1
|
Kaja S, Mathews AV, Nag A. Dual-functional nano-photosensitizers: Eosin-Y decorated gold nanorods for plasmon-enhanced fluorescence and singlet oxygen generation. RSC Adv 2024; 14:12417-12427. [PMID: 38633485 PMCID: PMC11022186 DOI: 10.1039/d4ra01551g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Photosensitizer (PS) with enhanced fluorescence is attractive for image-guided photodynamic therapy (PDT) due to its dual functional role in Singlet Oxygen Generation (SOG) and producing high fluorescence signals. Here, Eosin-Y (Ey) decorated polymer coated gold nanorods (GNRs) of different aspect ratios are synthesized and introduced as novel plasmon-enhanced nano-photosensitizers for this purpose. We show, upon excitation at 519 nm, simultaneous enhancement in fluorescence and SOG was achieved for the hybrid nanostructure. The best enhancement factors of 110 and 18 for metal-enhanced fluorescence and metal-enhanced SOG, respectively, are obtained with GNRs of length 133 nm and width 45 nm, where Ey is positioned at 12.6 nm from the metal core using layer-by-layer assembly of oppositely charged polymers. The observed plasmonic effect is critically analysed by comparing the near field damping rate along with decay length, far field scattering and nonradiative energy transfer of the nanohybrids.
Collapse
Affiliation(s)
- Sravani Kaja
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus Hyderabad 500078 India
| | - Ashin Varghese Mathews
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus Hyderabad 500078 India
| | - Amit Nag
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus Hyderabad 500078 India
| |
Collapse
|
2
|
Hahm E, Jo A, Lee SH, Kang H, Pham XH, Jun BH. Silica Shell Thickness-Dependent Fluorescence Properties of SiO 2@Ag@SiO 2@QDs Nanocomposites. Int J Mol Sci 2022; 23:ijms231710041. [PMID: 36077434 PMCID: PMC9456444 DOI: 10.3390/ijms231710041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Silica shell coatings, which constitute important technology for nanoparticle (NP) developments, are utilized in many applications. The silica shell's thickness greatly affects distance-dependent optical properties, such as metal-enhanced fluorescence (MEF) and fluorescence quenching in plasmonic nanocomposites. However, the precise control of silica-shell thicknesses has been mainly conducted on single metal NPs, and rarely on complex nanocomposites. In this study, silica shell-coated Ag nanoparticle-assembled silica nanoparticles (SiO2@Ag@SiO2), with finely controlled silica shell thicknesses (4 nm to 38 nm), were prepared, and quantum dots (QDs) were introduced onto SiO2@Ag@SiO2. The dominant effect between plasmonic quenching and MEF was defined depending on the thickness of the silica shell between Ag and QDs. When the distance between Ag NPs to QDs was less than ~10 nm, SiO2@Ag@SiO2@QDs showed weaker fluorescence intensities than SiO2@QD (without metal) due to the quenching effect. On the other hand, when the distance between Ag NPs to QDs was from 10 nm to 14 nm, the fluorescence intensity of SiO2@Ag@SiO2@QD was stronger than SiO2@QDs due to MEF. The results provide background knowledge for controlling the thickness of silica shells in metal-containing nanocomposites and facilitate the development of potential applications utilizing the optimal plasmonic phenomenon.
