1
|
Elshenawy EA, El-Ebiary MA, Kenawy ER, El-Olimy GA. Modification of glass-ionomer cement properties by quaternized chitosan-coated nanoparticles. Odontology 2023; 111:328-341. [PMID: 36070157 PMCID: PMC10020264 DOI: 10.1007/s10266-022-00738-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Glass ionomers (GICs), because of their qualities, are in a good position to be modified to resist masticatory stresses as permanent posterior restoration and prevent recurrent caries. The purpose of the present study was to evaluate the effect of adding quaternized chitosan-coated mesoporous silica nanoparticles (HTCC@MSNs) to conventional GIC on its mechanical properties, antimicrobial activity and fluoride release and the effect of 1- and 3-month water aging on the studied properties. HTCC@MSNs was synthesized, added to commercially available conventional GIC at 1%, 3%, and 5% by weight forming three experimental groups and compared with plain GIC as a control group. Flexural strength, modulus, Vickers microhardness and wear volumes were evaluated. Antibacterial activity was tested against Streptococcus mutans and fluoride release in de-ionized water was measured. All properties were evaluated before and after one- and three-month aging (n = 10 specimens per test/per time). Two-way ANOVA was used for statistical analysis. Characterization confirmed successful preparation of HTCC@MSNs. The flexural strength, modulus, hardness and wear resistance of the GICs improved significantly by adding 1-3% HTCC@MSNs, while 5% HTCC@MSNs group showed no significant difference compared to control group. Bacterial inhibition zones and fluoride release increased proportionally to the amount of filler added. Mechanical properties were improved by artificial aging. Fluoride release values, and bacterial inhibition zones decreased with aging for all groups. HTCC@MSNs as a filler with the optimized proportion provides strengthening and antibacterial effect. In addition, aging is an important factor to be considered in evaluating experimental fillers.
Collapse
Affiliation(s)
- Enas A Elshenawy
- Dental Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, 31773, Egypt.
| | - Manal Ahmed El-Ebiary
- Dental Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, 31773, Egypt
| | - El-Refaie Kenawy
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31111, Egypt
| | | |
Collapse
|
2
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
3
|
Moret F, Menilli L, Battan M, Tedesco D, Columbaro M, Guerrini A, Avancini G, Ferroni C, Varchi G. Pheophorbide A and Paclitaxel Bioresponsive Nanoparticles as Double-Punch Platform for Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13081130. [PMID: 34452091 PMCID: PMC8399365 DOI: 10.3390/pharmaceutics13081130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer therapy is still a challenging issue. To address this, the combination of anticancer drugs with other therapeutic modalities, such as light-triggered therapies, has emerged as a promising approach, primarily when both active ingredients are provided within a single nanosystem. Herein, we describe the unprecedented preparation of tumor microenvironment (TME) responsive nanoparticles exclusively composed of a paclitaxel (PTX) prodrug and the photosensitizer pheophorbide A (PheoA), e.g., PheoA≅PTX2S. This system aimed to achieve both the TME-triggered and controlled release of PTX and the synergistic/additive effect by PheoA-mediated photodynamic therapy. PheoA≅PTX2S were produced in a simple one-pot process, exhibiting excellent reproducibility, stability, and the ability to load up to 100% PTX and 40% of PheoA. Exposure of PheoA≅PTX2S nanoparticles to TME-mimicked environment provided fast disassembly compared to normal conditions, leading to PTX and PheoA release and consequently elevated cytotoxicity. Our data indicate that PheoA incorporation into nanoparticles prevents its aggregation, thus providing a greater extent of ROS and singlet oxygen production. Importantly, in SK-OV-3 cells, PheoA≅PTX2S allowed a 30-fold PTX dose reduction and a 3-fold dose reduction of PheoA. Our data confirm that prodrug-based nanocarriers represent valuable and sustainable drug delivery systems, possibly reducing toxicity and expediting preclinical and clinical translation.
Collapse
Affiliation(s)
- Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy; (F.M.); (L.M.); (G.A.)
| | - Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy; (F.M.); (L.M.); (G.A.)
| | - Manuele Battan
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
| | - Daniele Tedesco
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
| | | | - Andrea Guerrini
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
| | - Greta Avancini
- Department of Biology, University of Padova, 35100 Padova, Italy; (F.M.); (L.M.); (G.A.)
| | - Claudia Ferroni
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
- Correspondence: (C.F.); (G.V.); Tel.: +39-0516398283 (G.V.)
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity—Italian National Research Council, 40121 Bologna, Italy; (M.B.); (D.T.); (A.G.)
