1
|
Vasanthakumaran M, Ramesh M, Murugan K, Hema T, Rajaganesh R, Hwang JS. Developmental toxicity, biochemical and biomarker in the zebrafish (Danio rerio) embryo exposed to biosynthesized cadmium oxide nanoparticles. CHEMOSPHERE 2024; 369:143851. [PMID: 39622455 DOI: 10.1016/j.chemosphere.2024.143851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Cadmium oxide nanoparticles (CdO-NPs) play an important role in health applications due to their antibacterial properties. However, ecotoxicological investigations of these NPs and their adverse effects on aquatic organisms are necessary to protect the environment. Zebrafish is widely used as a model organism to explore toxic effects at multiple levels of integration. Hence, the objective of this work was to pursue possible harmful impacts of CdO -NPs that have been produced through biosynthesis, utilizing extract from the lily plant Gloriosa superba leaves, on the growth and biochemical changes in zebrafish (Danio rerio) embryos and larvae. UV, SEM, TEM, FTIR, EDAX, DLS, and ZETA-potential techniques were employed to examine the structure and morphology of the biosynthesized CdO-NPs. The identification of bioactive chemicals from the leaf extract of G. superba was conducted using GC-MS. To study the in vivo toxicity of CdO-NPs, zebrafish embryos and larvae were treated with two different concentrations of G. superba leave extract (0.5 and 1.0 mg/mL) at 96 h after fertilization (hpf). Bended tail, pericardial edema, shortened yolk sac extension, scoliosis, and damaged eyes were observed in the CdO-NPs treated groups. In addition, there was a considerable decrease in the levels of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferases (GST), and lipid peroxidation (LPO). The CdO-NPs treated groups showed significant alterations in biochemical markers, including protein levels, glucose levels, and acetylcholinesterase (AChE) activity. Overall, our findings indicated that CdO-NPs induced a dose-dependent toxicity in zebrafish embryos. The investigated parameters serve as reliable biomarkers for the surveillance of CdO-NPs in aquatic ecosystems and their impact on living animals.
Collapse
Affiliation(s)
- Murugan Vasanthakumaran
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India; Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Rajapandian Rajaganesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
2
|
Minj A, Sahu S, Singh Tanwar LK, Ghosh KK. Au@Ag nanoparticles: an analytical tool to study the effect of tyrosine on dopamine levels. RSC Adv 2024; 14:19271-19283. [PMID: 38887644 PMCID: PMC11181135 DOI: 10.1039/d4ra01872a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The neurotransmitter dopamine (DA) plays important roles in the human body, including regulatory functions, movement, memory and motivational control. The direct intake of DA is impossible as it cannot cross the blood-brain barrier (BBB) efficiently. Notably, l-tyrosine works as a precursor of DA in the human brain. Herein, we report an analytical method that strongly supports the hypothesis that the intake of tyrosine (Tyr)-rich food enhances DA levels. For this analysis, citrate-coated gold-core silver-shell nanoparticles (Au@Ag NPs) were synthesized. The interaction of DA with the Au@Ag NPs was investigated using multiple spectroscopic techniques, and different thermodynamic parameters were evaluated to assign the binding mechanism. Real sample analysis with Tyr-rich food was also conducted to study the effect of Tyr on DA levels. Analytical studies were performed to verify the outcomes of the present work. The limit of detection of the Au@Ag NPs-DA system for Tyr was found to be 1.64 mM. This study can contribute to development in the fields of medicine and pharmaceuticals, particularly in regard to neuromedicine. One of the major advantages of this investigation is that it will fuel research interest in the supplementation of neurotransmitters and help categorize Tyr as a dietary precursor of dopamine.
Collapse
Affiliation(s)
- Angel Minj
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India +91-94252 16204
| | - Sushama Sahu
- Govt. Narayanrao Meghawale Girls College Dhamtari Chhattisgarh India
| | - Lavkesh Kumar Singh Tanwar
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India +91-94252 16204
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur-492010 Chhattisgarh India +91-94252 16204
| |
Collapse
|
3
|
Liu Q, Lyu X, Chen Q, Qin Y, Wang X, Li C, Fang Z, Bao H. Fast synthesis of nanoporous Cu/Ag bimetallic triangular nanoprisms via galvanic replacement for efficient 4-nitrophenol reduction. NANOSCALE 2024. [PMID: 38440800 DOI: 10.1039/d3nr05968e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
We report the synthesis of nanoporous Cu/Ag bimetallic triangular nanoprisms (BTNPs) using a galvanic replacement method. Based on ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), energy dispersive spectrometry (EDS), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS) analyses, the structure of Cu/Ag BTNPs was characterized. The prepared Cu/Ag BTNPs exhibited excellent catalytic activity and good cycling stability for the reduction of 4-nitrophenol (4-NP) due to the synergistic effect between Cu and Ag elements. The kinetic rate constant (k) and turnover frequency (TOF) values reached 331 × 10-3 s-1 and 500 × 10-3 s-1, respectively, which were higher than those of previously reported Cu, Ag, Au, Cu/Ag or Cu/Au-based catalysts. We hope that the development of promising routes for high-quality BTNPs can broaden their applications in catalysis and environmental sustainability.
Collapse
Affiliation(s)
- Qiang Liu
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Xuelian Lyu
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Qiusui Chen
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Yanmin Qin
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Xing Wang
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Chen Li
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Zheng Fang
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| | - Haifeng Bao
- School of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
4
|
Bharti S. Harnessing the potential of bimetallic nanoparticles: Exploring a novel approach to address antimicrobial resistance. World J Microbiol Biotechnol 2024; 40:89. [PMID: 38337082 DOI: 10.1007/s11274-024-03923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The growing global importance of antimicrobial resistance (AMR) in public health has prompted the creation of innovative approaches to combating the issue. In this study, the promising potential of bimetallic nanoparticles (BMNPs) was investigated as a novel weapon against AMR. This research begins by elaborating on the gravity of the AMR problem, outlining its scope in terms of the effects on healthcare systems, and stressing the urgent need for novel solutions. Because of their unusual features and wide range of potential uses, bimetallic nanoparticles (BMNPs), which are tiny particles consisting of two different metal elements, have attracted a lot of interest in numerous fields. This review article provides a comprehensive analysis of the composition, structural characteristics, and several synthesis processes employed in the production of BMNPs. Additionally, it delves into the unique properties and synergistic effects that set BMNPs apart from other materials. This review also focuses on the various antimicrobial activities shown by bimetallic nanoparticles, such as the rupturing of microbial cell membranes, the production of reactive oxygen species (ROS), and the regulation of biofilm formation. An extensive review of in vitro studies confirms the remarkable antibacterial activity of BMNPs against a variety of pathogens and sheds light on the dose-response relationship. The efficacy and safety of BMNPs in practical applications are assessed in this study. It also delves into the synergistic effects of BMNPs with traditional antimicrobial drugs and their ability to overcome multidrug resistance, providing mechanistic insight into these phenomena. Wound healing, infection prevention, and antimicrobial coatings on medical equipment are only some of the clinical applications of BMNPs that are examined, along with the difficulties and possible rewards of clinical translation. This review covers nanoparticle-based antibacterial regulation and emerging uses. The essay concludes with prospects for hybrid systems, site-specific targeting, and nanoparticle-mediated gene and drug delivery. In summary, bimetallic nanoparticles have surfaced as a potential solution, offering the public a more promising and healthier future.