Collapse
Affiliation(s)
- Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ahla Jo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Deajeon 34158, Korea
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0521
| |
Collapse
|
3
|
Identifying high performance photosensitizer with simultaneous enhancement in fluorescence and singlet oxygen generation, from ‘(Ag/Au)-aggregation-induced emission-active fluorogen’ theranostic nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
5
|
Du C, Gao D, Gao M, Yuan H, Liu X, Wang B, Xing C. Property Regulation of Conjugated Oligoelectrolytes with Polyisocyanide to Achieve Efficient Photodynamic Antibacterial Biomimetic Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27955-27962. [PMID: 34124876 DOI: 10.1021/acsami.1c06659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabricating antibacterial hydrogels with antimicrobial drugs and synthetic biocompatible biomimetic hydrogels is a promising strategy for practical medical applications. Here, we report a bicomponent hydrogel composed of a biomimetic polyisocyanopetide (PIC) hydrogel and a photodynamic antibacterial membrane-intercalating conjugated oligoelectrolyte (COE). The aggregation behavior and aggregate size of the COEs in water can be regulated using the PIC hydrogel, which could induce COEs with higher reactive oxygen species (ROS) production efficiency and increased association of COEs toward bacteria, therefore enhancing the antibacterial efficiency. This strategy provides a facile method for developing biomimetic hydrogels with high antibacterial capability.
Collapse
Affiliation(s)
- Changsheng Du
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Dong Gao
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Mengshi Gao
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Hongbo Yuan
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiaoning Liu
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Bing Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Chengfen Xing
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
6
|
Yaraki MT, Tan YN. Metal Nanoparticles-Enhanced Biosensors: Synthesis, Design and Applications in Fluorescence Enhancement and Surface-enhanced Raman Scattering. Chem Asian J 2020; 15:3180-3208. [PMID: 32808471 PMCID: PMC7693192 DOI: 10.1002/asia.202000847] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Indexed: 12/17/2022]
Abstract
Metal nanoparticles (NP) that exhibit localized surface plasmon resonance play an important role in metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS). Among the optical biosensors, MEF and SERS stand out to be the most sensitive techniques to detect a wide range of analytes from ions, biomolecules to macromolecules and microorganisms. Particularly, anisotropic metal NPs with strongly enhanced electric field at their sharp corners/edges under a wide range of excitation wavelengths are highly suitable for developing the ultrasensitive plasmon-enhanced biosensors. In this review, we first highlight the reliable methods for the synthesis of anisotropic gold NPs and silver NPs in high yield, as well as their alloys and composites with good control of size and shape. It is followed by the discussion of different sensing mechanisms and recent advances in the MEF and SERS biosensor designs. This includes the review of surface functionalization, bioconjugation and (directed/self) assembly methods as well as the selection/screening of specific biorecognition elements such as aptamers or antibodies for the highly selective bio-detection. The right combinations of metal nanoparticles, biorecognition element and assay design will lead to the successful development of MEF and SERS biosensors targeting different analytes both in-vitro and in-vivo. Finally, the prospects and challenges of metal-enhanced biosensors for future nanomedicine in achieving ultrasensitive and fast medical diagnostics, high-throughput drug discovery as well as effective and reliable theranostic treatment are discussed.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Yen Nee Tan
- Faculty of Science, Agriculture & EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUnited Kingdom
- Newcastle Research & Innovation Institute (NewRIIS)80 Jurong East Street 21, #05-04 Devan Nair Institute for Employment & EmployabilitySingapore609607Singapore
| |
Collapse
|
7
|
Tavakkoli Yaraki M, Hu F, Daqiqeh Rezaei S, Liu B, Tan YN. Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. NANOSCALE ADVANCES 2020; 2:2859-2869. [PMID: 36132415 PMCID: PMC9419615 DOI: 10.1039/d0na00182a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/09/2020] [Indexed: 05/10/2023]