- Correspondence: (C.F.); (G.V.); Tel.: +39-0516398283 (G.V.)
| |
Collapse
|
4
|
Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021; 13:pharmaceutics13070950. [PMID: 34202794 PMCID: PMC8309060 DOI: 10.3390/pharmaceutics13070950] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. Thus, delivery systems designed to improve the pharmacokinetics of loaded molecules, and allowing controlled release and target specific delivery, have received considerable attention in recent years. The last two decades have seen a growing interest among scientists and the pharmaceutical industry in mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS). This interest is due to the unique physicochemical properties, including high loading capacity, excellent biocompatibility, and easy functionalization. In this review, we discuss the current state of the art related to the preparation of drug-loaded MSNs and their analysis, focusing on the newest advancements, and highlighting the advantages and disadvantages of different methods. Finally, we provide a concise outlook for the remaining challenges in the field.
Collapse
|
5
|
Fernando NL, Rathnayake DTN, Kottegoda N, Jayanetti JKDS, Karunaratne V, Jayasundara DR. Mechanistic Insights into Interactions at Urea-Hydroxyapatite Nanoparticle Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6691-6701. [PMID: 34018756 DOI: 10.1021/acs.langmuir.1c00564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of controlled release biomolecules by surface modification of hydroxyapatite nanoparticles has recently gained popularity in the areas of bionanotechnology and nanomedicine. However, optimization of these biomolecules for applications such as drug delivery, nutrient delivery requires a systematic understanding of binding mechanisms and interfacial kinetics at the molecular level between the nanomatrix and the active compound. In this research, urea is used as a model molecule to investigate its interactions with two morphologically different thin films of hydroxyapatite nanoparticles. These thin films were fabricated on quartz crystal piezoelectric sensors to selectively expose Ca2+ and PO43- sites of hydroxyapatite. Respective urea adsorption and desorption on both of these sites were monitored in situ and in real time in the phosphate buffer solution that mimics body fluids. The measured kinetic parameters, which corroborate structural predisposition for controlled release, show desorption rates that are one-tenth of the adsorption rates on both surfaces. Furthermore, the rate of desorption from the PO43- site is one-half the rate of desorption from the Ca2+ site. The Hill kinetic model was found to satisfactorily fit data, which explains cooperative binding between the hydroxyapatite nanoparticle thin film and urea. Fourier transform infrared spectra and X-ray photoemission spectra of the urea adsorbed on the above surfaces confirm the cooperative binding. It also elucidates the different binding mechanisms between urea and hydroxyapatite that contribute to the changes in the interfacial kinetics. These findings provide valuable information for structurally optimizing hydroxyapatite nanoparticle surfaces to control interfacial kinetics for applications in bionanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Nimshi L Fernando
- Department of Physics, University of Colombo, Colombo 00300, Sri Lanka
| | | | - Nilwala Kottegoda
- Department of Chemistry, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | | | - Veranja Karunaratne
- Department of Chemistry, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | |
Collapse
|
6
|
Faal Maleki M, Jafari A, Mirhadi E, Askarizadeh A, Golichenari B, Hadizadeh F, Jalilzadeh Moghimi SM, Aryan R, Mashreghi M, Jaafari MR. Endogenous stimuli-responsive linkers in nanoliposomal systems for cancer drug targeting. Int J Pharm 2019; 572:118716. [DOI: 10.1016/j.ijpharm.2019.118716] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
|
7
|
Magnetic Mesoporous Silica Nanocomposite Functionalized with Palladium Schiff Base Complex: Synthesis, Characterization, Catalytic Efficacy in the Suzuki–Miyaura Reaction and α-Amylase Immobilization. Catal Letters 2019. [DOI: 10.1007/s10562-019-02913-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Abstract
Introduction: Prodrugs have been used to improve the selectivity and efficacy of cancer therapy by targeting unique abnormal markers that are overexpressed by cancer cells and are absent in normal tissues. In this context, different strategies have been exploited and new ones are being developed each year. Areas covered: In this review, an integrated view of the potential use of prodrugs in targeted cancer therapy is provided. Passive and active strategies are discussed in light of the advantages of each one and some successful examples are provided, as well as the clinical status of several prodrugs. Among them, antibody-drug conjugates (ADCs) are the most commonly used. However, several drawbacks, including limited prodrug uptake, poor pharmacokinetics, immunogenicity problems, difficulties in selective targeting and gene expression, and optimized bystander effects limit their clinical applications. Expert opinion: Despite the efforts of different companies and research groups, several drawbacks, such as the lack of relevant in vivo models, complexity of the human metabolism, and economic limitations, have hampered the development of new prodrugs for targeted cancer therapy. As a result, we believe that the combination of prodrugs with cancer nanotechnology and other newly developed approaches, such as aptamer-conjugated nanomaterials, are efficient strategies.
