self-assembly of AuNPs using the optically excited plasmonic heating effect. By employing the extended DerjaguinLandau-Verwey-Overbeek model, the calculated lowest potential energies of the assembled AuNPs capped with purified oleylamine or alkyl thiols are between -1 kBT and -2 kBT, which is close to the room temperature thermal energy and represents a meta-stable assembly, indicating the reversible self-assembly of the AuNP film observed from the experiment. Furthermore, we observed the superheating phenomenon in well-dispersed nanoparticle solution while normal boiling occurred in the solutions with AuNP assemblies. The SERS activity of the as-prepared AuNP film has also been studied using rhodamine 6G as a molecular probe. This work not only provides a new aspect of the boiling phenomena of optically heated colloidal plasmonic nanoparticle solutions, but also provides inspiration for a new approach in designing surface ligands on the nanoparticles to realize reversible self-assembly via interfacial evaporation.
Collapse
Affiliation(s)
- Feiyu Zheng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Yingyue Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Liuchang Dong
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Dengwu Zhao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Rui Feng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Peng Tao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Wen Shang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Benwei Fu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Chengyi Song
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| | - Tao Deng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
2
|
Gao J, Huang L, Zhang Z, Li G. Synthesis of sea urchin-shaped Au nanocrystals by double-strand diblock oligonucleotides for surface-enhanced Raman scattering and catalytic application. NANOTECHNOLOGY 2021; 32:175501. [PMID: 33440360 DOI: 10.1088/1361-6528/abdb61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is of great significance to construct specially designed gold nanocrystals (AuNCs) with precisely controllable size and morphology to achieve an excellent physicochemical performance. In this work, sea urchin-shaped AuNCs with tunable plasmonic property were successfully synthesized by the hybridized double-strand poly adenine (dsPolyA) DNA-directed self-assembly technique. Hybridized dsPolyA as the directing template had suitable rigidity and upright conformation, which benefited the controllable formation of these anisotropic multi-branched AuNCs with the assistance of surfactant. The effects of essential conditions influencing the synthesis and precise morphology control were investigated in detail. COMSOL simulation was used to evaluate their electromagnetic field distribution according to their morphologies, and the result suggested that sea urchin-shaped AuNCs had abundant 'hot spots' for surface-enhanced Raman scattering (SERS) detection due to their regular nanoprotuberance structure. Finally, sea urchin-shaped AuNCs with excellent SERS and catalytic performance were applied for the quantitative analysis of food colorant and catalytic degradation of potential pollutants. The SERS enhancement factor of sea urchin-shaped AuNCs was up to 5.27 × 106, and the catalytic degradation rate for 4-NP by these AuNCs was up to -0.13min-1.
Collapse
Affiliation(s)
- Jiamin Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lu Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
3
|
Analog of multiple electromagnetically induced transparency using double-layered metasurfaces. Sci Rep 2020; 10:8469. [PMID: 32439938 PMCID: PMC7242346 DOI: 10.1038/s41598-020-65418-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
We reported an analog of electromagnetically induced transparency (A-EIT) featured by double transparent peaks in the spectrum. The A-EIT is realized by double-layered metasurface which consists of spoof localized surface plasmons (S-LSP) and cut-wire (CW)-square rings (SR) hybrid. Electric and magnetic S-LSP are excited as bright and dark modes respectively then couple with resonant modes of CW and SR simultaneously to achieve multiple A-EIT. Two bright modes of the electric S-LSP and SR are excited by external electric field directly that produce a bright-bright mode A-EIT. Moreover, the magnetic S-LSP, which cannot be excited by external field directly, is excited through near field coupling from CW, inducing another bright-dark mode A-EIT. Theoretical analysis with corresponding experiment in microwave band are introduced for better insights into physical essence of the double-peaks A-EIT.