Collapse
Affiliation(s)
- Sharda Bharti
- Department of Biotechnology, National Institute of Technology (NIT) Raipur, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
5
|
Liaqat F, Vosqa UT, Khan F, Haleem A, Shaik MR, Siddiqui MR, Khan M. Light-Driven Catalytic Activity of Green-Synthesized SnO 2/WO 3-x Hetero-nanostructures. ACS OMEGA 2023; 8:20042-20055. [PMID: 37305313 PMCID: PMC10249087 DOI: 10.1021/acsomega.3c02330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
This work reports an environmentally friendly and economically feasible green synthesis of monometallic oxides (SnO2 and WO3) and their corresponding mixed metal oxide (SnO2/WO3-x) nanostructures from the aqueous Psidium guajava leaf extract for light-driven catalytic degradation of a major industrial contaminant, methylene blue (MB). P. guajava is a rich source of polyphenols that acts as a bio-reductant as well as a capping agent in the synthesis of nanostructures. The chemical composition and redox behavior of the green extract were investigated by liquid chromatography-mass spectrometry and cyclic voltammetry, respectively. Results acquired by X-ray diffraction and Fourier transform infrared spectroscopy confirm the successful formation of crystalline monometallic oxides (SnO2 and WO3) and bimetallic SnO2/WO3-x hetero-nanostructures capped with polyphenols. The structural and morphological aspects of the synthesized nanostructures were analyzed by transmission electron microscopy and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Photocatalytic activity of the synthesized monometallic and hetero-nanostructures was investigated for the degradation of MB dye under UV light irradiation. Results indicate a higher photocatalytic degradation efficiency for mixed metal oxide nanostructures (93.5%) as compared to pristine monometallic oxides SnO2 (35.7%) and WO3 (74.5%). The hetero-metal oxide nanostructures prove to be better photocatalysts with reusability up to 3 cycles without any loss in degradation efficiency or stability. The enhanced photocatalytic efficiency is attributed to a synergistic effect in the hetero-nanostructures, efficient charge transportation, extended light absorption, and increased adsorption of dye due to the enlarged specific surface area.
Collapse
Affiliation(s)
- Faroha Liaqat
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Urwa tul Vosqa
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fatima Khan
- Department
of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Abdul Haleem
- CAS
Key Laboratory of Soft Matter Chemistry, Department of Polymer Science
and Engineering, University of Science and
Technology of China, Hefei, Anhui 230026, China
| | - Mohammed Rafi Shaik
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Mujeeb Khan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Rodríguez-da-Silva S, El-Hachimi AG, López-de-Luzuriaga JM, Rodríguez-Castillo M, Monge M. Boosting the Catalytic Performance of AuAg Alloyed Nanoparticles Grafted on MoS 2 Nanoflowers through NIR-Induced Light-to-Thermal Energy Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1074. [PMID: 36985968 PMCID: PMC10058585 DOI: 10.3390/nano13061074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
MoS2 nanoflowers (NFs) obtained through a hydrothermal approach were used as the substrate for the deposition of tiny spherical bimetallic AuAg or monometallic Au nanoparticles (NPs), leading to novel photothermal-assisted catalysts with different hybrid nanostructures and showing improved catalytic performance under NIR laser irradiation. The catalytic reduction of pollutant 4-nitrophenol (4-NF) to the valuable product 4-aminophenol (4-AF) was evaluated. The hydrothermal synthesis of MoS2 NFs provides a material with a broad absorption in the Vis-NIR region of the electromagnetic spectrum. The in situ grafting of alloyed AuAg and Au NPs of very small size (2.0-2.5 nm) was possible through the decomposition of organometallic complexes [Au2Ag2(C6F5)4(OEt2)2]n and [Au(C6F5)(tht)] (tht = tetrahydrothiophene) using triisopropilsilane as reducing agent, leading to nanohybrids 1-4. The new nanohybrid materials display photothermal properties arising from NIR light absorption of the MoS2 NFs component. The AuAg-MoS2 nanohybrid 2 showed excellent photothermal-assisted catalytic activity for the reduction of 4-NF, which is better than that of the monometallic Au-MoS2 nanohybrid 4. The obtained nanohybrids were characterised by transmission electron microscopy (TEM), High Angle Annular Dark Field-Scanning Transmission Electron Microscopy-Energy Dispersive X-ray Spectroscopy (HAADF-STEM-EDS), X-ray photoelectron spectroscopy and UV-Vis-NIR spectroscopy.