Abstract
Photosensitizers with aggregation-induced emission (AIE-PS) are attractive for image-guided photodynamic therapy due to their dual functional role in generating singlet oxygen and producing high fluorescent signal in the aggregated state. However, their brightness and treatment efficiency maybe limited in current practice. Herein we report the first systematic investigation on the metal-enhanced fluorescence (MEF) and singlet oxygen generation (ME-SOG) ability of our newly synthesized AIE-photosensitizers. The Ag@AIE-PS of varied sizes were prepared via layer-by-layer assembly with controlled distance between silver nanoparticles (AgNPs) and AIE-PS. A maximum of 6-fold enhancement in fluorescence and 2-fold increment in SOG were observed for the 85nmAg@AIE-PS. Comprehensive characterization and simulation were conducted to unravel the plasmon-enhancement mechanisms of Ag@AIE-PS. Results show that MEF of AIE-PS is determined by the enhanced electric field around AgNPs, while ME-SOG is dictated by the scattering efficiency of the metal core, where bigger AgNPs would result in larger enhancement factor. Furthermore, the optimum distance between AgNPs and AIE-PS to achieve maximum SOG enhancement is shorter than that required for the highest MEF. The correlation of MEF and ME-SOG found in this study is useful for designing new a generation of AIE-photosensitizers with high brightness and treatment efficiency towards practical theranostic application in the future.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 138634 Singapore
- Department Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Fang Hu
- Department Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Soroosh Daqiqeh Rezaei
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 138634 Singapore
- Department of Mechanical Engineering, National University of Singapore 9 Engineering Drive 1 117575 Singapore
| | - Bin Liu
- Department Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 138634 Singapore
- Faculty of Science, Agriculture & Engineering, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
8
|
Tavakkoli Yaraki M, Daqiqeh Rezaei S, Tan YN. Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and SERS applications. Phys Chem Chem Phys 2020; 22:5673-5687. [PMID: 32103209 DOI: 10.1039/c9cp06029d] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmonic nanostructures such as gold and silver could alter the intrinsic properties of fluorophores, photosensitizers or Raman reporters in their close vicinity. In this study, we have conducted systematic simulations to provide insight for the design of silver nanostructures with appropriate geometrical features for metal-enhanced fluorescence (MEF), metal-enhanced singlet oxygen generation (ME-SOG) and surface-enhanced Raman scattering (SERS) applications. The size-dependent optical properties and electric field enhancement of single and dimeric nanocubes were simulated. The extinction spectra of silver nanocubes were analysed by the multipole expansion method. Results show that a suitable size of Ag nanocubes for MEF and ME-SOG can be selected based on their maximum light scattering yield, the excitation and emission wavelengths of a particular fluorophore/photosensitizer and their maximum spectral overlap. Simulations of the 'hot-spot' or gap distance between two silver nanocubes with different configurations (i.e., face-to-face, edge-to-edge and corner-to-corner) were also performed. A direct correlation was found between the size and enhanced electric field around the Ag nanocubes simulated under 15 common Raman laser wavelengths from the UV to near-infrared region. The maximum SERS enhancement factor can be achieved by selecting the silver nanocubes with the right orientation, suitable edge length and gap distance that give the highest electric field at a specific Raman laser wavelength. It was also found that the higher order of silver nanostructures, e.g., trimer and tetramer, can lead to better enhancement effects. These simulation results can serve as generic guidelines to rationally design metal-enhancement systems including MEF, ME-SOG and SERS for different application needs without cumbersome optimization and tedious trial-and-error experimentation.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634, Singapore
| | | | | |
Collapse
|
9
|
Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens Bioelectron 2018; 111:102-116. [DOI: 10.1016/j.bios.2018.04.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
|
10
|