Collapse
|
4
|
Peng T, Li X, Li K, Nie Z, Tan W. DNA-Modulated Plasmon Resonance: Methods and Optical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14741-14760. [PMID: 32154704 DOI: 10.1021/acsami.9b23608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The near-field effects in the vicinity of metallic nanoparticle surfaces, as induced by electromagnetic radiation with specific wavelength, give rise to a variety of novel optical properties and attractive applications because of surface plasmons, which are the coherent oscillations of conduction electrons on a metal surface. The interdisciplinary field of plasmonics has witnessed vigorous growth, promoting research on the modulation of plasmon resonance by constructing advanced plasmonic nanoarchitectures with controllable size, morphology, or interparticle coupling. Among diversified tools, deoxyribonucleic nucleic acid (DNA) possesses prominent superiority as a result of its designability, programmability, addressability, and ease of nanomaterial modification. In this review, we focus on the methods and optical applications of plasmon resonance modulation accomplished by DNA nanotechnology. Recent developments in the construction of DNA-mediated plasmonic nanoarchitecture and key ongoing research directions utilizing unique optical features are highlighted. Obstacles and challenges in this field are pointed out, followed by preliminary suggestions on some areas of opportunity that deserve attention.
Collapse
Affiliation(s)
- Tianhuan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| | - Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Weihong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Molecular Science and Biomedicine Laboratory, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
5
|
Wang X, Sperling M, Reifarth M, Böker A. Shaping Metallic Nanolattices: Design by Microcontact Printing from Wrinkled Stamps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906721. [PMID: 32091182 DOI: 10.1002/smll.201906721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/24/2020] [Indexed: 05/13/2023]
Abstract
A method for the fabrication of well-defined metallic nanostructures is presented here in a simple and straightforward fashion. As an alternative to lithographic techniques, this routine employs microcontact printing utilizing wrinkled stamps, which are prepared from polydimethylsiloxane (PDMS), and includes the formation of hydrophobic stripe patterns on a substrate via the transfer of oligomeric PDMS. Subsequent backfilling of the interspaces between these stripes with a hydroxyl-functional poly(2-vinyl pyridine) then provides the basic pattern for the deposition of citrate-stabilized gold nanoparticles promoted by electrostatic interaction. The resulting metallic nanostripes can be further customized by peeling off particles in a second microcontact printing step, which employs poly(ethylene imine) surface-decorated wrinkled stamps, to form nanolattices. Due to the independent adjustability of the period dimensions of the wrinkled stamps and stamp orientation with respect to the substrate, particle arrays on the (sub)micro-scale with various kinds of geometries are accessible in a straightforward fashion. This work provides an alternative, cost-effective, and scalable surface-patterning technique to fabricate nanolattice structures applicable to multiple types of functional nanoparticles. Being a top-down method, this process could be readily implemented into, e.g., the fabrication of optical and sensing devices on a large scale.
Collapse
Affiliation(s)
- Xuepu Wang
- Fraunhofer Institute for Applied Polymer Research IAP, D-14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476, Potsdam-Golm, Germany
| | - Marcel Sperling
- Fraunhofer Institute for Applied Polymer Research IAP, D-14476, Potsdam-Golm, Germany
| | - Martin Reifarth
- Fraunhofer Institute for Applied Polymer Research IAP, D-14476, Potsdam-Golm, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, D-14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
6
|
Wang Y, Li D, Sun Y, Zhong L, Liang W, Qin W, Guo W, Liang Z, Jiang L. Multiplexed Assembly of Plasmonic Nanostructures Through Charge Inversion on Substrate for Surface Encoding. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6176-6182. [PMID: 31927912 DOI: 10.1021/acsami.9b17530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic nanomaterials are excellent and promising building blocks for information encoding and decoding. However, the positioning of multiplexed nanomaterials into recognizable structures remains a major challenge in nanotechnology. Herein, we developed a novel method for fabricating diversified nanostructures through surface charge inversion from amino-modified substrates to carboxyl-modified ones, as well as the corresponding electrostatic-induced assembly of metal nanoparticles. Under optimal conditions, the selected gold nanospheres (NSs) and peanut-like gold nanorods were successively located into patterns of spaced lines on the same substrate. Due to their unique optical properties, these two types of designed nanoarrays exhibited distinct color contrast and spectrum difference under dark-field scattering microscopy. Furthermore, this general strategy can be extended to wide ranges of nanoparticles with different morphologies and compositions for other multifunctional and high-demanding encoding applications.