Collapse
|
7
|
One-pot synthesis of bimetallic Ni/Ag nanosphere inside colloidal silica cavities for in situ SERS monitoring of the elementary steps of chemoselective nitroarene reduction evidenced by DFTB calculation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Ali F, Akbar S, Sillanpaa M, Younas U, Ashraf A, Pervaiz M, Kausar R, Ahmad I, Alothman AA, Ouladsmane M. Recyclable Cu-Ag bimetallic nanocatalyst for radical scavenging, dyes removal and antimicrobial applications. CHEMOSPHERE 2023; 313:137321. [PMID: 36410518 DOI: 10.1016/j.chemosphere.2022.137321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
An ecofriendly and cost effective green method has been used for the synthesis of recyclable, high functional nanoparticles. Bimetallic nanoparticles (BmNPs), Cu-Ag, have been synthesized using beetroot extract as reducing and capping agent. Formation of BmNPs was initially confirmed by UV-visible analysis, having distinct peaks of Ag at 429 nm and Cu at 628 nm. FTIR analysis also confirmed the association of bioactive phytochemicals with Cu-Ag nanoparticles. Crystallinity and morphology of BmNPs was determined through X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), dynamic light scattering (DLS) and energy dispersion X-ray spectroscopy (EDAX). The size of spherical shape Cu-Ag BmNPs was found to be 75.58 nm and EDAX studies confirmed the percent elemental composition of Cu and Ag in synthesized nanocatalyst. Results of different analysis provided supported evidences regarding the formation of BmNPs. Catalytic potential of BmNPs was tested for the degradation of rhodamine B (Rh-B), methylene blue (MB) and methyl orange (MO) dyes. Cu-Ag BmNPs exhibited outstanding catalytic activity for the degradation of selected organic dyes and percent degradation was recorded more than 90% for each dye. In addition, antiradical property of BmNPs was tested employing DPPH● and ABTS●+ assays and it was found to be promising. Synthesized BmNPs also exhibited strong antimicrobial activity against Salmonella typhimurium and Bacillus subtilis. Recyclability of nanoparticles was also evaluated and recovery from dye degradation reaction mixture was successfully achieved. The recovered nanoparticles exhibited same catalytic potential for the degradation of Rh-B. The objective of the current study was to synthesize BmNPs Cu-Ag employing a cost effective green method having promising catalytic, antiradical and antimicrobial potential. Further, BmNPs were reused after recovery from catalytic reactions, proving that BmNPs can be recycled having the same efficiency as that of a freshly prepared Cu-Ag BmNPs.
Collapse
Affiliation(s)
- Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Sadia Akbar
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Mika Sillanpaa
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus, Denmark
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Adnan Ashraf
- Department of Chemistry, The University of Lahore, Lahore, Pakistan.
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Rizwan Kausar
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Ikram Ahmad
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Asma A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ouladsmane
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
Khan MU, Ullah H, Honey S, Gul Z, Ullah S, Ullah B, Manan A, Ullah M, Ali S. Electrochemical Deposition of Au/Ag Nanostructure for the Catalytic Reduction of p-Nitrophenol. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Jannathul Firdhouse M, Lalitha P. Biogenic green synthesis of gold nanoparticles and their applications – A review of promising properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ahmad M, Nawaz T, Assiri MA, Hussain R, Hussain I, Imran M, Ali S, Wu Z. Fabrication of Bimetallic Cu-Ag Nanoparticle-Decorated Poly(cyclotriphosphazene- co-4,4'-sulfonyldiphenol) and Its Enhanced Catalytic Activity for the Reduction of 4-Nitrophenol. ACS OMEGA 2022; 7:7096-7102. [PMID: 35252700 PMCID: PMC8892640 DOI: 10.1021/acsomega.1c06786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/03/2022] [Indexed: 05/24/2023]
Abstract
We reported a study on the preparation of bimetallic Ag-Cu nanoparticles (NPs) impregnated on PZS poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes via a facile and efficient reduction method. Herein, PZS nanotubes consisting of enriched hydroxyl groups are fabricated through an in situ template method, and then, fluctuating the amount ratios of Cu and Ag precursors, bimetallic NPs can be fabricated on readily prepared PZS nanotubes using NaBH4 as a reductant, which results in a series of bimetallic catalysts having tunable catalytic activity. The characterization investigations of scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy results show that Ag-Cu bimetallic NPs are well-dispersed, ultrasmall in size, and well-anchored on the surface of PZS nanotubes. In addition, to examine the catalytic activity and reusability of these nanocomposites, reduction of 4-nitrophenol to 4-aminophenol is utilized as a prototype reaction. The optimized Ag-Cu NPs with a copper ratio of 0.3% are well-stabilized by the organic-inorganic poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) nanotubes. The obtained results show that bimetallic NPs have remarkably higher catalytic ability than that of their monometallic counterparts with maximum catalytic activity. These results are even better than those of noble metal-based bimetallic catalysts and pave the avenue to utilize the polyphosphazene polymer as a substrate material for highly effective bimetallic catalysts.
Collapse
Affiliation(s)
- Muhammad Ahmad
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon 000000, Hong Kong
| | - Tehseen Nawaz
- Department
of Chemistry, The University of Hong Kong, Pokfulam 000000, Hong Kong
| | - Mohammed A. Assiri
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Riaz Hussain
- Division
of Science and Technology, University of
Education Lahore, Lahore 54770, Pakistan
| | - Iftikhar Hussain
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon 000000, Hong Kong
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Shafqat Ali
- Guangdong
Provincial Key Laboratory of Soil and Ground Water Pollution Control,
School of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanpeng Wu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Scala A, Neri G, Micale N, Cordaro M, Piperno A. State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles. Molecules 2022; 27:1134. [PMID: 35164399 PMCID: PMC8839662 DOI: 10.3390/molecules27031134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 01/03/2023] Open
Abstract
Recently, bimetallic nanoparticles (BMNPs) blending the properties of two metals in one nanostructured system have generated enormous interest due to their potential applications in various fields including biosensing, imaging, nanomedicine, and catalysis. BMNPs have been developed later with respect to the monometallic nanoparticles (MNPs) and their physicochemical and biological properties have not yet been comprehensively explored. The manuscript aims at collecting the main design criteria used to synthetize BMNPs focusing on green route synthesis. The influence of experimental parameters such as temperature, time, reagent concentrations, capping agents on the particle growth and colloidal stability are examined. Finally, an overview of their nanotechnological applications and biological profile are presented.