Liu J, Liu B. Red and near infrared fluorescent conjugated polyelectrolytes for biomedical applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Liu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4; National University of Singapore; 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4; National University of Singapore; 117585 Singapore
| |
Collapse
|
11
|
Gwo S, Chen HY, Lin MH, Sun L, Li X. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. Chem Soc Rev 2016; 45:5672-5716. [PMID: 27406697 DOI: 10.1039/c6cs00450d] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Localized surface plasmon resonances (LSPRs) associated with metallic nanostructures offer unique possibilities for light concentration beyond the diffraction limit, which can lead to strong field confinement and enhancement in deep subwavelength regions. In recent years, many transformative plasmonic applications have emerged, taking advantage of the spectral and spatial tunability of LSPRs enabled by near-field coupling between constituent metallic nanostructures in a variety of plasmonic metastructures (dimers, metamolecules, metasurfaces, metamaterials, etc.). For example, the "hot spot" formed at the interstitial site (gap) between two coupled metallic nanostructures in a plasmonic dimer can be spectrally tuned via the gap size. Capitalizing on these capabilities, there have been significant advances in plasmon enhanced or enabled applications in light-based science and technology, including ultrahigh-sensitivity spectroscopies, light energy harvesting, photocatalysis, biomedical imaging and theranostics, optical sensing, nonlinear optics, ultrahigh-density data storage, as well as plasmonic metamaterials and metasurfaces exhibiting unusual linear and nonlinear optical properties. In this review, we present two complementary approaches for fabricating plasmonic metastructures. We discuss how meta-atoms can be assembled into unique plasmonic metastructures using a variety of nanomanipulation methods based on single- or multiple-probes in an atomic force microscope (AFM) or a scanning electron microscope (SEM), optical tweezers, and focused electron-beam nanomanipulation. We also provide a few examples of nanoparticle metamolecules with designed properties realized in such well-controlled plasmonic metastructures. For the spatial controllability on the mesoscopic and macroscopic scales, we show that controlled self-assembly is the method of choice to realize scalable two-dimensional, and three-dimensional plasmonic metastructures. In the section of applications, we discuss some key examples of plasmonic applications based on individual hot spots or ensembles of hot spots with high uniformity and improved controllability.
Collapse
Affiliation(s)
- Shangjr Gwo
- Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | |
Collapse
|
12
|
Woo SJ, Park S, Jeong JE, Hong Y, Ku M, Kim BY, Jang IH, Heo SC, Wang T, Kim KH, Yang J, Kim JH, Woo HY. Synthesis and Characterization of Water-Soluble Conjugated Oligoelectrolytes for Near-Infrared Fluorescence Biological Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15937-15947. [PMID: 27267787 DOI: 10.1021/acsami.6b04276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Near-infrared (NIR) fluorophores attract increasing attention as a molecular marker (or probe) for in vivo and in vitro biological fluorescence imaging. Three types of new NIR fluorescent conjugated oligoelectrolytes (COEs: Q-FlTBTTFl, Q-FlBBTFl, and Q-FlTBBTTFl) are synthesized with quaternized ammonium ionic groups in their side-chains for water solubility. The emission wavelength is modulated in the range 600-1300 nm, by adjusting the intramolecular charge transfer in the molecular backbone based on the electron-rich fluorene (and/or thiophene) and electron-deficient benzo[2,1,3]thiadiazole (or benzo[1,2-c:4,5-c']bis[1,2,5]thiadiazole) moieties. The COEs show a remarkably larger Stokes shift (147-276 nm) compared to commercial rhodamine and cyanine dyes in water, avoiding self-quenching and interference from the excitation backscattered light. The photoluminescence (PL) quantum efficiency is improved substantially by up to 27.8% in water by fabricating a vesicular complex, COE/v, with a block ionomer, poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propanesulfonate)]. In vitro cellular uptake images with the COEs are obtained with good biocompatibility by confocal single-photon and two-photon microscopy. The ex vivo and in vivo images of a mouse xenograft model treated with the Q-FlBBTFl/v exhibit a substantially stronger fluorescence signal at the tumor site than at the other organs, highlighting the potential of the COE/v as an NIR fluorescent imaging agent for the diagnosis of cancer.