Collapse
Affiliation(s)
- Yawen Wang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Dong Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Yinghui Sun
- College of Energy, Soochow Institute for Energy and Materials InnovationS and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China
| | - Liubiao Zhong
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Wenkai Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Wei Qin
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Wei Guo
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Zhiqiang Liang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| | - Lin Jiang
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China
| |
Collapse
|
7
|
Song D, Yang R, Long F, Zhu A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J Environ Sci (China) 2019; 80:14-34. [PMID: 30952332 DOI: 10.1016/j.jes.2018.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 05/19/2023]
Abstract
Environmental pollution, a major problem worldwide, poses considerable threat to human health and ecological environment. Efficient and reliable detection technologies, which focus on the appearance of emerging environmental and trace pollutants, are urgently needed. Surface-enhanced Raman scattering (SERS) has become an attractive analytical tool for sensing trace targets in environmental field because of its inherent molecular fingerprint specificity and high sensitivity. In this review, we focused on the recent developments in the integration of magnetic nanoparticles (MNPs) with SERS for facilitating sensitive detection of environmental pollutants. An overview and classification of different types of MNPs for SERS detection were initially provided, enabling us to categorize the huge amount of literature that was available in the interdisciplinary research field of MNPs based SERS technology. Then, the basic working principles and applications of MNPs in SERS detection were presented. Subsequently, the detection technologies integrating MNPs with SERS that eventually were used for the detection of various environmental pollutions were reviewed. Finally, the advantages of MNP-basedSERS detection technology for environmental pollutants were concluded, and the current challenges and future outlook of this technology in practical applications were highlighted. The application of the MNPs-basedSERS techniques for environmental analysis will be significantly advanced with the great progresses of the nanotechnologies, optics, and materials.
Collapse
Affiliation(s)
- Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
8
|
Smith MD, Connor BA, Karunadasa HI. Tuning the Luminescence of Layered Halide Perovskites. Chem Rev 2019; 119:3104-3139. [DOI: 10.1021/acs.chemrev.8b00477] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew D. Smith
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bridget A. Connor
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|
9
|
Effect of asymmetric morphology on coupling surface plasmon modes and generalized plasmon ruler. Ultramicroscopy 2018; 185:55-64. [DOI: 10.1016/j.ultramic.2017.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 11/21/2022]
|
10
|
Suryadharma RNS, Rockstuhl C. Predicting Observable Quantities of Self-Assembled Metamaterials from the T-Matrix of Its Constituting Meta-Atom. MATERIALS 2018; 11:ma11020213. [PMID: 29385711 PMCID: PMC5848910 DOI: 10.3390/ma11020213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 11/16/2022]
Abstract
Self-assembled metamaterials attract considerable interest as they promise to make isotropic bulk metamaterials available at low costs. The optical response of self-assembled metamaterials is derived predominantly from the response of its individual constituents, i.e., the meta-atoms. Beyond effective properties, primary experimentally observable quantities, such as specific cross-sections, are at the focus of interest as they are frequently considered when exploiting metamaterials in specific applications. This posses the challenge of predicting these observable quantities for a diluted ensemble of randomly oriented meta-atoms. Thus far, this has been achieved by either averaging the optical response of the meta-atom across all possible incident fields or by restricting the consideration to only an electric and magnetic dipolar response. This, however, is either time-consuming or imposes an unnecessary limitation. Here, we solve this problem by deriving and presenting explicit expressions for experimentally observable quantities of metamaterials made from randomly arranged and oriented meta-atoms characterized by their T-matrix.
Collapse
Affiliation(s)
- Radius N S Suryadharma
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, 76131 Karlsruhe, Germany.
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, 76131 Karlsruhe, Germany.
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany.
| |
Collapse
|
11
|
Zhang H, Guan C, Song N, Zhang Y, Liu H, Fang J. Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices. Phys Chem Chem Phys 2018; 20:3571-3580. [DOI: 10.1039/c7cp07112d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile self-assembly strategy for the fabrication of tunable coupled plasmonic superlattices composed of unique high-index faceted gold nanocrystal units.