Collapse
Affiliation(s)
- Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
| | - Massimiliano Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
- CNR-ITAE, Via S. Lucia sopra Contesse, 5, 98126 Messina, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
| |
Collapse
|
13
|
Sharma N, Sharma C, Sharma S, Sharma S, Paul S. The synergetic effect of PdCr based bimetallic catalysts supported on RGO-TiO2 for organic transformations. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
14
|
Mejía YR, Reddy Bogireddy NK. Reduction of 4-nitrophenol using green-fabricated metal nanoparticles. RSC Adv 2022; 12:18661-18675. [PMID: 35873318 PMCID: PMC9228544 DOI: 10.1039/d2ra02663e] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 01/19/2023] Open
Abstract
Noble metal (silver (Ag), gold (Au), platinum (Pt), and palladium (Pd)) nanoparticles have gained increasing attention due to their importance in several research fields such as environmental and medical research. This review focuses on the basic perceptions of the green synthesis of metal nanoparticles and their supported-catalyst-based reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The mechanisms for the formation of these nanoparticles and the catalytic reduction of 4-NP are discussed. Furthermore, the parameters that need to be considered in the catalytic efficiency calculations and perspectives for future studies are also discussed. Noble metal (silver (Ag), gold (Au), platinum (Pt), and palladium (Pd)) nanoparticles have gained increasing attention due to their importance in several research fields such as environmental and medical research.![]()
Collapse
Affiliation(s)
- Yetzin Rodriguez Mejía
- Facultad de Química, Universidad Autónoma del estado de México, Paseo Colón esq. Paseo Tollocan s/n, Toluca, Estado de México, C.P. 50120, Mexico
| | | |
Collapse
|
15
|
Prospects of using bioactive compounds in nanomaterials surface decoration and their biomedical purposes. INTERNATIONAL NANO LETTERS 2021. [DOI: 10.1007/s40089-021-00355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Bimetallic nanocomposite (Ag-Au, Ag-Pd, Au-Pd) synthesis using gum kondagogu a natural biopolymer and their catalytic potentials in the degradation of 4-nitrophenol. Int J Biol Macromol 2021; 190:159-169. [PMID: 34480903 DOI: 10.1016/j.ijbiomac.2021.08.211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bimetallic nanoparticles (BNPs) constitute two different metal elements and exhibit relatively superior mechanistic and catalytic efficacies owing to their synergistic functions over monometallic nanoparticles. In the present study various bimetallic Ag-Au, Ag-Pd, Au-Pd nanoparticles were synthesized using a natural biopolymer gum kondagogu (GK) as a reducing and capping agent, by a simple and cost-effective method. The synthesized BNPs when characterized using UV-vis spectroscopy revealed a specific surface plasmon resonance band (SPR) of each nanocomposite. The average particle size of Ag-Au, Ag-Pd, and Au-Pd BNPs was found to be 23 ± 10.3, 21 ± 7.6, and 23 ± 9.4 nm respectively based on transmission electron microscopy analysis. Surface morphology and functional groups on the gum matrix of GK-BNPs were analyzed by XRD and FT-IR respectively. The bimetallic nanocomposites were evaluated for their catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol in the presence of NaBH4. The kinetic studies performed, depicted rate constants for Ag-Au, Ag-Pd, and Au-PdNPs as 0.31, 0.39, and 0.28 min-1 respectively. The catalytic efficiencies of three bimetallic nanocomposites were of the following order Ag-Pd > Ag-Au > Au-Pd. This study establishes the catalytic potentials of the three different bimetallic nanocomposites in the reduction of 4-NP an environmental pollutant, and the impact of their synergistic property.
Collapse
|
17
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
18
|
Ramos RCR, Regulacio MD. Controllable Synthesis of Bimetallic Nanostructures Using Biogenic Reagents: A Green Perspective. ACS OMEGA 2021; 6:7212-7228. [PMID: 33778236 PMCID: PMC7992060 DOI: 10.1021/acsomega.1c00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/01/2021] [Indexed: 05/17/2023]
Abstract
Bimetallic nanostructures are emerging as a significant class of metal nanomaterials due to their exceptional properties that are useful in various areas of science and technology. When used for catalysis and sensing applications, bimetallic nanostructures have been noted to exhibit better performance relative to their monometallic counterparts owing to synergistic effects. Furthermore, their dual metal composition and configuration can be modulated to achieve optimal activity for the desired functions. However, as with other nanostructured metals, bimetallic nanostructures are usually prepared through wet chemical routes that involve the use of harsh reducing agents and hazardous stabilizing agents. In response to intensifying concerns over the toxicity of chemicals used in nanomaterial synthesis, the scientific community has increasingly turned its attention toward environmentally and biologically compatible reagents that can enable green and sustainable nanofabrication processes. This article aims to provide an evaluation of the green synthetic methods of constructing bimetallic nanostructures, with emphasis on the use of biogenic resources (e.g., plant extracts, DNA, proteins) as safe and practical reagents. Special attention is devoted to biogenic synthetic protocols that demonstrate controllable nanoscale features, such as size, composition, morphology, and configuration. The potential use of these biogenically prepared bimetallic nanostructures as catalysts and sensors is also discussed. It is hoped that this article will serve as a valuable reference on bimetallic nanostructures and will help fuel new ideas for the development of more eco-friendly strategies for the controllable synthesis of various types of nanostructured bimetallic systems.
Collapse
Affiliation(s)
- Rufus
Mart Ceasar R. Ramos
- Natural
Sciences Research Institute, University
of the Philippines Diliman, Quezon City 1101, Philippines
| | - Michelle D. Regulacio
- Natural
Sciences Research Institute, University
of the Philippines Diliman, Quezon City 1101, Philippines
- Institute
of Chemistry, University of the Philippines
Diliman, Quezon
City 1101, Philippines
| |
Collapse
|
19
|
Krishnan Sundarrajan S, Pottail L. Green synthesis of bimetallic Ag@Au nanoparticles with aqueous fruit latex extract of Artocarpus heterophyllus and their synergistic medicinal efficacies. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-020-01657-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Mamatha G, Sowmya P, Madhuri D, Mohan Babu N, Suresh Kumar D, Vijaya Charan G, Varaprasad K, Madhukar K. Antimicrobial Cellulose Nanocomposite Films with In Situ Generations of Bimetallic (Ag and Cu) Nanoparticles Using Vitex negundo Leaves Extract. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01819-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
A green synthesis of gold–palladium core–shell nanoparticles using orange peel extract through two-step reduction method and its formaldehyde colorimetric sensing performance. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Masibi KK, Fayemi OE, Adekunle AS, Sherif EM, Ebenso EE. Electrochemical Determination of Caffeine Using Bimetallic Au−Ag Nanoparticles Obtained from Low‐cost Green Synthesis. ELECTROANAL 2020. [DOI: 10.1002/elan.202060198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kgotla K. Masibi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
| | - Omolola E. Fayemi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
| | | | - El‐Sayed M. Sherif
- Center of Excellence for Research in Engineering Materials (CEREM) King Saud University P.O. Box 800 Al-Riyadh 11421 SaudiArabia
- Electrochemistry and Corrosion Laboratory, Department of Physical Chemistry National Research Centre El-Buhouth St. Dokki 12622 Cairo Egypt
| | - Eno E. Ebenso
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences North-West University (Mafikeng Campus) Private Bag X2046 Mahikeng, Mmabatho 2735 South Africa
- Department of Chemistry, College of Science, Engineering and Technology University of South Africa, Florida Roodepoort South Africa 1710
| |
Collapse
|
23
|
A facile synthesis of Cu–CuO–Ag nanocomposite and their hydrogenation reduction of p-nitrophenol. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
Novel silver-platinum bimetallic nanoalloy synthesized from Vernonia mespilifolia extract: Antioxidant, antimicrobial, and cytotoxic activities. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Huynh KH, Pham XH, Kim J, Lee SH, Chang H, Rho WY, Jun BH. Synthesis, Properties, and Biological Applications of Metallic Alloy Nanoparticles. Int J Mol Sci 2020; 21:E5174. [PMID: 32708351 PMCID: PMC7404399 DOI: 10.3390/ijms21145174] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/23/2022] Open
Abstract
Metallic alloy nanoparticles are synthesized by combining two or more different metals. Bimetallic or trimetallic nanoparticles are considered more effective than monometallic nanoparticles because of their synergistic characteristics. In this review, we outline the structure, synthesis method, properties, and biological applications of metallic alloy nanoparticles based on their plasmonic, catalytic, and magnetic characteristics.