Collapse
Affiliation(s)
- Shin-Jae Woo
- Department of Cogno-Mechatronics Engineering, Pusan National University , Miryang 50463, Republic of Korea
| | - Sungmin Park
- Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| | - Ji-Eun Jeong
- Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| | - Yoochan Hong
- Department of Radiology, College of Medicine, Yonsei University, YUHS-KRIBB Medical Convergence Research Institute , Seoul 03722, Republic of Korea
| | - Minhee Ku
- Department of Radiology, College of Medicine, Yonsei University, YUHS-KRIBB Medical Convergence Research Institute , Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University , Seoul 03722, Republic of Korea
| | - Bo Yun Kim
- Department of Physiology, School of Medicine, Pusan National University , Yangsan 50612, Republic of Korea
| | - Il Ho Jang
- Department of Physiology, School of Medicine, Pusan National University , Yangsan 50612, Republic of Korea
| | - Soon Chul Heo
- Department of Physiology, School of Medicine, Pusan National University , Yangsan 50612, Republic of Korea
| | - Taejun Wang
- Division of Integrative Biosciences and Biotechnology, Department of Mechanical Engineering, Pohang University of Science and Technology , Pohang 37673, Republic of Korea
| | - Ki Hean Kim
- Division of Integrative Biosciences and Biotechnology, Department of Mechanical Engineering, Pohang University of Science and Technology , Pohang 37673, Republic of Korea
| | - Jaemoon Yang
- Department of Radiology, College of Medicine, Yonsei University, YUHS-KRIBB Medical Convergence Research Institute , Seoul 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University , Seoul 03722, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University , Yangsan 50612, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University , Seoul 02841, Republic of Korea
| |
Collapse
|
13
|
Sun B, Wang C, Han S, Hu Y, Zhang L. Metal-enhanced fluorescence-based multilayer core–shell Ag-nanocube@SiO2@PMOs nanocomposite sensor for Cu2+ detection. RSC Adv 2016. [DOI: 10.1039/c6ra11598e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The metal-enhanced fluorescence-based core–shell Ag-nanocube@SiO2@PMOs nanocomposite functionalized with rhodamine derived probe for Cu2+ detection was prepared.
Collapse
Affiliation(s)
- Baowen Sun
- Key Lab of Colloid and Interface Chemistry Ministry of Education
- Shandong University
- Jinan 250100
- P. R. China
| | - Chunsheng Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Shuhua Han
- Key Lab of Colloid and Interface Chemistry Ministry of Education
- Shandong University
- Jinan 250100
- P. R. China
| | - Yongfeng Hu
- Canadian Light Source 44 Innovation Boulevard Saskatoon
- SK
- Canada
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201800
- China
| |
Collapse
|
14
|
Camposeo A, Persano L, Manco R, Wang Y, Del Carro P, Zhang C, Li ZY, Pisignano D, Xia Y. Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages. ACS NANO 2015; 9:10047-54. [PMID: 26397166 PMCID: PMC4625169 DOI: 10.1021/acsnano.5b03624] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/15/2015] [Indexed: 05/22/2023]
Abstract
In metal-enhanced fluorescence (MEF), the localized surface plasmon resonances of metallic nanostructures amplify the absorption of excitation light and assist in radiating the consequent fluorescence of nearby molecules to the far-field. This effect is at the base of various technologies that have strong impact on fields such as optics, medical diagnostics, and biotechnology. Among possible emission bands, those in the near-infrared (NIR) are particularly intriguing and widely used in proteomics and genomics due to its noninvasive character for biomolecules, living cells, and tissues, which greatly motivates the development of effective and, eventually, multifunctional NIR-MEF platforms. Here, we demonstrate NIR-MEF substrates based on Au nanocages micropatterned with a tight spatial control. The dependence of the fluorescence enhancement on the distance between the nanocage and the radiating dipoles is investigated experimentally and modeled by taking into account the local electric field enhancement and the modified radiation and absorption rates of the emitting molecules. At a distance around 80 nm, a maximum enhancement up to 2-7 times with respect to the emission from pristine dyes (in the region 660-740 nm) is estimated for films and electrospun nanofibers. Due to their chemical stability, finely tunable plasmon resonances, and large light absorption cross sections, Au nanocages are ideal NIR-MEF agents. When these properties are integrated with the hollow interior and controllable surface porosity, it is feasible to develop a nanoscale system for targeted drug delivery with the diagnostic information encoded in the fluorophore.
