1
|
Samal PP, Maiti A, Patel S, Paul H, Chandra G, Mishra P, Daschakraborty S, Nayak A. Quantifying Hydrogen-Bonding Interactions in the Self-Assembly of Photoresponsive Azobenzene Amphiphiles at the Air-Water Interface. J Phys Chem Lett 2024; 15:9193-9200. [PMID: 39213655 DOI: 10.1021/acs.jpclett.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amphiphilic azobenzene molecules offer ample scope to design functional supramolecular systems in an aqueous medium that can be controlled by light. Despite their widespread applications in photopharmacology and optoelectronics, the self-assembly pathways and energy landscapes of these systems are not well understood. Here, we report combined molecular dynamics (MD) simulation and surface manometry studies on a specially designed alkylated, meta-substituted azobenzene derivative to quantify the hydrogen-bonding interactions in the self-assembled monolayers of its photoisomers. The z-density profile, radial distribution function, order parameters, and hydrogen bond analyzed using MD simulations corroborated the experimental observations of changes in surface pressure, dipole moment, and thickness of the monolayers. Even a small change in the number of hydrogen bonds in the molecule-molecule and molecule-water interactions causes significant changes in the monolayer properties. These results are fundamentally important for engineering photoresponsive molecules with tailored properties for applications in targeted drug delivery and other industrial applications.
Collapse
Affiliation(s)
| | - Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, India 801103
| | - Samridhi Patel
- Department of Chemistry, Central University of South Bihar, Gaya, India 824236
| | - Himangshu Paul
- Department of Physics, Indian Institute of Technology Patna, Bihta, India 801103
| | - Girish Chandra
- Department of Chemistry, Central University of South Bihar, Gaya, India 824236
| | - Puneet Mishra
- Department of Physics, Central University of South Bihar, Gaya, India 824236
| | | | - Alpana Nayak
- Department of Physics, Indian Institute of Technology Patna, Bihta, India 801103
| |
Collapse
|
2
|
Arslanov VV, Ermakova EV, Krylov DI, Popova OO. On the relationship between the properties of planar structures of non-ionic surfactants and their vesicular analogues - Niosomes. J Colloid Interface Sci 2023; 640:281-295. [PMID: 36863184 DOI: 10.1016/j.jcis.2023.02.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
In recent years, the study of niosomes as nanocarriers alternative to liposomes has received increasing attention. In contrast to well-studied liposome membranes, many aspects of the behavior of analogous niosome bilayers have not been studied. This paper considers one of these aspects related to the communication between the physicochemical properties of planar and vesicular objects. We present the first results of comparative studies of Langmuir monolayers of binary and ternary (with cholesterol) mixtures of non-ionic surfactants based on sorbitan esters and niosomal structures assembled from the same materials. The Thin-Film Hydration (TFH) method in the gentle shaking version was used to produce the particles of large sizes, while small unilamellar high quality vesicles with a unimodal distribution of particles were prepared by TFH using ultrasonic treatment and extrusion. An analysis of the structural organization and phase state of monolayers based on compression isotherms and supplemented by thermodynamic calculations, as well as the results of determining the particle morphology, polarity and microviscosity of niosome shells, made it possible to obtain fundamental data on the intermolecular interactions of the components and their packing in shells and to relate these data to the properties of niosomes. This relationship can be used to optimize the composition of niosome membranes and predict the behavior of these vesicular systems. It was shown that cholesterol excess creates regions of bilayers with increased rigidity (like "lipid rafts"), which hinders the process of folding film fragments into small niosomes.
Collapse
Affiliation(s)
- Vladimir V Arslanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia.