Collapse
Affiliation(s)
- Carla Souza
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| | - Diogo Silva Pellosi
- b Department of Chemistry, Laboratory of Hybrid Materials , Federal University of São Paulo - UNIFESP , Diadema , Brazil
| | - Antonio Claudio Tedesco
- a Center of Nanotechnology and Tissue Engineering, Department of Chemistry , School of Philosophy, Sciences and Letters of Ribeirão Preto- USP , Ribeirão Preto , Brazil
| |
Collapse
|
9
|
Wang N, Cheng X, Li N, Wang H, Chen H. Nanocarriers and Their Loading Strategies. Adv Healthc Mater 2019; 8:e1801002. [PMID: 30450761 DOI: 10.1002/adhm.201801002] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/19/2018] [Indexed: 12/17/2022]
Abstract
Nanocarriers are of paramount significance for drug delivery and nanomedicine technology. Given the imperfect systems and nonideal therapeutic effects, there are works to be done in synthesis as much as in biological studies, if not more so. Building the foundation of synthesis would offer more tools and deeper insights for exploring the biological systems with extreme complexity. This review aims at a broad-scope summary and classification of nanocarriers for drug delivery, with focus on the synthetic strategy and structural implications. The nanocarriers are divided into four categories according to the loading principle: molecular-level loading, surface loading, matrix loading, and cavity loading systems. Making comparisons across diverse nanocarrier systems would make it easier to see the fundamental characteristics, from where the weakness can be addressed and the strengths combined. The systematic comparisons may also inspire new ideas and methods.
Collapse
Affiliation(s)
- Neng Wang
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Xuejun Cheng
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Nan Li
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Hong Wang
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| | - Hongyu Chen
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech University Nanjing 211816 Jiangsu P. R. China
| |
Collapse
|
10
|
Tahmasbi L, Sedaghat T, Motamedi H, Kooti M. Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2017.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem Toxicol 2017; 109:753-770. [DOI: 10.1016/j.fct.2017.05.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
12
|
MacEwan SR, Chilkoti A. From Composition to Cure: A Systems Engineering Approach to Anticancer Drug Carriers. Angew Chem Int Ed Engl 2017; 56:6712-6733. [PMID: 28028871 PMCID: PMC6372097 DOI: 10.1002/anie.201610819] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 12/21/2022]
Abstract
The molecular complexity and heterogeneity of cancer has led to a persistent, and as yet unsolved, challenge to develop cures for this disease. The pharmaceutical industry focuses the bulk of its efforts on the development of new drugs, but an alternative approach is to improve the delivery of existing drugs with drug carriers that can manipulate when, where, and how a drug exerts its therapeutic effect. For the treatment of solid tumors, systemically delivered drug carriers face significant challenges that are imposed by the pathophysiological barriers that lie between their site of administration and their site of therapeutic action in the tumor. Furthermore, drug carriers face additional challenges in their translation from preclinical validation to clinical approval and adoption. Addressing this diverse network of challenges requires a systems engineering approach for the rational design of optimized carriers that have a realistic prospect for translation from the laboratory to the patient.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
- Present address: Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, P.O. Box 90281, Durham, NC, 27708, USA
- Research Triangle MRSEC, Durham, NC, 27708, USA
| |
Collapse
|
13
|
MacEwan SR, Chilkoti A. Von der Zusammensetzung zur Heilung: ein systemtechnischer Ansatz zur Entwicklung von Trägern für Tumortherapeutika. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sarah R. MacEwan
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering; Duke University; P.O. Box 90281 Durham NC 27708 USA
- Research Triangle MRSEC; Durham NC 27708 USA
| |
Collapse
|
14
|
Zhu J, Niu Y, Li Y, Gong Y, Shi H, Huo Q, Liu Y, Xu Q. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles: recent advances and challenges. J Mater Chem B 2017; 5:1339-1352. [DOI: 10.1039/c6tb03066a] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the past decade, stimuli-responsive drug delivery vehicles based on surface-functionalized mesoporous silica nanoparticles have attracted intense interest as a new type of drug carrier.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Pharmacy
- Bengbu Medical College
- Bengbu 233030
- China
- School of Pharmacy
| | - Yimin Niu
- Department of Pharmacy
- Zhongda Hospital
- School of Medicine
- Southeast University
- Nanjing 210009
| | - Yang Li
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Yaxiang Gong
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Huihui Shi
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Qiang Huo
- Department of Pharmacy
- Bengbu Medical College
- Bengbu 233030
- China
| | - Yang Liu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| | - Qunwei Xu
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- China
| |
Collapse
|
15
|
Pei Q, Hu X, Zhou J, Liu S, Xie Z. Glutathione-responsive paclitaxel dimer nanovesicles with high drug content. Biomater Sci 2017; 5:1517-1521. [DOI: 10.1039/c7bm00052a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Paclitaxel dimers containing mono thioether linkers can self-assemble into hollow nanovesicles that exhibit comparable cytotoxicity to Taxol.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Junli Zhou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
16
|
Meng Z, Lv Q, Lu J, Yao H, Lv X, Jiang F, Lu A, Zhang G. Prodrug Strategies for Paclitaxel. Int J Mol Sci 2016; 17:E796. [PMID: 27223283 PMCID: PMC4881612 DOI: 10.3390/ijms17050796] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Collapse
