1
|
Wu J, Liu W, Ngai T. Total internal reflection microscopy: a powerful tool for exploring interactions and dynamics near interfaces. SOFT MATTER 2023. [PMID: 37314857 DOI: 10.1039/d3sm00085k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The occurrence of many micro/macrophenomena is closely related to interactions and dynamics near interfaces. Hence, developing powerful tools for characterizing near-interface interactions and dynamics has attached great importance among researchers. In this review, we introduce a noninvasive and ultrasensitive technique called total internal reflection microscopy (TIRM). The principles of TIRM are introduced first, demonstrating the characteristics of this technique. Then, typical measurements with TIRM and the recent development of the technique are reviewed in detail. At the end of the review, we highlight the great progress of TIRM during the past several decades and show its potential to be more influential in measuring interactions and dynamics near interfaces in various research fields.
Collapse
Affiliation(s)
- Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, N.T., Shatin, Hong Kong, China.
| | - Wei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, N.T., Shatin, Hong Kong, China.
| |
Collapse
|
2
|
Geonzon LC, Kobayashi M, Sugimoto T, Adachi Y. Interaction between silica particles with poly(ethylene oxide) studied using an optical tweezer: insignificant effect of poly(ethylene oxide) on long-range double layer interaction. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Modulating transparency and colour of cellulose nanocrystal composite films by varying polymer molecular weight. J Colloid Interface Sci 2021; 584:216-224. [PMID: 33069020 DOI: 10.1016/j.jcis.2020.09.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
HYPOTHESIS Cellulose nanocrystals (CNC) can produce photonic composite films that selectively reflect light based on their periodic cholesteric structure. The hypothesis of this research is that by incorporating water-soluble polymer, photonic properties of CNC composite film can be designed by manipulating the polymer molecular weight. EXPERIMENTAL Flexible free-standing composite films of five different poly (ethylene glycol) (PEG) molecular weights were prepared via air drying under a controlled environment, and characterised by reflectance UV-vis spectrometer, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Films with each molecular weight were investigated over a concentration range. FINDINGS The colour and transmission haze of the composite films was modified by varying both the PEG molecular weight and concentration. Depending on the molecular weight, the films were able to reflect light from the UV region (242 nm) across the visible spectrum to the near-infrared region (832 nm). Different trends in variation of the reflected light based on the molecular weight was found with increasing PEG concentration and was explained by weak depletion interactions occurring between CNC and PEG, which was reduced with increasing PEG molecular weight.
Collapse
|
4
|
Roozbehi S, Dadashzadeh S, Sajedi RH. An enzyme-mediated controlled release system for curcumin based on cyclodextrin/cyclodextrin degrading enzyme. Enzyme Microb Technol 2020; 144:109727. [PMID: 33541570 DOI: 10.1016/j.enzmictec.2020.109727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 12/28/2022]
Abstract
In this study, an enzyme-triggered system based on β-cyclodextrin (β-CD) has been developed to achieve controlled release of hydrophobic drugs in the presence of maltogenic amylase (MAase). The inclusion complex formation of curcumin (CUR), as a model anticancer compound, with β-CD was characterized by fluorescence and Fourier transform infrared (FTIR) spectroscopy. CUR was loaded into β-CD with an encapsulation efficiency of approximately 30 %. The in vitro profiles of CUR release from β-CD showed that 100 % of the drug was released after one hour incubation in the presence of MAase with cyclodextrin degrading activity. Fluorescence microscopy images indicate a significantly greater cellular uptake of CUR using β-CD-CUR/MAase system compared to β-CD-CUR inclusion complex without MAase. The β-CD-CUR/MAase system exhibited lower IC50 values and greater anti-proliferative effects in comparison with free CUR and β-CD-CUR in MCF-7 and Huh-7 cancer cells. The results from fluorescence microscopy and flow cytometric assay using the acridine orange/ethidium bromide and Annexin V-PE/7-AAD staining suggest that the β-CD-CUR/MAase system exhibited higher cytotoxic and apoptotic effects on cancer cells compared to other formulations. This triggered release of CUR in the presence of MAase is owing to the β-CD degradation by MAase resulting ring opening and chain scission in β-CD. We demonstrate that this enzyme-mediated controlled release system has a potential application for controlled release of poorly water-soluble drugs or hydrophobic compounds such as CUR.