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Daniil I Krylov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Olga O Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| |
Collapse
|
3
|
Szafran K, Jurak M, Mroczka R, Wiącek AE. Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings. Pharmaceutics 2022; 14:2815. [PMID: 36559307 PMCID: PMC9780983 DOI: 10.3390/pharmaceutics14122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Surface properties of polyethylene terephthalate (PET) coated with the ternary monolayers of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the immunosuppressant cyclosporine A (CsA), and the antioxidant lauryl gallate (LG) were examined. The films were deposited, by means of the Langmuir-Blodgett (LB) technique, on activated by air low temperature plasma PET plates (PETair). Their topography and surface chemistry were determined with the help of atomic force microscopy (AFM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS), respectively, while wettability was evaluated by the contact angle measurements. Then, the surface free energy and its components were calculated from the Lifshitz-van der Waals/Acid-Base (LWAB) approach. The AFM imaging showed that the Langmuir monolayers were transferred effectively and yielded smoothing of the PETair surface. Mass spectrometry confirmed compatibility of the quantitative and qualitative compositions of the monolayers before and after the transfer onto the substrate. Moreover, the molecular arrangement in the LB films and possible mechanisms of DOPC-CsA-LG interactions were determined. The wettability studies provided information on the type and magnitude of the interactions that can occur between the biocoatings and the liquids imitating different environments. It was found that the changes from open to closed conformation of CsA molecules are driven by the hydrophobic environment ensured by the surrounding DOPC and LG molecules. This process is of significance to drug delivery where the CsA molecules can be released directly from the biomaterial surface by passive diffusion. The obtained results showed that the chosen techniques are complementary for the characterization of the molecular organization of multicomponent LB films at the polymer substrate as well as for designing biocompatible coatings with precisely defined wettability.
Collapse
Affiliation(s)
- Klaudia Szafran
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Małgorzata Jurak
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| | - Robert Mroczka
- Laboratory of X-ray Optics, Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
| |
Collapse
|
4
|
Investigation of [3H]diazepam derivatives as allosteric modulators of GABAA receptor α1β2γ2 subtypes: combination of molecular docking/dynamic simulations, pharmacokinetics/drug-likeness prediction, and QSAR analysis. Struct Chem 2022; 34:791-823. [PMID: 35971551 PMCID: PMC9365687 DOI: 10.1007/s11224-022-02029-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
In this paper, a data set of [3H] diazepam derivatives was analyzed using various computational methods: molecular docking/dynamic simulations, and QSAR analysis. The main aims of these studies are to understand the binding mechanisms by which benzodiazepines allosterically modulate GABAA receptor α1β2γ2 subtypes, from inducing neuronal inhibition at lower doses to the anesthetic effect at higher doses, and also, to define the structural requirements that contribute to improving the response of GABAA/α1β2γ2 receptor to benzodiazepine drugs. The results of the molecular docking study allowed selecting Ro12-6377 and proflazepam as the best modulators for the four binding sites simultaneously. Subsequently, the stability of the selected complexes was investigated by performing molecular dynamics simulation. The latter confirmed the features of both modulators to exert direct effects on the chloride-channel lining residues. Pharmacokinetics and drug-likeness profile were assessed through in silico tool. Furthermore, a QSAR analysis was conducted using an improved vemolecular dynamics simulations proposed byrsion of PLS regression. The goodness of fit and the predictive power of the resulting PLS model were estimated according to internal and external validation parameters: R2 = 0.632, R2adj = 0.584, F = 12.806; p-value = 6.2050e − 07, Q2loo = 0.639, and Q2F3 = 0.813. Clearly, the obtained results ensure the predictive ability of the developed QSAR model for the design of new high-potency benzodiazepine drugs.