Collapse
Affiliation(s)
- Andrea Camposeo
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, I-73100 Lecce, Italy
| | - Luana Persano
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, I-73100 Lecce, Italy
| | - Rita Manco
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, I-73100 Lecce, Italy
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, via Arnesano, I-73100 Lecce, Italy
| | - Yi Wang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Pompilio Del Carro
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, I-73100 Lecce, Italy
| | - Chao Zhang
- Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhi-Yuan Li
- Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, P. R. China
| | - Dario Pisignano
- Istituto Nanoscienze-CNR, Euromediterranean Center for Nanomaterial Modelling and Technology (ECMT), via Arnesano, I-73100 Lecce, Italy
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, via Arnesano, I-73100 Lecce, Italy
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Li H, Hu H, Zhao Y, Chen X, Li W, Qiang W, Xu D. Multifunctional aptamer-silver conjugates as theragnostic agents for specific cancer cell therapy and fluorescence-enhanced cell imaging. Anal Chem 2015; 87:3736-45. [PMID: 25686206 DOI: 10.1021/ac504230j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We fabricated a multifunctional theragnostic agent Ag-Sgc8-FAM for apoptosis-based cancer therapy and fluorescence-enhanced cell imaging. For cancer therapy, aptamers Sgc8 and TDO5 acted as recognizing molecules to bind CCRF-CEM and Ramos cells specifically. It was found that aptamer-silver conjugates (Ag-Sgc8, Ag-TDO5) could be internalized into cells by receptor-mediated endocytosis, inducing specific apoptosis of CCRF-CEM and Ramos cells. The apoptosis of cells depended on the concentration of aptamer-silver conjugates, as well as the incubation time between cells and aptamer-silver conjugates. The apoptotic effects on CCRF-CEM and Ramos cells were different. Annexin V/PI staining, AO/PI staining, MTT assays and ROS (reactive oxygen species) detection demonstrated the specific apoptosis of CCRF-CEM and Ramos cells. For fluorescence-enhanced cell imaging, Ag-Sgc8-FAM was prepared. Compared to Sgc8-FAM molecules, Ag-Sgc8-FAM was an excellent imaging agent as numerous Sgc8-FAM molecules were enriched on the surface of AgNPs for multiple binding with CCRF-CEM cells and signal amplification. Moreover, AgNPs could increase the fluorescence intensity of FAM by metal-enhanced fluorescence (MEF) effect. Therefore, aptamer-silver conjugates can be potential theragnostic agents for inducing specific apoptosis of cells and achieving cells imaging in real time.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Hongting Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Yaju Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Xiang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Weibing Qiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| |
Collapse
|
16
|
Zhan R, Liu B. Benzothiadiazole-Containing Conjugated Polyelectrolytes for Biological Sensing and Imaging. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ruoyu Zhan
- School of Materials Science and Engineering; Tongji University; 4800 Caoan Road Shanghai 201804 China
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117585 Singapore
- Institute of Materials Research and Engineering, A*STAR; 3 Research Link 117602 Singapore
| |
Collapse
|
17
|
Ang YS, Yung LYL. Toehold-mediated internal control to probe the near-field interaction between the metallic nanoparticle and the fluorophore. NANOSCALE 2014; 6:12515-12523. [PMID: 25238596 DOI: 10.1039/c4nr03643c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metallic nanoparticles (MNPs) are known to alter the emission of vicinal fluorophores through the near-field interaction, leading to either fluorescence quenching or enhancement. Much ambiguity remains in the experimental outcome of such a near-field interaction, particularly for bulk colloidal solution. It is hypothesized that the strong far-field interference from the inner filter effect of the MNPs could mask the true near-field MNP-fluorophore interaction significantly. Thus, in this work, a reliable internal control capable of decoupling the near-field interaction from far-field interference is established by the use of the DNA toehold concept to mediate the in situ assembly and disassembly of the MNP-fluorophore conjugate. A model gold nanoparticle (AuNP)-Cy3 system is used to investigate our proposed toehold-mediated internal control system. The maximum fluorescence enhancement is obtained for large-sized AuNP (58 nm) separated from Cy3 at an intermediate distance of 6.8 nm, while fluorescence quenching is observed for smaller-sized AuNP (11 nm and 23 nm), which is in agreement with the theoretical values reported in the literature. This work shows that the toehold-mediated internal control design can serve as a central system for evaluating the near-field interaction of other MNP-fluorophore combinations and facilitate the rational design of specific MNP-fluorophore systems for various applications.