Affiliation(s)
- Ziyuan Meng
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Quanxia Lv
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Jun Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Houzong Yao
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiaoqing Lv
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Feng Jiang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiping Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Ge Zhang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| |
Collapse
|
17
|
Multifunctional mesoporous silica nanoparticles modified with tumor-shedable hyaluronic acid as carriers for doxorubicin. Colloids Surf B Biointerfaces 2016; 144:293-302. [PMID: 27107383 DOI: 10.1016/j.colsurfb.2016.04.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/20/2016] [Accepted: 04/07/2016] [Indexed: 12/24/2022]
Abstract
In this paper, a CD44-targeted and redox-responsive drug delivery system based on mesoporous silica nanoparticles (MSNs) was synthesized by conjugating tumor-shedable hyaluronic acid (HA) on the surface of MSNs via disulfide bonds. Doxorubicin hydrochloride (DOX·HCl) was physically encapsulated into HA modified MSNs (MSNs/SS/HA@DOX) as a model drug. MSNs/SS/HA@DOX (40nm) had a high drug loading (14.1%) and redox-responsive drug release property. The cellular uptake behaviors of MSNs/SS/HA@DOX by HeLa and LO2 cells were evaluated by confocal laser scanning microscopy (CLSM) and flow cytometry (FCM). MSNs/SS/HA@DOX exhibited higher cellular uptake efficacy via CD44-mediated endocytosis by HeLa cells (CD44 over-expressed cells) than by LO2 cells (CD44 deficient cells). The in vitro cytotoxicity assay demonstrated that MSNs/SS/HA@DOX exhibited higher cytotoxicity to HeLa cells than to LO2 cells. These results indicated that MSNs/SS/HA@DOX might be promising as a multifunctional drug delivery system to improve the anti-tumor efficacy of chemotherapeutic drugs.
Collapse
|
18
|
Wang G, Dong J, Yuan T, Zhang J, Wang L, Wang H. Visible Light and pH Responsive Polymer-Coated Mesoporous Silica Nanohybrids for Controlled Release. Macromol Biosci 2016; 16:990-4. [DOI: 10.1002/mabi.201600008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Guojie Wang
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Jie Dong
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Tingting Yuan
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 China
| | - Juchen Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Lei Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Hao Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; Beijing 100190 China
| |
Collapse
|
19
|
Botella P, Muniesa C, Vicente V, Cabrera-García A. Effect of drug precursor in cell uptake and cytotoxicity of redox-responsive camptothecin nanomedicines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:692-9. [DOI: 10.1016/j.msec.2015.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 12/29/2022]
|
20
|
Affiliation(s)
- Yi Shi
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | - Anthony J. Di Pasqua
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
21
|
Chang M, Zhang F, Wei T, Zuo T, Guan Y, Lin G, Shao W. Smart linkers in polymer–drug conjugates for tumor-targeted delivery. J Drug Target 2015; 24:475-91. [DOI: 10.3109/1061186x.2015.1108324] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Minglu Chang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Fang Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ting Wei
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tiantian Zuo
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yuanyuan Guan
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Guimei Lin
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Wei Shao
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
22
|
Martínez-Carmona M, Colilla M, Vallet-Regí M. Smart Mesoporous Nanomaterials for Antitumor Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:1906-1937. [PMID: 28347103 PMCID: PMC5304809 DOI: 10.3390/nano5041906] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 01/13/2023]
Abstract
The use of nanomaterials for the treatment of solid tumours is receiving increasing attention by the scientific community. Among them, mesoporous silica nanoparticles (MSNs) exhibit unique features that make them suitable nanocarriers to host, transport and protect drug molecules until the target is reached. It is possible to incorporate different targeting ligands to the outermost surface of MSNs to selectively drive the drugs to the tumour tissues. To prevent the premature release of the cargo entrapped in the mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. Therefore, upon exposure to internal (pH, enzymes, glutathione, etc.) or external (temperature, light, magnetic field, etc.) stimuli, the pore opening takes place and the release of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and accumulating at the target tissue and releasing the entrapped drug in a specific and controlled fashion, constituting a promising alternative to conventional chemotherapy, which is typically associated with undesired side effects. In this review, we overview the recent advances reported by the scientific community in developing MSNs for antitumor therapy. We highlight the possibility to design multifunctional nanosystems using different therapeutic approaches aimed at increasing the efficacy of the antitumor treatment.
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Sanitary Research Institute "Hospital 12 de Octubre" i+12, Ramón y Cajal Square, S/N, Madrid 28040, Spain.
- Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28040, Spain.
- Campus of International Excellence, CEI Campus Moncloa, UCM-UPM, Madrid 28040, Spain.
| | - Montserrat Colilla
- Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Sanitary Research Institute "Hospital 12 de Octubre" i+12, Ramón y Cajal Square, S/N, Madrid 28040, Spain.
- Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28040, Spain.