Collapse
Affiliation(s)
- Haibin Zhang
- Lightweight Optics and Advanced Materials Center
- Institute of Optics and Electronics
- Chinese Academy of Sciences
- Chengdu
- China
| | - Chunlin Guan
- University of Chinese Academy of Sciences
- Beijing
- China
| | - Ning Song
- Lightweight Optics and Advanced Materials Center
- Institute of Optics and Electronics
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yuanyuan Zhang
- Lightweight Optics and Advanced Materials Center
- Institute of Optics and Electronics
- Chinese Academy of Sciences
- Chengdu
- China
| | - Hong Liu
- Lightweight Optics and Advanced Materials Center
- Institute of Optics and Electronics
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jingzhong Fang
- Lightweight Optics and Advanced Materials Center
- Institute of Optics and Electronics
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
12
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
13
|
Gwo S, Chen HY, Lin MH, Sun L, Li X. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem Soc Rev 2016; 45:5672-5716. [PMID: 27406697 DOI: 10.1039/c6cs00450d] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Localized surface plasmon resonances (LSPRs) associated with metallic nanostructures offer unique possibilities for light concentration beyond the diffraction limit, which can lead to strong field confinement and enhancement in deep subwavelength regions. In recent years, many transformative plasmonic applications have emerged, taking advantage of the spectral and spatial tunability of LSPRs enabled by near-field coupling between constituent metallic nanostructures in a variety of plasmonic metastructures (dimers, metamolecules, metasurfaces, metamaterials, etc.). For example, the "hot spot" formed at the interstitial site (gap) between two coupled metallic nanostructures in a plasmonic dimer can be spectrally tuned via the gap size. Capitalizing on these capabilities, there have been significant advances in plasmon enhanced or enabled applications in light-based science and technology, including ultrahigh-sensitivity spectroscopies, light energy harvesting, photocatalysis, biomedical imaging and theranostics, optical sensing, nonlinear optics, ultrahigh-density data storage, as well as plasmonic metamaterials and metasurfaces exhibiting unusual linear and nonlinear optical properties. In this review, we present two complementary approaches for fabricating plasmonic metastructures. We discuss how meta-atoms can be assembled into unique plasmonic metastructures using a variety of nanomanipulation methods based on single- or multiple-probes in an atomic force microscope (AFM) or a scanning electron microscope (SEM), optical tweezers, and focused electron-beam nanomanipulation. We also provide a few examples of nanoparticle metamolecules with designed properties realized in such well-controlled plasmonic metastructures. For the spatial controllability on the mesoscopic and macroscopic scales, we show that controlled self-assembly is the method of choice to realize scalable two-dimensional, and three-dimensional plasmonic metastructures. In the section of applications, we discuss some key examples of plasmonic applications based on individual hot spots or ensembles of hot spots with high uniformity and improved controllability.
Collapse
Affiliation(s)
- Shangjr Gwo
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | |
Collapse
|
14
|
Hoffmann B, Bashouti MY, Feichtner T, Mačković M, Dieker C, Salaheldin AM, Richter P, Gordan OD, Zahn DRT, Spiecker E, Christiansen S. New insights into colloidal gold flakes: structural investigation, micro-ellipsometry and thinning procedure towards ultrathin monocrystalline layers. NANOSCALE 2016; 8:4529-4536. [PMID: 26661036 DOI: 10.1039/c5nr04439a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High-quality fabrication of plasmonic devices often relies on wet-chemically grown ultraflat, presumably single-crystalline gold flakes due to their superior materials properties. However, important details about their intrinsic structure and their optical properties are not well understood yet. In this study, we present a synthesis routine for large flakes with diameters of up to 70 μm and an in-depth investigation of their structural and optical properties. The flakes are precisely analyzed by transmission electron microscopy, electron backscatter diffraction and micro-ellipsometry. We found new evidence for the existence of twins extending parallel to the Au flake {111} surfaces which have been found to not interfere with the presented nanopatterning. Micro-Ellipsometry was carried out to determine the complex dielectric function and to compare it to previous measurements of bulk single crystalline gold. Finally, we used focused ion beam milling to prepare smooth crystalline layers and high-quality nanostructures with desired thickness down to 10 nm to demonstrate the outstanding properties of the flakes. Our findings support the plasmonics and nano optics community with a better understanding of this material which is ideally suited for superior plasmonic nanostructures.