Collapse
Affiliation(s)
- Y S Ang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 11920, Singapore.
| | | |
Collapse
|
18
|
|
19
|
Cui Q, He F, Li L, Möhwald H. Controllable metal-enhanced fluorescence in organized films and colloidal system. Adv Colloid Interface Sci 2014; 207:164-77. [PMID: 24182686 DOI: 10.1016/j.cis.2013.10.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 12/28/2022]
Abstract
In recent years, considerable efforts have been devoted to better understand the unique emission properties of fluorophores enhanced by the localized surface plasmon resonance of metal nanoparticles (NPs), due to the widespread applications of fluorescence techniques. It is demonstrated by experiment and theoretical calculation that the enhancement efficiency strongly depends on the morphology of the metal NPs, the spectral overlap between metal and fluorophores, the separation distance between them, and other factors. Among these aspects to be considered are suitable spacer material and assembling methods to control the spatial arrangement of plasmonic NPs and fluorophore with proper optical properties and interactions. In this contribution, we provide a brief overview on recent progress of metal-enhanced fluorescence in organized films and colloidal systems.
Collapse
|
20
|
|
21
|
Pereira SO, Barros-Timmons A, Trindade T. Biofunctionalisation of colloidal gold nanoparticles via polyelectrolytes assemblies. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-3037-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Ray K, Lakowicz JR. Metal-Enhanced Fluorescence Lifetime Imaging and Spectroscopy on a Modified SERS Substrate. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:10.1021/jp404590j. [PMID: 24416457 PMCID: PMC3886561 DOI: 10.1021/jp404590j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this paper, we developed a metal-enhanced fluorescence (MEF) substrate by modification of the commercially available surface enhanced Raman spectroscopy (SERS) substrate that may meet the reproducibility and sensitivity challenge of MEF. In spite of many studies and interest on MEF from a number of research groups, application to real-world situations and its commercial use remain challenging mainly due to the difficulties in fabricating reproducible MEF substrates. Specifically, one of the challenges is achieving a standardized MEF substrate for reproducible fluorescence intensity enhancement and/or changes in lifetime. The gold standard klarite substrates for SERS were coated with a thin layer of silver nanoparticles for MEF studies. To test the newly developed MEF substrates, a monolayer of streptavidin conjugated Alexa-647 was assembled on biotinylated-glass or MEF substrates. We observed over 50-fold increase in the fluorescence intensity from a monolayer of streptavidin conjugated Alexa-647 on the biotinylated MEF substrate compared to the same on glass substrate. A significant reduction in the lifetime and increased photostability of Alexa-647 on MEF substrate was observed. Fluorescence lifetime imaging was performed on the monolayer of dye assembled on the modified SERS substrates. We expect this study will serve as a platform to encourage the future use of a standardized MEF substrate for a plethora of sensing applications.