Collapse
Affiliation(s)
- Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| | - Sang Hun Lee
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon 24341, Korea;
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| |
Collapse
|
26
|
Manjari G, Saran S, Radhakrishanan S, Rameshkumar P, Pandikumar A, Devipriya SP. Facile green synthesis of Ag-Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 262:110282. [PMID: 32090885 DOI: 10.1016/j.jenvman.2020.110282] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
A facile and eco-friendly green synthesis of silver-copper@zinc oxide (Ag-Cu@ZnO) nanocomposite using Acacia caesia flower extract and their application on catalytic reduction of toxic compounds and electrochemical sensing of nitrite ions are reported. The phytochemicals present in the extract were utilized for the Ag-Cu metal nanoparticles synthesis and also enhanced the binding capability between ZnO and Ag-Cu NPs. The synthesized nanocomposites were characterized by XRD, UV-Vis spectroscopy, Raman spectra, FTIR, SEM, TEM, EDX, XPS and ICP-AES for the formation of Ag-Cu NPs on ZnO. The Ag-Cu@ZnO nanocomposite showed better catalytic efficiency as compared to monometallic nanoparticles for 4-nitrophenol to 4-aminophenol conversion and Rhodamine B and Congo red dye degradation with 99% efficiency up to four cycles. The Ag-Cu@ZnO modified GC electrode showed enhanced catalytic activity towards nitrite oxidation, and it exhibited better performance compared to the other nanocomposites. An appreciable detection limit (17 μM) was achieved with excellent sensitivity for nitrite detection. The sensor was highly selective even in a many-fold higher concentration of co-existing interfering compounds. The good catalytic and electrochemical sensing is mainly ascribed due to the synergistic effect of Ag-Cu on the ZnO in the Ag-Cu@ZnO nanocomposite materials.
Collapse
Affiliation(s)
- G Manjari
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India
| | - S Saran
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India
| | - S Radhakrishanan
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630006, India
| | - P Rameshkumar
- Department of Chemistry, Kalasalingam University (Kalasalingam Academy of Research and Education), Krishnankoil, 626126, India
| | - A Pandikumar
- Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India
| | - Suja P Devipriya
- Department of Ecology and Environmental Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
27
|
Novel strategy of electrochemical analysis of DNA bases with enhanced performance based on copper−nickel nanosphere decorated N,B−doped reduced graphene oxide. Biosens Bioelectron 2020; 147:111735. [DOI: 10.1016/j.bios.2019.111735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022]
|
28
|
Green synthesis of κ-carrageenan@Ag submicron-particles with high aqueous stability, robust antibacterial activity and low cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110185. [DOI: 10.1016/j.msec.2019.110185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 01/26/2023]
|
29
|
Photocrosslinked hybrid composites with Ag, Au or Au-Ag NPs as visible-light triggered photocatalysts for degradation/reduction of aromatic nitroderivatives. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem Rev 2019; 120:986-1041. [PMID: 31725267 DOI: 10.1021/acs.chemrev.9b00187] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alexandra Gellé
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tony Jin
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Luis de la Garza
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gareth D. Price
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Audrey Moores
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
31
|
Shao J, Liu M, Wang Z, Li K, Bao B, Zhao S, Zhou S. Controllable Synthesis of Surface Pt-Rich Bimetallic AuPt Nanocatalysts for Selective Hydrogenation Reactions. ACS OMEGA 2019; 4:15621-15627. [PMID: 31572863 PMCID: PMC6761762 DOI: 10.1021/acsomega.9b02117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Bimetallic nanocatalysts, with efficient and controllable catalytic performance, have a promising application in chemical production. In this study, surface Pt-rich bimetallic AuPt nanoparticles with different Pt/Au ratios were prepared and tested in selective hydrogenation reactions of substituted nitroaromatics. Au nanoparticles were first prepared with n-butyllithium as a rapid reducer, which were further used as seeds in the slow growth process of Pt atoms. Because of the employed sequential reduction method and the following atom diffusion, surface Pt-rich bimetallic AuPt nanoparticles were obtained. Compared with the uniform AuPt alloy nanocatalysts synthesized by the co-reduction method with n-butyllithium as the reducer and monometallic Pt nanocatalysts, the obtained surface Pt-rich AuPt bimetallic nanocatalysts presented an enhanced catalytic selectivity or activity. The performance enhancement is assigned to the optimized Au/Pt interaction in the surface Pt-rich bimetallic nanostructures. This work demonstrates that the optimization of the stoichiometry and construction of bimetallic materials is a feasible method to synthesize controllable and efficient nanocatalysts.