Collapse
Affiliation(s)
- Sahar Roozbehi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Vali-e-asr Ave., Niayesh Junction, PO Box: 14155-6153, Tehran, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran.
| |
Collapse
|
5
|
Amano KI, Ishihara T, Hashimoto K, Ishida N, Fukami K, Nishi N, Sakka T. Stratification of Colloidal Particles on a Surface: Study by a Colloidal Probe Atomic Force Microscopy Combined with a Transform Theory. J Phys Chem B 2018; 122:4592-4599. [PMID: 29611708 DOI: 10.1021/acs.jpcb.8b01082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colloidal probe atomic force microscopy (CP-AFM) can be used for measuring force curves between the colloidal probe and the substrate in a colloidal suspension. In the experiment, an oscillatory force curve reflecting the layer structure of the colloidal particles on the substrate is usually obtained. However, the force curve is not equivalent to the interfacial structure of the colloidal particles. In this paper, the force curve is transformed into the number density distribution of the colloidal particles as a function of the distance from the substrate surface using our newly developed transform theory. It is found by the transform theory that the interfacial stratification is enhanced by an increase in an absolute value of the surface potential of the colloidal particle, despite a simultaneous increase in a repulsive electrostatic interaction between the substrate and the colloidal particle. To elucidate the mechanism of the stratification, an integral equation theory is employed. It is found that crowding of the colloidal particles in the bulk due to the increase in the absolute value of the surface potential of the colloidal particle leads to pushing out some colloidal particles to the wall. The combined method of CP-AFM and the transform theory (the experimental-theoretical study of the interfacial stratification) is related to colloidal crystallization, glass transition, and aggregation on a surface. Thus, the combined method is important for developments of colloidal nanotechnologies.
Collapse
Affiliation(s)
- Ken-Ichi Amano
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Taira Ishihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Kota Hashimoto
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Naoyuki Ishida
- Division of Applied Chemistry, Graduate School of Natural Science and Technology , Okayama University , Okayama 700-8530 , Japan
| | - Kazuhiro Fukami
- Department of Materials Science and Engineering, Graduate School of Engineering , Kyoto University , Kyoto 606-8501 , Japan
| | - Naoya Nishi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Tetsuo Sakka
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| |
Collapse
|
6
|
Luo X, Wang Y, Lin H, Qu F. DOX-Fe3O4@mSiO2-PO-FA nanocomposite for synergistic chemo- and photothermal therapy. RSC Adv 2016. [DOI: 10.1039/c6ra23292b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A DOX-Fe3O4@mSiO2-PO-FA nanocomposite based drug delivery system for cancer chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Xiangjie Luo
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- PR China
| | - Ying Wang
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- PR China
| | - Huiming Lin
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- PR China
| | - Fengyu Qu
- College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin
- PR China
| |
Collapse
|
7
|
Zhang T, Ding Z, Lin H, Cui L, Yang C, Li X, Niu H, An N, Tong R, Qu F. pH‐Sensitive Gold Nanorods with a Mesoporous Silica Shell for Drug Release and Photothermal Therapy. Eur J Inorg Chem 2015; 2015:2277-2284. [DOI: 10.1002/ejic.201403247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Indexed: 01/06/2025]
Abstract
AbstractA pH‐sensitive nanocarrier has been developed for the controlled intracellular release of drugs. The nanocarrier, which is approximately 75 nm in size, is composed of a gold nanorod (GNR) core and mesoporous silica shell (GNR@mSiO2) and shows good stability and biocompatibility, and excellent photothermal effects. Doxorubicin hydrochloride (DOX), a typical anticancer drug, was adopted as the model drug, and was connected to the mesoporous silica through Schiff base bonding. The drug‐loading nanocarriers (GNR@mSiO2‐DOX) exhibit enhanced drug release under acidic conditions owing to the sensitive Schiff base linker, whereas at high pH values low levels of premature release can be detected. The sensitive release mechanism was further investigated by monitoring the zeta potential before and after drug release. HeLa cells were used as typical cancer cells, and detailed cell experiments were carried out to confirm the good biocompatibility, rapid uptake, and acid‐enhanced drug delivery of GNR@mSiO2‐DOX. Moreover, the synergistic effect of chemotherapy and hyperthermia (photothermal effect from GNRs) of the nanocarrier can be expected to lead to improved therapy effects on cancer treatment.