Collapse
|
23
|
Shin YC, Lee JH, Jeong JE, Kim B, Lee EJ, Jin OS, Jung TG, Lee JJ, Woo HY, Han DW. Cell imaging and DNA delivery in fibroblastic cells by conjugated polyelectrolytes. Biotechnol Appl Biochem 2013; 60:580-8. [PMID: 23772797 DOI: 10.1002/bab.1106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/06/2013] [Indexed: 12/23/2022]
Abstract
This study concentrates on the potential application of conjugated polyelectrolytes (CPEs) to cell imaging and DNA delivery. Four different types of polyfluorene copolymers, namely, PAHFP-Br, PAEFP-Br, PAHFbT-Br, and PSBFP-Na, which have the same π-conjugated backbone but different side chains, were synthesized. For cytotoxicity testing, L-929 fibroblastic cells were treated with increasing concentrations (0-50 µM) of each CPE and then cell viability was determined by WST-8 assay. Cellular uptake of CPEs into cultured L-929 cells was observed by fluorescence microscopy. To examine DNA delivery by CPEs, the cells were incubated for 1 H with PAHFP-Br/fluorescein (Fl)-labeled single-stranded DNA (ssDNA-Fl) complex and then visualized by fluorescence microscopy. Cytotoxicity of CPEs was increased in a dose-dependent manner but at lower than 10 µM, PAHFP-Br, PAEFP-Br, and PSBFP-Na did not show any cytotoxic effects on the cells. When added to cell cultures at 1 µM, PAHFP-Br/ssDNA-Fl complex was delivered and then dissociated into PAHFP-Br and ssDNA-Fl within the cells. This result implies that PAHFP-Br can enable cell imaging and DNA delivery into fibroblastic cells. Therefore, it is suggested that PAHFP-Br with various advantages such as low cytotoxicity and high fluorescence efficiency can be extensively used as a potential agent for cell imaging and gene delivery.
Collapse
Affiliation(s)
- Yong Cheol Shin
- Department of Applied Nanoscience and Department of Nanofusion Technology (BK21), College of Nanoscience and Nanotechnology, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cui Q, He F, Wang X, Xia B, Li L. Gold nanoflower@gelatin core-shell nanoparticles loaded with conjugated polymer applied for cellular imaging. ACS APPLIED MATERIALS & INTERFACES 2013; 5:213-219. [PMID: 23237324 DOI: 10.1021/am302589g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the present work, a facile one-pot method is designed to fabricate a core-shell fluorescent nanoparticle (NP) for cellular imaging based on a new cationic conjugated polymer, poly[9,9'-bis(6,6'-(N,N,N-trimethylaminium)fluorene-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene] (PFVCN). Gold nanoflowers (AuNFs) are prepared by a seedless method, in which a gelatin layer formed through a sol-gel phase transition is deposited on the surface of each AuNF. The cationic PFVCN self-assembles onto the negative surface of the resultant (AuNF@Gelatin NPs) driven by electrostatic attraction. An obvious enhancement of fluorescence intensity is observed. The AuNF@Gelatin/PFVCN NPs exhibit excellent cytocompatibility, and their cellular imaging ability is demonstrated when cocultured with HeLa cells. AuNF@Gelatin/PFVCN hybrid NPs are expected to be a desirable material in the field of cellular imaging and biosensing.
Collapse
Affiliation(s)
- Qianling Cui
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | | | | | | | | |
Collapse
|
25
|
Feng G, Ding D, Liu B. Fluorescence bioimaging with conjugated polyelectrolytes. NANOSCALE 2012; 4:6150-6165. [PMID: 22964921 DOI: 10.1039/c2nr31392h] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This review summarizes the recent developments in fluorescent conjugated polyelectrolytes (CPEs) in bioimaging. The CPEs discussed include linear-, hyperbranched-, and polyhedral oligomeric silsesquioxanes (POSS)-based derivatives. Originating from their special optical properties, good photostability, low cytotoxicity, ease of bioconjugation and tuneable size, CPEs have shown wide applications in in vitro and in vivo protein and cell imaging, drug tracking and gene delivery. Moreover, some CPEs also possess antibacterial and anticancer characteristics as well as apoptosis imaging functions. Finally, this review discusses the future outlook of CPEs in bioimaging applications.
Collapse
Affiliation(s)
- Guangxue Feng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | | | | |
Collapse
|