Collapse
|
32
|
Chandna S, Thakur NS, Reddy YN, Kaur R, Bhaumik J. Engineering Lignin Stabilized Bimetallic Nanocomplexes: Structure, Mechanistic Elucidation, Antioxidant, and Antimicrobial Potential. ACS Biomater Sci Eng 2019; 5:3212-3227. [PMID: 33405583 DOI: 10.1021/acsbiomaterials.9b00233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignin, being a natural antioxidant and antimicrobial underutilized biopolymer derived mainly from agro-waste, is a material of great interest. In this study, lignin was chosen as a matrix to synthesize silver-gold bimetallic and monometallic nanocomplexes to explore the synergistic antioxidant and antimicrobial properties of the lignin stabilized nanoagents. The synthesis of the nanocomplexes was carried out using a one pot method, utilizing lignin as the sole source for reducing, capping, and stabilizing the nanoagents. Further, characterization studies were performed to determine the exact structure of the nanocomplexes. The developed nanocomplexes were found to possess substantial phenolic and flavonoid contents, which contributed to their high antioxidant activity. Further, the antioxidant and antimicrobial activity of the lignin-bimetallic and monometallic nanocomplexes was evaluated and compared with pristine lignin. Moreover, the mechanism behind the antimicrobial activity of the nanocomplexes was elucidated through various methods, namely, reactive oxygen generation, nucleic acid leakage, and DNA cleavage studies. The obtained results were greatly supported by scanning electron microscopy, transmission electron microscopy, and live-dead cell imaging techniques. This study is a contribution in converting waste to value added functional nanomaterials for potential antioxidant and antimicrobial applications.
Collapse
Affiliation(s)
- Sanjam Chandna
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Punjab 140306, India
| | - Neeraj Singh Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Punjab 140306, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Punjab 140306, India
| | - Ravneet Kaur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Punjab 140306, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Punjab 140306, India
| |
Collapse
|
33
|
Sub-ppt level voltammetric sensor for Hg2+ detection based on nafion stabilized l-cysteine-capped Au@Ag core-shell nanoparticles. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04298-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Çıplak Z, Getiren B, Gökalp C, Yıldız A, Yıldız N. Green synthesis of reduced graphene oxide-AgAu bimetallic nanocomposite: Catalytic performance. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1613227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Zafer Çıplak
- Department of Chemical Engineering, Ankara University, Ankara, Turkey
| | - Bengü Getiren
- Department of Chemical Engineering, Ankara University, Ankara, Turkey
| | - Ceren Gökalp
- Department of Chemical Engineering, Ankara University, Ankara, Turkey
| | - Atila Yıldız
- Department of Biology, Ankara University, Ankara, Turkey
| | - Nuray Yıldız
- Department of Chemical Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
35
|
Subbiah KS, Beedu SR. Biogenic synthesis of biopolymer-based Ag-Au bimetallic nanoparticle constructs and their anti-proliferative assessment. IET Nanobiotechnol 2019; 12:1047-1055. [PMID: 30964012 DOI: 10.1049/iet-nbt.2018.5135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study reports an eco-friendly-based method for the preparation of biopolymer Ag-Au nanoparticles (NPs) by using gum kondagogu (GK; Cochlospermum gossypium), as both reducing and protecting agent. The formation of GK-(Ag-Au) NPs was confirmed by UV-absorption, fourier transformed infrared (FTIR), atomic force microscopy (AFM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The GK-(Ag-Au) NPs were of 1-12 nm in size. The anti-proliferative activity of nanoparticle constructs was assessed by MTT assay, confocal microscopy, flow cytometry and quantitative real-time polymerase chain reaction (PCR) techniques. Expression studies revealed up-regulation of p53, caspase-3, caspase-9, peroxisome proliferator-activated receptors (PPAR) PPARa and PPARb, genes and down-regulation of Bcl-2 and Bcl-x(K) genes, in B16F10 cells treated with GK-(Ag-Au) NPs confirming the anti-proliferative properties of the nanoparticles.
Collapse
Affiliation(s)
- Kalaignana Selvi Subbiah
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500 007, Telangana, India
| | - Sashidhar Rao Beedu
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500 007, Telangana, India.
| |
Collapse
|
36
|
Lomelí-Marroquín D, Medina Cruz D, Nieto-Argüello A, Vernet Crua A, Chen J, Torres-Castro A, Webster TJ, Cholula-Díaz JL. Starch-mediated synthesis of mono- and bimetallic silver/gold nanoparticles as antimicrobial and anticancer agents. Int J Nanomedicine 2019; 14:2171-2190. [PMID: 30988615 PMCID: PMC6443225 DOI: 10.2147/ijn.s192757] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIM Bimetallic silver/gold nanosystems are expected to significantly improve therapeutic efficacy compared to their monometallic counterparts by maintaining the general biocompatibility of gold nanoparticles (AuNPs) while, at the same time, decreasing the relatively high toxicity of silver nanoparticles (AgNPs) toward healthy human cells. Thus, the aim of this research was to establish a highly reproducible one-pot green synthesis of colloidal AuNPs and bimetallic Ag/Au alloy nanoparticles (NPs; Ag/AuNPs) using starch as reducing and capping agent. METHODS The optical properties, high reproducibility, stability and particle size distribution of the colloidal NPs were analyzed by ultraviolet (UV)-visible spectroscopy, dynamic light scattering (DLS) and ζ-potential. The presence of starch as capping agent was determined by Fourier transform infrared (FT-IR) spectroscopy. The structural properties were studied by X-ray diffraction (XRD). Transmission electron microscopy (TEM) imaging was done to determine the morphology and size of the nanostructures. The chemical composition of the nanomaterials was determined by energy-dispersive X-ray spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS) analysis. To further study the biomedical applications of the synthesized nanostructures, antibacterial studies against multidrug-resistant (MDR) Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) were conducted. In addition, the NPs were added to the growth media of human dermal fibroblast (HDF) and human melanoma cells to show their cytocompatibility and cytotoxicity, respectively, over a 3-day experiment. RESULTS UV-visible spectroscopy confirmed the highly reproducible green synthesis of colloidal AuNPs and Ag/AuNPs. The NPs showed a face-centered cubic crystal structure and an icosahedral shape with mean particle sizes of 28.5 and 9.7 nm for AuNPs and Ag/AuNPs, respectively. The antibacterial studies of the NPs against antibiotic-resistant bacterial strains presented a dose-dependent antimicrobial behavior. Furthermore, the NPs showed cytocompat-ibility towards HDF, but a dose-dependent anticancer effect was found when human melanoma cells were grown in presence of different NP concentrations for 72 hours. CONCLUSION In this study, mono- and bimetallic NPs were synthesized for the first time using a highly reproducible, environmentally friendly, cost-effective and quick method and were successfully characterized and tested for several anti-infection and anticancer biomedical applications.