- Campus of International Excellence, CEI Campus Moncloa, UCM-UPM, Madrid 28040, Spain.
| | - Maria Vallet-Regí
- Department of Inorganic and Bioinorganic Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Sanitary Research Institute "Hospital 12 de Octubre" i+12, Ramón y Cajal Square, S/N, Madrid 28040, Spain.
- Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28040, Spain.
- Campus of International Excellence, CEI Campus Moncloa, UCM-UPM, Madrid 28040, Spain.
| |
Collapse
|
23
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
24
|
Yin S, Huai J, Chen X, Yang Y, Zhang X, Gan Y, Wang G, Gu X, Li J. Intracellular delivery and antitumor effects of a redox-responsive polymeric paclitaxel conjugate based on hyaluronic acid. Acta Biomater 2015; 26:274-85. [PMID: 26300335 DOI: 10.1016/j.actbio.2015.08.029] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 11/26/2022]
Abstract
Polymer-drug conjugates have demonstrated application potentials in optimizing chemotherapeutics. In this study a new bioconjugate, HA-ss-PTX, was designed and synthesized with cooperative dual characteristics of active tumor targeting and selective intracellular drug release. Paclitaxel (PTX) was covalently attached to hyaluronic acid (HA) with various sizes (MW 9.5, 35, 770 kDa); a cross-linker containing disulfide bond was also used to shield drug leakage in blood circulation and to achieve rapid drug release in tumor cells in response to glutathione. Incorporation of HA to the conjugate enhanced the capabilities of drug loading, intracellular endocytosis and tumor targeting of micelles in comparison to mPEG. HA molecular weight showed significant effect on properties and antitumor efficacy of the synthesized conjugates. Intracellular uptake of HA-ss-PTX toward MCF-7 cells was mediated by CD44-caveolae-mediated endocytosis. Compared to Taxol and mPEG-ss-PTX, HA9.5-ss-PTX demonstrated improved tumor growth inhibition in vivo with a TIR of 83.27 ± 5.20%. It was concluded that HA9.5-ss-PTX achieved rapid intracellular release of PTX and enhanced its therapeutic efficacy, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics. STATEMENT OF SIGNIFICANCE Polymer-drug conjugates, promising nanomedicines, still face some technical challenges including a lack of specific targeting and rapid intracellular drug release at the target site. In this manuscript we designed and constructed a novel bioconjugate HA-ss-PTX, which possessed coordinated dual characteristics of active tumor targeting and selective intracellular drug release. Redox-responsive disulfide bond was introduced to the conjugate to shield drug leakage in blood circulation and to achieve rapid drug release at tumor site in response to reductant like glutathione. Paclitaxel was selected as a model drug to be covalently attached to hyaluronic acid (HA) with various sizes to elucidate the structure-activity relationship and to address whether HA could substitute PEG as a carrier for polymeric conjugates. Based on a series of in vitro and in vivo experiments, HA-ss-PTX performed well in drug loading, cellular internalization, tumor targeting by entering tumor cells via CD44-caveolae-mediated endocytosis and rapidly release drug at target in the presence of GSH. One of the key issues in clinical oncology is to enhance drug delivery efficacy while minimizing side effects. The study indicated that this new polymeric conjugate system would be useful in delivering anticancer agents to improve therapeutic efficacy and to minimize adverse effects, thus providing a platform for specific drug targeting and controlled intracellular release in chemotherapeutics.
Collapse
|
25
|
Deng B, Ma P, Xie Y. Reduction-sensitive polymeric nanocarriers in cancer therapy: a comprehensive review. NANOSCALE 2015; 7:12773-12795. [PMID: 26176593 DOI: 10.1039/c5nr02878g] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Redox potential is regarded as a significant signal to distinguish between the extra-cellular and intra-cellular environments, as well as between tumor and normal tissues. Taking advantage of this physiological differentiation, various reduction-sensitive polymeric nanocarriers (RSPNs) have been designed and explored to demonstrate excellent stability during blood circulation but rapidly degrade and effectively trigger drug release in tumor cells. Therefore, this smart RSPN delivery system has attracted much attention in recent years, as it represents one of the most promising drug delivery strategies in cancer therapy. In this review, we will provide a comprehensive overview of RSPNs with various reducible linkages and functional groups up to date, including their design and synthetic strategies, preparation methods, drug release behavior, and their in vitro and in vivo efficacy in cancer therapy. In addition, dual- and triple-sensitive nanocarriers based on reducible disulfide bond-containing linkages will also be discussed.
Collapse
Affiliation(s)
- Bing Deng
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | | | | |
Collapse
|
26
|
Giret S, Wong Chi Man M, Carcel C. Mesoporous-Silica-Functionalized Nanoparticles for Drug Delivery. Chemistry 2015; 21:13850-65. [PMID: 26250991 DOI: 10.1002/chem.201500578] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ever-growing interest for finding efficient and reliable methods for treatment of diseases has set a precedent for the design and synthesis of new functional hybrid materials, namely porous nanoparticles, for controlled drug delivery. Mesoporous silica nanoparticles (MSNPs) represent one of the most promising nanocarriers for drug delivery as they possess interesting chemical and physical properties, thermal and mechanical stabilities, and are biocompatibile. In particular, their easily functionalizable surface allows a large number of property modifications further improving their efficiency in this field. This Concept article deals with the advances on the novel methods of functionalizing MSNPs, inside or outside the pores, as well as within the walls, to produce efficient and smart drug carriers for therapy.