Collapse
Affiliation(s)
- B Hoffmann
- Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany.
| | - M Y Bashouti
- Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany.
| | - T Feichtner
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, D-14109 Berlin, Germany and Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany.
| | - M Mačković
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Mikro- und Nanostrukturforschung (WW9) & Center for Nanoanalysis and Electron Microscopy, Department Werkstoffwissenschaften, D-91058 Erlangen, Germany
| | - C Dieker
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Mikro- und Nanostrukturforschung (WW9) & Center for Nanoanalysis and Electron Microscopy, Department Werkstoffwissenschaften, D-91058 Erlangen, Germany
| | - A M Salaheldin
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute of Particle Technology, D-91058 Erlangen, Germany
| | - P Richter
- Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - O D Gordan
- Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - D R T Zahn
- Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - E Spiecker
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Mikro- und Nanostrukturforschung (WW9) & Center for Nanoanalysis and Electron Microscopy, Department Werkstoffwissenschaften, D-91058 Erlangen, Germany
| | - S Christiansen
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, D-14109 Berlin, Germany and Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany.
| |
Collapse
|
15
|
Noriki T, Abe S, Kajikawa K, Shimojo M. Patterning technique for gold nanoparticles on substrates using a focused electron beam. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:1010-1015. [PMID: 25977872 PMCID: PMC4419589 DOI: 10.3762/bjnano.6.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/24/2015] [Indexed: 06/04/2023]
Abstract
We propose a novel patterning technique for gold nanoparticles on substrates that combines a chemical reaction with electron beam irradiation. First, gold nanoparticles are placed in a two-dimensional arrangement on the substrate. Then, particular nanoparticles are fixed on the substrate by irradiation with a focused electron beam to produce a desired pattern. Finally, the unfixed nanoparticles are removed. Using this technique, an array of gold nanoparticles, for example, in the form of a line or patterned over an area, are prepared on the substrate. This technique could contribute to the fabrication of plasmonic devices and other applications that require the controlled placement of gold nanoparticles on substrates.
Collapse
Affiliation(s)
- Takahiro Noriki
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan
| | - Shogo Abe
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan
| | - Kotaro Kajikawa
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502, Japan
| | - Masayuki Shimojo
- Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan
| |
Collapse
|
16
|
Faghihi F, Hazendonk P, Montina T. Investigation into the mechanism and microstructure of reaction intermediates in the two-phase synthesis of alkanethiol-capped silver nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3473-3481. [PMID: 25738982 DOI: 10.1021/la5047518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To gain better control over the characteristics of the alkanethiol-capped silver nanoparticles (SNP) prepared by the two-phase method, the intermediate stage of this reaction and the structure of the precursor compound were investigated. Samples taken from the intermediate stage of the reaction were analyzed by NMR and vibrational spectroscopy both in solution and after solvent removal. The (1)H NMR chemical shifts of the complexes formed during the phase-transfer step were used to detect any structural changes that occur upon introduction of nonanethiol. Moreover, the presence of silver thiolate was monitored by comparing the FTIR and Raman spectra of silver nonanethiolate with the dried samples. Further insights into the microstructure of the intermediate compounds were sought by characterizing samples differing in molar ratios of tetraoctylammonium bromide (TOAB) to silver nitrate (AgNO3). (13)C solid-state NMR chemical shifts, (13)C relaxation times, and the DSC transitions of these samples revealed a dependence of their phase structure on the initial concentration of the reagents. At least two phases with distinct mobility and conformational ordering of their octyl chains were identified in the samples prepared with excess TOAB, which was associated with the presence of multiple anionic species. The observations regarding the composition of the phase-transfer product were further related to the quality of the resulting nanoparticles. It was demonstrated that a large excess of TOAB, which is commonly used in two-phase methods, can be avoided without compromising the size and dispersity of the silver nanoparticles produced. This modification to the synthetic procedure simplifies the purification of the product, mitigates the propensity of the nanoparticles for aggregation, and facilitates their redispersion.
Collapse
Affiliation(s)
- Farhad Faghihi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge AB T1K 3M4, Canada
| | - Paul Hazendonk
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge AB T1K 3M4, Canada
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge AB T1K 3M4, Canada
| |
Collapse
|
17
|
Li J, Zhang K, Liang J, Wu W, Guo J, Zhou H. Constructing one dimensional assembly of poly methylacrylic acid capping gold nanoparticles for selective and colorimetric detection of aminoglycoside antibiotics. RSC Adv 2015. [DOI: 10.1039/c5ra10724e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The disperse PMMA-@-AuNPs particles turn to chain-like arrays driven by electrostatic dipole interaction between AMGs and carboxylic group. The process shows a distinct color change companied the rise of zeta-potentials.