Collapse
Affiliation(s)
- Diana Lomelí-Marroquín
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico,
| | - David Medina Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115,USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115,USA
| | - Alfonso Nieto-Argüello
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico,
| | - Ada Vernet Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115,USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115,USA
| | - Junjiang Chen
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115,USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115,USA
| | - Alejandro Torres-Castro
- Faculty School of Mechanical and Electrical Engineering (FIME), Autonomous University of Nuevo Leon (UANL), San Nicolás de los Garza, NL 66451, Mexico
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115,USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA 02115,USA
| | - Jorge L Cholula-Díaz
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico,
| |
Collapse
|
37
|
Vaseghi Z, Tavakoli O, Nematollahzadeh A. New insights into mechanistic aspects and structure of polycrystalline Cu/Cr/Ni metal oxide nanoclusters synthesized using Eryngium campestre and Froriepia subpinnata. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-018-0216-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Yonezawa T, Čempel D, Nguyen MT. Microwave-Induced Plasma-In-Liquid Process for Nanoparticle Production. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180285] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - David Čempel
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
39
|
Tang L, Zhu L, Tang F, Yao C, Wang J, Li L. Mild Synthesis of Copper Nanoparticles with Enhanced Oxidative Stability and Their Application in Antibacterial Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14570-14576. [PMID: 30423251 DOI: 10.1021/acs.langmuir.8b02470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Copper nanoparticles possess unique physical and chemical properties; however, their application is often restricted, owing to their tendency to oxidize. In this work, we prepared copper nanoparticles with enhanced oxidative stability via a simple and low-cost method, where a modified starch was used as an environmentally friendly reducing agent and biocompatible polyethylenimine was used as a stabilizer. The prepared copper nanoparticles could be stored in air for at least 6 months without any oxidation in a dried state. Interestingly, our synthesis could even be performed at room temperature with a longer reaction time. We used various characterization methods to study the reaction mechanism. The prepared copper nanoparticles were further uniformly doped into an agar film, and this composite showed excellent bacterial killing efficiency, owing to the antibacterial properties of the copper nanoparticles. Our composite film shows potential for various clinical applications, such as wound dressing materials.
Collapse
Affiliation(s)
- Liangzhen Tang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Li Zhu
- Department of Otolaryngology , Peking University Third Hospital , Beijing 100191 , People's Republic of China
| | - Fu Tang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing , Yangtze Normal University , Chongqing 408100 , People's Republic of China
| | - Jie Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| |
Collapse
|
40
|
Hosseini-Koupaei M, Shareghi B, Saboury AA, Davar F, Sirotkin VA, Hosseini-Koupaei MH, Enteshari Z. Catalytic activity, structure and stability of proteinase K in the presence of biosynthesized CuO nanoparticles. Int J Biol Macromol 2018; 122:732-744. [PMID: 30408449 DOI: 10.1016/j.ijbiomac.2018.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/14/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
Here, CuO nanoparticles were synthesized using Sambucus nigra (elderberry) fruit extract. Further, the binding of proteinase K, as a model enzyme with green synthesized nanoparticles was investigated. The results demonstrated that the structural changes in enzyme were induced by the binding of nanoparticles. These changes were accompanied by the decrease in the Michaelis-Menten constant at 298 K. This means that the enzyme affinity for the substrate was increased. Thermodynamic parameters of protein stability and protein-ligand binding were estimated from the spectroscopic measurements at 298-333 K. Depending on the temperature, CuO nanoparticles showed a dual effect on the thermodynamic stability and binding affinity of enzyme. Nanoparticles increase the stability of the native state of enzyme at room temperature. On the other hand, nanoparticles stabilize the unfolded state of enzyme at 310-333 K. An overall favorable Gibbs energy change was observed for the binding process at 298-333 K. The enzyme-nanoparticle binding is enthalpically driven at room temperature. It was concluded that hydrogen bonding plays a key role in the interaction of enzyme with nanoparticles at 298-310 K. At higher temperatures, the protein-ligand binding is entropically driven. This means that hydrophobic association plays a major role in the proteinase K-CuO binding at 310-333 K.
Collapse
Affiliation(s)
- Mansoore Hosseini-Koupaei
- Department of Biology, Faculty of Science, University of Shahrekord, Shahrekord, P. O. Box .115, Iran; Department of Biology, Naghshe Jahan Institute of Higher Education, Isfahan, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, University of Shahrekord, Shahrekord, P. O. Box .115, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Vladimir A Sirotkin
- Kazan Federal University, A.M. Butlerov Institute of Chemistry, Kremlevskaya str., 18, Kazan 420008, Russia
| | | | - Zahra Enteshari
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
41
|
Synthesis of Bimetallic Gold-Silver (Au-Ag) Nanoparticles for the Catalytic Reduction of 4-Nitrophenol to 4-Aminophenol. Catalysts 2018. [DOI: 10.3390/catal8100412] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bimetallic gold-silver nanoparticles as unique catalysts were prepared using seed colloidal techniques. The catalytic capabilities of the nanoparticles were ascertained in the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. Our results clearly showed that the rate of 4-NP reduction to 4-AP increased with a corresponding decrease in the diameter of the bimetallic NPs. The Au-Ag nanoparticles prepared with 5.0 mL Au seed volume indicated higher reduction activity, which was approximately 1.2 times higher than that of 2.0 mL Au seed volume in the reductive conversion of 4-NP to 4-AP. However, the monometallic NPs showed relatively less catalytic activity in the reductive conversion of 4-NP to 4-AP compared to bimetallic Au-Ag nanoparticles. Our studies also reinforced the improved catalytic properties of the bimetallic Au-Ag nanoparticles structure with a direct impact of the size or diameter and relative composition of the bimetallic catalytic nanoparticles.