Collapse
Affiliation(s)
- Simon Giret
- Institut Charles Gerhardt Montpellier, UMR-5253, ENSCM, Université Montpellier, CNRS, 8 Rue de l'École Normale, 34296 Montpellier cedex 5 (France)
| | - Michel Wong Chi Man
- Institut Charles Gerhardt Montpellier, UMR-5253, ENSCM, Université Montpellier, CNRS, 8 Rue de l'École Normale, 34296 Montpellier cedex 5 (France)
| | - Carole Carcel
- Institut Charles Gerhardt Montpellier, UMR-5253, ENSCM, Université Montpellier, CNRS, 8 Rue de l'École Normale, 34296 Montpellier cedex 5 (France).
| |
Collapse
|
27
|
Programmed Hydrolysis in Designing Paclitaxel Prodrug for Nanocarrier Assembly. Sci Rep 2015; 5:12023. [PMID: 26166066 PMCID: PMC4499798 DOI: 10.1038/srep12023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022] Open
Abstract
Nanocarriers delivering prodrugs are a way of improving in vivo effectiveness and efficiency. For therapeutic efficacy, the prodrug must hydrolyze to its parent drug after administration. Based on the fact that the hydrolysis is impeded by steric hindrance and improved by sufficient polarity, in this study, we proposed the PTX-S-S-VE, the conjugation of paclitaxel (PTX) to vitamin E (VE) through a disulfide bridge. This conjugate possessed the following advantages: first, it can be encapsulated in the VE/VE2-PEG2000/water nanoemulsions because of favorable hydrophobic interactions; second, the nanoemulsions had a long blood circulation time; finally, the concentrated glutathione in the tumor microenvironment could cleave the disulfide bond to weaken the steric hindrance and increase the polarity, promoting the hydrolysis to PTX and increasing the anticancer activity. It was demonstrated in vitro that the hydrolysis of PTX-S-S-VE was enhanced and the cytotoxicity was increased. In addition, PTX-S-S-VE had greater anticancer activity against the KB-3-1 cell line tumor xenograft and the tumor size was smaller after the 4th injection. The present result suggests a new way, use of reduction, to improve the in vivo anticancer activity of a prodrug for nanocarrier delivery by unshielding the ester bond and taking off the steric block.
Collapse
|
28
|
Song N, Yang YW. Molecular and supramolecular switches on mesoporous silica nanoparticles. Chem Soc Rev 2015; 44:3474-504. [DOI: 10.1039/c5cs00243e] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the recent advances of molecular and supramolecular switches installed on mesoporous silica nanoparticles.
Collapse
Affiliation(s)
- Nan Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- Jilin University
- Changchun 130012
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- Jilin University
- Changchun 130012
| |
Collapse
|
29
|
Chen W, Shah LA, Yuan L, Siddiq M, Hu J, Yang D. Polymer–paclitaxel conjugates based on disulfide linkers for controlled drug release. RSC Adv 2015. [DOI: 10.1039/c4ra12856g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Controlled drug delivery system based on hydrophilic diblock copolymer covalently linked paclitaxel (PTX) via a disulfide linker.
Collapse
Affiliation(s)
- Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Luqman Ali Shah
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Li Yuan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Mohammad Siddiq
- Department of Chemistry
- Quaid-i-Azam University
- Islamabad 45320
- Pakistan
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
30
|
Zhou QX, Zheng Y, Wang TJ, Chen YJ, Li K, Zhang YY, Li C, Hou YJ, Wang XS. A novel azopyridine-based Ru(ii) complex with GSH-responsive DNA photobinding ability. Chem Commun (Camb) 2015; 51:10684-6. [DOI: 10.1039/c5cc03291a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An azopyridine-based Ru(ii) complex was synthesized as a glutathione (GSH)-responsive photoactivated DNA covalent binding agent.
Collapse
Affiliation(s)
- Qian-Xiong Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yue Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Tian-Ji Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yong-Jie Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Ke Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yang-Yang Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Chao Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yuan-Jun Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Xue-Song Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| |
Collapse
|
31
|
Li JL, Jiang L, Wang BW, Tian JL, Gu W, Liu X, Yan SP. Significant differences in the biological activity of mononuclear Cu(ii) and Ni(ii) complexes with the polyquinolinyl ligand. NEW J CHEM 2015. [DOI: 10.1039/c4nj00876f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The difference in the redox activity of metal ions Cu(ii) and Ni(ii) results in some discrepancy in the biological activity of their complexes.