Collapse
|
8
|
Schein P, Kang P, O'Dell D, Erickson D. Nanophotonic force microscopy: characterizing particle-surface interactions using near-field photonics. NANO LETTERS 2015; 15:1414-20. [PMID: 25625877 PMCID: PMC4666516 DOI: 10.1021/nl504840b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Direct measurements of particle-surface interactions are important for characterizing the stability and behavior of colloidal and nanoparticle suspensions. Current techniques are limited in their ability to measure pico-Newton scale interaction forces on submicrometer particles due to signal detection limits and thermal noise. Here we present a new technique for making measurements in this regime, which we refer to as nanophotonic force microscopy. Using a photonic crystal resonator, we generate a strongly localized region of exponentially decaying, near-field light that allows us to confine small particles close to a surface. From the statistical distribution of the light intensity scattered by the particle we are able to map out the potential well of the trap and directly quantify the repulsive force between the nanoparticle and the surface. As shown in this Letter, our technique is not limited by thermal noise, and therefore, we are able to resolve interaction forces smaller than 1 pN on dielectric particles as small as 100 nm in diameter.
Collapse
Affiliation(s)
- Perry Schein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Pilgyu Kang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dakota O'Dell
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Xing X, Hua L, Ngai T. Depletion versus stabilization induced by polymers and nanoparticles: The state of the art. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2014.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Guo W, Yang C, Cui L, Lin H, Qu F. An enzyme-responsive controlled release system of mesoporous silica coated with Konjac oligosaccharide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:243-249. [PMID: 24380643 DOI: 10.1021/la403494q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A simple and green method to fabricate an ingenious enzyme-responsive drug controlled release system was presented. Mesoporous silica material (mSiO2) 100 nm in size was used as the host, and Konjac oligosaccharide (KOGC) was employed to seal the nanopores of mSiO2 to inhibit the drug release. Rhodamine B was used as the model cargo to reveal the release behavior of the system. The KOGC-modified mSiO2 (mSiO2@KOGC) retains the drug until it reaches the colonic environment where bacteria secrete enzymes (β-mannanase) can degrade KOGC and make drug release. The amount of KOGC and enzyme can be used to adjust the release performance. And all the release behaviors fit the two-step Higuchi model, which predominate by KOGC degradation and mesoporous structure, respectively. With well bioactivity and selectivity, the system has potential application as an oral medicine carrier for treating intestinal disease.
Collapse
Affiliation(s)
- Wei Guo
- Department of Photoelectric Band Gap Materials Key Laboratory of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University , Harbin 150025, China
| | | | | | | | | |
Collapse
|
11
|
Gong X, Wang Z, Ngai T. Direct measurements of particle–surface interactions in aqueous solutions with total internal reflection microscopy. Chem Commun (Camb) 2014; 50:6556-70. [DOI: 10.1039/c4cc00624k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature article reviews the experimental studies of the interactions between designed colloidal surfaces in the presence or absence of macromolecules/nanoparticles including depletion attraction, steric repulsion, bridging flocculation, and specific interactions by using Total Internal Reflection Microscopy.
Collapse
Affiliation(s)
- Xiangjun Gong
- Faculty of Materials Science and Engineering
- South China University of Technology
- Guangzhou, P. R. China
| | - Zhaohui Wang
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, Hong Kong
| | - To Ngai
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, Hong Kong
| |
Collapse
|