Collapse
|
42
|
Toro MCG, Schlegel JP, Giraldo CHC. Radioactive Bimetallic Gold-Silver Nanoparticles Production in a Research Nuclear Reactor. ChemistrySelect 2018. [DOI: 10.1002/slct.201801685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maria Camila Garcia Toro
- Department of Mining and Nuclear Engineering; Missouri University of Science and Technology, 301 W. 14 St, Rolla; MO 65409 USA
| | - Joshua P. Schlegel
- Department of Mining and Nuclear Engineering; Missouri University of Science and Technology, 301 W. 14 St, Rolla; MO 65409 USA
| | - Carlos H. C. Giraldo
- Department of Mining and Nuclear Engineering; Missouri University of Science and Technology, 301 W. 14 St, Rolla; MO 65409 USA
| |
Collapse
|
43
|
Ramrakhiani L, Ghosh S. Metallic nanoparticle synthesised by biological route: safer candidate for diverse applications. IET Nanobiotechnol 2018; 12:392-404. [PMID: 29768220 PMCID: PMC8676404 DOI: 10.1049/iet-nbt.2017.0076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2023] Open
Abstract
Biological synthesis of nanoparticles (NPs) involves greater prospect; however, a detailed review is required for ecofriendly, faster and stable NP formulation in large scale for different commercial applications. The present article highlighted recent updates on biological route of single and bimetallic NP synthesis wherein the chemical reducing agents are eliminated and biological entities are utilised to convert metal ions to NPs. Application of the biological reducing agents ranging from bacteria to fungi and even natural plant extracts have emerged as eco-friendly and cost-effective routes for the synthesis of metal nanomaterials. Potential applications of such NPs, a wide range of analytical techniques used for characterisation and factors influencing the synthesis of NPs are focused. Further, elucidation of the mechanisms associated with the NP formation using microorganisms, as well as plant-based materials are analysed which would be helpful for wide range of readers in the field of NP research for future selection and commercial implementation.
Collapse
Affiliation(s)
- Lata Ramrakhiani
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sourja Ghosh
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
44
|
Staroszczyk H, Ciesielski W, Tomasik P. Starch-metal complexes and metal compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2845-2856. [PMID: 29222920 DOI: 10.1002/jsfa.8820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
Recently, metal derivatives of starch evoked considerable interest. Such metal derivatives can take a form of starch compounds bearing metal atoms and metal carrying moieties either covalently bound or complexed. Starch metal complexes may have a character of either Werner, inclusion, sorption or capillary complexes. In this publication, preparation, structure, properties and numerous current and potential applications of those compounds as well as benefits resulting from the application and formation of the complexes are presented. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanna Staroszczyk
- Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, Poland
| | - Wojciech Ciesielski
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz Academy, Czestochowa, Poland
| | - Piotr Tomasik
- R&D Department, Nantes Nanotechnological Systems, Bolesławiec, Poland
| |
Collapse
|
45
|
|
46
|
Zhang W, Wu W, Long Y, Wang F, Ma J. Co-Ag alloy protected by nitrogen doped carbon as highly efficient and chemoselective catalysts for the hydrogenation of halogenated nitrobenzenes. J Colloid Interface Sci 2018; 522:217-227. [PMID: 29601963 DOI: 10.1016/j.jcis.2018.03.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022]
Abstract
The design of lower-cost alternative heterogeneous catalysts for the hydrogenation of halogenated nitrobenzenes using green method to synthesize the corresponding anilines is highly desirable. In this study, Ag was incorporated into the Co-MOFs during the growing process (Co-Ag(n)-MOFs), and then followed the carbothermal reduction process without any additional procedures, we synthesized a series of Co-Ag(n)@NCs. The self-supported catalysts exhibited excellent and stable catalytic performances for the chemoselective hydrogenation of halogenated nitrobenzenes without obvious dehalogenation. The Co-Ag bimetallic alloy nanoparticles were well-dispersed and protected from aggregation and leaching by the porous nitrogen doped carbon. Besides, either hydrazine hydrate (N2H4·H2O, generating byproducts N2 and H2O) or H2 could be used as green reducing agent with excellent selectivity towards synthesizing the corresponding anilines. And when the Co/Ag content ratio was approximate 1:1, the Co-Ag(1:1)@NC showed the best catalytic performance. Moreover, the Co-Ag(1:1)@NC could be efficiently recovered by using an external magnetic force and reused without obvious decrease of catalytic activity. Thus, such highly efficient, inexpensive, stable and magnetically recyclable catalysts could show great potentials in practical applications for many important reactions.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yu Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Fushan Wang
- Lanzhou Petrochemical Company, PetroChina, Lanzhou 730060, PR China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Gansu Provincial Engineering Laboratory for Chemical Catalysis, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
47
|
Ansari Z, Bhattacharya TS, Saha A, Sen K. Block copolymer mediated generation of bimetallic Ni-Pd nanoparticles: Raman sensors of ethyl paraben and ciprofloxacin. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Leishangthem D, Yumkhaibam MAK, Henam PS, Nagarajan S. An insight into the effect of composition for enhance catalytic performance of biogenic Au/Ag bimetallic nanoparticles. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Čempel D, Nguyen MT, Ishida Y, Tokunaga T, Yonezawa T. Ligand free green plasma-in-liquid synthesis of Au/Ag alloy nanoparticles. NEW J CHEM 2018. [DOI: 10.1039/c7nj05154a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au/Ag alloy nanoparticles were successfully prepared by a microwave-induced plasma in liquid process without any organic protecting or reducing agents.
Collapse
Affiliation(s)
- David Čempel
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Hokkaido 060-8628
- Japan
| | - Mai Thanh Nguyen
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Hokkaido 060-8628
- Japan
| | - Yohei Ishida
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Hokkaido 060-8628
- Japan
| | - Tomoharu Tokunaga
- Department of Materials Science and Engineering
- Faculty of Engineering
- Nagoya University
- Furo-cho
- Chikusa
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering
- Faculty of Engineering
- Hokkaido University
- Hokkaido 060-8628
- Japan
| |
Collapse
|
50
|
Khan S, Narula AK. Synthesis of a bimetallic conducting nano-hybrid composite of Au–Pt@PEDOT exhibiting fluorescence. NEW J CHEM 2018. [DOI: 10.1039/c7nj04298a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One pot novel synthesis of ternary nanocomposite Au–Pt@PEDOT was accomplished using green solvent.
Collapse
Affiliation(s)
- Salma Khan
- Molecular Chemistry Laboratory
- University School of Basic and Applied Sciences
- Guru Gobind Singh Indraprastha University
- Delhi-110078
- India
| | - A. K. Narula
- Molecular Chemistry Laboratory
- University School of Basic and Applied Sciences
- Guru Gobind Singh Indraprastha University
- Delhi-110078
- India
| |
Collapse
|