Collapse
Affiliation(s)
- Jun-Ling Li
- Department of Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry
| | - Lin Jiang
- Department of Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry
| | - Bi-Wei Wang
- Department of Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry
| | - Jin-Lei Tian
- Department of Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry
| | - Wen Gu
- Department of Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry
| | - Xin Liu
- Department of Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry
| | - Shi-Ping Yan
- Department of Chemistry
- Nankai University
- Tianjin 300071
- People's Republic of China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry
| |
Collapse
|
32
|
15 years of ATTEMPTS: a macromolecular drug delivery system based on the CPP-mediated intracellular drug delivery and antibody targeting. J Control Release 2014; 205:58-69. [PMID: 25483423 DOI: 10.1016/j.jconrel.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 01/22/2023]
Abstract
Traditionally, any drug intended for combating the tumor would distribute profoundly to other organs and tissues as lack of targeting specificity, thus resulting in limited therapeutic effects toward the tumor but severe drug-induced toxic side effects. To prevail over this obstacle of drug-induced systemic toxicity, a novel approach termed "ATTEMPTS" (antibody targeted triggered electrically modified prodrug type strategy) was designed, which directly introduces both of the targeting and prodrug features onto the protein drugs. The ATTEMPTS system is composed of the antibody targeting component consisting of antibodies linked with heparin, and the cell penetrating peptide (CPP) modified drug component. The two components mentioned above self-assembled into a tight complex via the charge to charge interaction between the anionic heparin and cationic CPP. Once accumulated at the targeting site, the CPP modified drug is released from the blockage by a second triggering agent, while remaining inactive in the circulation during tumor targeting thus aborting its effect on normal tissues. We utilized the heparin-induced inhibition on the cell-penetrating activity of CPP to create the prodrug feature, and subsequently the protamine-induced reversal of heparin inhibition to resume cell transduction of the protein drug via the CPP function. Our approach is the first known system to overcome this selectivity issue, enabling CPP-mediated cellular drug delivery to be practically applicable clinically. In this review, we thoroughly discussed the historical and novel progress of the "ATTEMPTS" system.
Collapse
|
33
|
Baeza A, Colilla M, Vallet-Regí M. Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 2014; 12:319-37. [PMID: 25421898 DOI: 10.1517/17425247.2014.953051] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Mesoporous silica nanoparticles (MSNPs) are one of the most promising inorganic drug delivery systems (DDSs). The design and development of tumour-targeted MSNPs with stimuli-responsive drug release capability aim at enhancing the efficiency and minimising the side effects of anti-tumour drugs for cancer therapy. AREAS COVERED This review provides an overview of the scientific advances in MSNPs for tumour-targeted stimuli-responsive drug delivery. The key factors that govern the passive accumulation of MSNPs within solid tumours such as size, shape and surface functionalisation are roughly described. The different active targeting strategies for the specific retention and uptake of MSNPs by tumour cells are also outlined. The approaches developed so far for the synthesis of smart MSNPs capable of releasing the trapped drugs in response to internal or external stimuli and their applications are reviewed. Critical considerations in the use of MSNPs for the treatment of cancer treatment are discussed. The future prospects and key factors concerning the clinical application of MSNPs are considered throughout the manuscript. EXPERT OPINION MSNPs are promising nanocarriers to efficiently transport and site-specifically deliver highly toxic drugs, such as chemotherapeutic agents for cancer treatment. However, there are certain issues that should be overcome to improve the suitability of MSNPs for clinical applications. Increasing the penetration capability of MSNPs within tumour tissues, providing them of appropriate colloidal stability in physiological fluids and ensuring that their active targeting capability and stimuli-responsive performance are preserved in complex biological media are of foremost significance. Few in vivo evaluation tests of MSNPs have been reported and much research effort into this field is mandatory to be able to move from bench to bedside.