Collapse
Affiliation(s)
- Junbo Li
- College of Chemical Engineering & Pharmaceutics
- Henan University of Science & Technology
- Luo Yang
- China
| | - Ke Zhang
- College of Chemical Engineering & Pharmaceutics
- Henan University of Science & Technology
- Luo Yang
- China
| | - Ju Liang
- College of Chemical Engineering & Pharmaceutics
- Henan University of Science & Technology
- Luo Yang
- China
| | - Wenlan Wu
- College of Chemical Engineering & Pharmaceutics
- Henan University of Science & Technology
- Luo Yang
- China
| | - Jinwu Guo
- College of Chemical Engineering & Pharmaceutics
- Henan University of Science & Technology
- Luo Yang
- China
| | - Huiyun Zhou
- College of Chemical Engineering & Pharmaceutics
- Henan University of Science & Technology
- Luo Yang
- China
| |
Collapse
|
18
|
Tai JT, Lai CS, Ho HC, Yeh YS, Wang HF, Ho RM, Tsai DH. Protein-silver nanoparticle interactions to colloidal stability in acidic environments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12755-12764. [PMID: 25294101 DOI: 10.1021/la5033465] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report a kinetic study of Ag nanoparticles (AgNPs) under acidic environments (i.e., pH 2.3 to pH ≈7) and systematically investigate the impact of protein interactions [i.e., bovine serum albumin (BSA) as representative] to the colloidal stability of AgNPs. Electrospray-differential mobility analysis (ES-DMA) was used to characterize the particle size distributions and the number concentrations of AgNPs. Transmission electron microscopy was employed orthogonally to provide visualization of AgNPs. For unconjugated AgNPs, the extent of aggregation, or the average particle size, was shown to be increased significantly with an increase of acidity, where a partial coalescence was found between the primary particles of unconjugated AgNP clusters. Aggregation rate constant, kD, was also shown to be proportional to acidity, following a correlation of log(kD) = -1.627(pH)-9.3715. Using ES-DMA, we observe BSA had a strong binding affinity (equilibrium binding constant, ≈ 1.1 × 10(6) L/mol) to the surface of AgNPs, with an estimated maximum molecular surface density of ≈0.012 nm(-2). BSA-functionalized AgNPs exhibited highly-improved colloidal stability compared to the unconjugated AgNPs under acidic environments, where both the acid-induced interfacial dissolution and the particle aggregation became negligible. Results confirm a complex mechanism of colloidal stability of AgNPs: the aggregation process was shown to be dominant, and the formation of BSA corona on AgNPs suppressed both particle aggregation and interfacial dissolution of AgNP samples under acidic environments.
Collapse
Affiliation(s)
- Jui-Ting Tai
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu, Taiwan 30013, Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Tsai DH, Cho TJ, DelRio FW, Gorham JM, Zheng J, Tan J, Zachariah MR, Hackley VA. Controlled formation and characterization of dithiothreitol-conjugated gold nanoparticle clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3397-3405. [PMID: 24592809 DOI: 10.1021/la500044y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report a systematic study of the controlled formation of discrete-sized gold nanoparticle clusters (GNCs) by interaction with the reducing agent dithiothreitol (DTT). Asymmetric-flow field flow fractionation and electrospray differential mobility analysis were employed complementarily to determine the particle size distributions of DTT-conjugated GNCs (DTT-GNCs). Transmission electron microscopy was used to provide visualization of DTT-GNCs at different states of aggregation. Surface packing density of DTT and the corresponding molecular conformation on the Au surface were characterized by inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. Results show that DTT increases the aggregation rate of gold nanoparticles (AuNPs) up to ≈100 times. A mixed conformation (i.e., combining vertically aligned, horizontally aligned, and cross-linking modes) exists for DTT on the Au surface for all conditions examined. The primary size of AuNPs, concentration of DTT, and the starting concentration of AuNPs influence the degree of aggregation for DTT-GNCs, indicating that the collision frequency, energy barrier, and surface density of DTT are the key factors that control the aggregation rate. DTT-GNCs exhibit improved structural stability compared to the citrate-stabilized GNCs (i.e., unconjugated) following reaction with thiolated polyethylene glycol (SH-PEG), indicating that cross-linking and surface protection by DTT suppresses disaggregation normally induced by the steric repulsion of SH-PEG. This work describes a prototype methodology to form ligand-conjugated GNCs with high-quality and well-controlled material properties.