Collapse
Affiliation(s)
- Alejandro Baeza
- Departamento Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital , 12 de Octubre i+12. Pza. Ramón y Cajal s/n, 28040 Madrid , Spain
| | | | | |
Collapse
|
34
|
Polymerizable disulfide paclitaxel prodrug for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:386-90. [DOI: 10.1016/j.msec.2014.08.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/15/2014] [Accepted: 08/08/2014] [Indexed: 01/06/2023]
|
35
|
Li JL, Jiang L, Li ST, Tian JL, Gu W, Liu X, Yan SP. Self-activated DNA cleavage of a water-soluble mononuclear Cu(II) complex with polyquinolinyl ligand. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.973867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun-Ling Li
- Department of Chemistry, Nankai University, Tianjin, PR China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Lin Jiang
- Department of Chemistry, Nankai University, Tianjin, PR China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin, PR China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin, PR China
| | - Si-Tong Li
- Department of Chemistry, Nankai University, Tianjin, PR China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin, PR China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin, PR China
| | - Jin-Lei Tian
- Department of Chemistry, Nankai University, Tianjin, PR China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin, PR China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin, PR China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Wen Gu
- Department of Chemistry, Nankai University, Tianjin, PR China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin, PR China
| | - Xin Liu
- Department of Chemistry, Nankai University, Tianjin, PR China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin, PR China
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Tianjin, PR China
| | - Shi-Ping Yan
- Department of Chemistry, Nankai University, Tianjin, PR China
- Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Tianjin, PR China
| |
Collapse
|
36
|
Yang D, Chen W, Hu J. Design of Controlled Drug Delivery System Based on Disulfide Cleavage Trigger. J Phys Chem B 2014; 118:12311-7. [DOI: 10.1021/jp507763a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dong Yang
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Wulian Chen
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jianhua Hu
- State Key Laboratory of Molecular
Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
37
|
Lu Y, Wu P, Yin Y, Zhang H, Cai C. Aptamer-functionalized graphene oxide for highly efficient loading and cancer cell-specific delivery of antitumor drug. J Mater Chem B 2014; 2:3849-3859. [DOI: 10.1039/c4tb00521j] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel anticancer drug loading and cell-specific delivery system based on cell-type-specific aptamer-functionalized graphene oxide is reported.
Collapse
Affiliation(s)
- Yimei Lu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, P. R. China
| | - Ping Wu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, P. R. China
| | - Yajing Yin
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, P. R. China
| | - Hui Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, P. R. China
| | - Chenxin Cai
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210097, P. R. China
| |
Collapse
|
38
|
Chen W, Zhang JZ, Hu J, Guo Q, Yang D. Preparation of amphiphilic copolymers for covalent loading of paclitaxel for drug delivery system. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.27009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Jin Z. Zhang
- Department of Chemistry and Biochemistry; University of California; Santa Cruz California 95064
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Fudan University; Shanghai 201203 China
| | - Qisang Guo
- Mdical Center for Diagnostics & Treat of Cervical Disease, Obstetrics and Gynecology Hospital, Fudan University; Shanghai 200011 China
| | - Dong Yang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| |
Collapse
|
39
|
Zou Z, He D, He X, Wang K, Yang X, Qing Z, Zhou Q. Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12804-12810. [PMID: 24073830 DOI: 10.1021/la4022646] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper proposed a natural gelatin capped mesoporous silica nanoparticles (MSN@Gelatin) based pH-responsive delivery system for intracellular anticancer drug controlled release. In this system, the gelatin, a proteinaceous biopolymer derived from the processing of animal collagen, was grafted onto the MSN to form a capping layer via temperature-induced gelation and subsequent glutaraldehyde mediated cross-linking, resulting in gelatin coated MSN. At neutral pH, the gelatin capping layer could effectively prohibit the release of loaded drug molecules. However, the slightly acidic environment would lead to enhanced electrostatic repulsion between the gelatin and MSN, giving rise to uncapping and the subsequent controlled release of the entrapped drug. As a proof-of-concept, doxorubicin (DOX) was selected as the model anticancer drug. The loading and pH-responsive release experiments demonstrated that the system had excellent loading efficiency (47.3 mmol g(-1) SiO2), and almost no DOX was leaked at neutral. After being in the slightly acidic condition, the DOX release from the DOX-loaded MSN@Gelatin (DOX/MSN@Gelatin) occurred immediately. The cellular uptake and release studies using Hep-G2 hepatoma cells indicated that the DOX/MSN@Gelatin could be endocytosed and accumulated within lysosomes. Triggered by acidic endosomal pH, the intracellular release of the loaded DOX was obviously eventuated. Further cell viability results demonstrated that DOX/MSN@Gelatin exhibited dose-dependent toxicity and high killing efficacy (IC50 = 17.27 ± 0.63 μg mL(-1)), whereas the MSN@Gelatin showed negligible cytotoxicity (IC50 > 100 μg mL(-1)). This biocompatible and effective delivery system will provide great potential for developing delivery of cancer therapeutic agents.
Collapse
Affiliation(s)
- Zhen Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha, Hunan 410082, P. R. China
| | | | | | | | | | | | | |
Collapse
|
40
|
Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/646284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since they were first proposed as nonviral transfection agents for their gene-carrying capacity, magnetic nanoparticles have been studied thoroughly, both in vitro and in vivo. Great effort has been made to manufacture biocompatible magnetic nanoparticles for use in the theragnosis of cancer and other diseases. Here we survey recent advances in the study of magnetic nanoparticles, as well as the polymers and other coating layers currently available for gene therapy, their synthesis, and bioconjugation processes. In addition, we review several gene therapy models based on magnetic nanoparticles.
Collapse
|
41
|
Muniesa C, Vicente V, Quesada M, Sáez-Atiénzar S, Blesa JR, Abasolo I, Fernández Y, Botella P. Glutathione-sensitive nanoplatform for monitored intracellular delivery and controlled release of Camptothecin. RSC Adv 2013. [DOI: 10.1039/c3ra41404c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|