Collapse
Affiliation(s)
- De-Hao Tsai
- Materials Measurement Science Division and ‡Chemical Sciences Division, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou DL, Chen DJ, Zhang PP, Li FF, Chen JR, Wang AJ, Feng JJ. Facile synthesis of MnO2–Ag hollow microspheres with sheet-like subunits and their catalytic properties. CrystEngComm 2014. [DOI: 10.1039/c3ce41992d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Young KL, Ross MB, Blaber MG, Rycenga M, Jones MR, Zhang C, Senesi AJ, Lee B, Schatz GC, Mirkin CA. Using DNA to design plasmonic metamaterials with tunable optical properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:653-659. [PMID: 24166990 DOI: 10.1002/adma.201302938] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/28/2013] [Indexed: 05/27/2023]
Affiliation(s)
- Kaylie L Young
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Duan J, He D, Wang W, Liu Y, Wu H, Wang Y, Fu M, Li S. The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing. Talanta 2013; 115:992-8. [DOI: 10.1016/j.talanta.2013.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/15/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
|
23
|
Sheikholeslami SN, Alaeian H, Koh AL, Dionne JA. A metafluid exhibiting strong optical magnetism. NANO LETTERS 2013; 13:4137-4141. [PMID: 23919764 DOI: 10.1021/nl401642z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Advances in the field of metamaterials have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhancing magnetic or chiral transitions in ions and molecules. While all metamaterials to date have existed in the solid-state, considerable interest has emerged in designing a colloidal metamaterial or "metafluid". Such metafluids would combine the advantages of solution-based processing with facile integration into conventional optical components. Here we demonstrate the colloidal synthesis of an isotropic metafluid that exhibits a strong magnetic response at visible frequencies. Protein-antibody interactions are used to direct the solution-phase self-assembly of discrete metamolecules comprised of silver nanoparticles tightly packed around a single dielectric core. The electric and magnetic response of individual metamolecules and the bulk metamaterial solution are directly probed with optical scattering and spectroscopy. Effective medium calculations indicate that the bulk metamaterial exhibits a negative effective permeability and a negative refractive index at modest fill factors. This metafluid can be synthesized in large-quantity and high-quality and may accelerate development of advanced nanophotonic and metamaterial devices.
Collapse
Affiliation(s)
- Sassan N Sheikholeslami
- Department of Materials Science and Engineering, ‡Department of Electrical Engineering, and §Stanford Nanocharacterization Laboratory, Stanford University, Stanford, California 94305, United States
| | | | | | | |
Collapse
|
24
|
Ye X, Chen J, Diroll BT, Murray CB. Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy. NANO LETTERS 2013; 13:1291-7. [PMID: 23418862 DOI: 10.1021/nl400052w] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We study the plasmonic properties of self-assembled binary nanocrystal superlattices (BNSLs) using correlated optical microspectrophotometry and electron microscopy performed on individual BNSL domains. The strength of near-field couplings between adjacent plasmonic nanocrystals (NCs) can be systematically engineered by varying the NC size, composition, and the lattice symmetry of BNSLs, leading to broadband spectral tunability of the collective plasmonic response of BNSLs across the entire visible spectrum. Self-assembled multicomponent NC superlattices represent a versatile platform for the rational design of macroscopic three-dimensional plasmonic metamaterials with emergent optical characteristics.
Collapse
Affiliation(s)
- Xingchen Ye
- Department of Chemistry, University of Pennsylvania, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
25
|
Fafarman AT, Hong SH, Caglayan H, Ye X, Diroll BT, Paik T, Engheta N, Murray CB, Kagan CR. Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystals. NANO LETTERS 2013; 13:350-357. [PMID: 23215159 DOI: 10.1021/nl303161d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate optical metamaterial design using colloidal gold nanocrystal building blocks. In the solid state, chemically exchanging the nanocrystals' surface-capping molecules provides a tailorable dielectric-to-metal transition exhibiting a 10(10) range in DC conductivity and dielectric permittivity ranging from everywhere positive to everywhere negative throughout the visible-to-near-IR. Direct, wide-area nanoimprinting of subwavelength superstructures at room temperature, on plastic and glass substrates, affords plasmonic resonances ranging from 660 to 1070 nm, in agreement with numerical simulations.
Collapse
Affiliation(s)
- Aaron T Fafarman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|