Collapse
|
5
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Commonly used surfactants sodium dodecyl sulphate, cetylpyridinium chloride and sodium laureth sulphate and their effects on antioxidant defence system and oxidative stress indices in Cyprinus carpio L.: an integrated in silico and in vivo approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30622-30637. [PMID: 34993779 DOI: 10.1007/s11356-021-17864-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The present study evaluated the homology modelling, in silico prediction and characterization of Cyprinus carpio cytochrome P450, as well as molecular docking experiments between the modelled protein and the surfactants sodium dodecyl sulphate (SDS), sodium laureth sulphate (SLES) and cetylpyridinium chloride (CPC). Homology modelling of cytochrome P450 was performed using the best fit template structure. The structure was optimized with 3D refine, and the ultimate 3D structure was checked with PROCHEK and ERRATA. ExPASy's ProtParam was likewise used to analyse the modelled protein's physiochemical and stereochemical attributes. To establish the binding pattern of each ligand to the targeted protein and its effect on the overall protein conformation, molecular docking calculations and protein-ligand interactions were performed. Our in silico analysis revealed that hydrophobic interactions with the active site amino acid residues of cytochrome p450 were more prevalent than hydrogen bonds and salt bridges. The in vivo analysis exhibited that exposure of fish to sublethal concentrations (10% and 30% of 96 h LC50) of SDS (0.34 and 1.02 mg/l), CPC (0.002 and 0.006 mg/l) and SLES (0.69 and 2.07 mg/l) at 15d, 30d and 45d adversely affected the oxidative stress and antioxidant enzymes (CAT, SOD, GST, GPx and MDA) in the liver of Cyprinus carpio. As a result, the study suggests that elicited oxidative stress, prompted by the induction of antioxidant enzymes activity, could be attributable to the stable binding of cytochrome P450 with SDS, CPC and SLES which ultimately leads to the evolution of antioxidant enzymes for its neutralization.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
6
|
Bhattacharya R, Daoud I, Chatterjee A, Chatterjee S, Saha NC. An integrated in silico and in vivo approach to determine the effects of three commonly used surfactants sodium dodecyl sulphate, cetylpyridinium chloride and sodium laureth sulphate on growth rate and hematology in Cyprinus carpio L. Toxicol Mech Methods 2021; 32:132-144. [PMID: 34445924 DOI: 10.1080/15376516.2021.1973633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The purpose of this work is to evaluate the homology modeling, in silico prediction, and characterization of somatotropin and erythropoietin from Cyprinus carpio as well as molecular docking and simulation experiments between the modeled proteins and surfactants sodium dodecyl sulfate (SDS), sodium laureth sulfate (SLES) and cetylpyridinium chloride (CPC). Using the best fit template structure, homology modeling of somatotropin and erythropoietin of Cyprinus carpio respectively was conducted. The model structures were improved further with 3Drefine, and the final 3D structures were verified with PROCHEK, ERRATA and ProQ. The physiochemical, as well as the stereochemical parameters of the modeled proteins, were evaluated using ExPASy's ProtParam. Molecular docking calculations, protein-ligand interactions, and protein flexibility analysis were carried out to determine the binding pattern of each ligand to the targeted proteins and their effect on the overall proteins' conformation. Our in silico analysis showed that hydrophobic interactions with the active site amino acid residues of the modeled proteins (somatotropin and erythropoietin) were more prevalent than hydrogen bonds and salt bridges that affect the flexibility and stability of the somatotropin and erythropoietin as revealed from our protein flexibility analysis. The in vivo analysis showed that sublethal concentrations of SDS, SLES, and CPC negatively affected the growth and hematological parameters of Cyprinus carpio. Hence, it may be inferred from the study that the alterations in the flexibility of somatotropin and erythropoietin of Cyprinus carpio upon addition of SDS, CPC and SLES might be attributable to the reduction in growth and hematological parameters.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| | - Ismail Daoud
- Laboratory of Natural and Bioactive Substances, University of Abou-Bakr Belkaid, Tlemcen, Algeria.,Department of Matter Sciences, University of Mohamed Khider Biskra, Biskra, Algeria
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, India
| |
Collapse
|
7
|
Jurak M, Szafran K, Cea P, Martín S. Analysis of Molecular Interactions between Components in Phospholipid-Immunosuppressant-Antioxidant Mixed Langmuir Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5601-5616. [PMID: 33915045 PMCID: PMC8280729 DOI: 10.1021/acs.langmuir.1c00434] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The study of Langmuir monolayers incorporating biomimetic and bioactive substances plays an important role today in assessing the properties and quality of the molecular films for potential biomedical applications. Here, miscibility of binary and ternary monolayers of phospholipid (dioleoyl phosphatidylcholine, DOPC), immunosuppressant (cyclosporine A, CsA), and antioxidant (lauryl gallate, LG) of varying molar fractions was analyzed by means of the Langmuir technique coupled with a surface potential (ΔV) module at the air-water interface. The surface pressure-area per molecule (π-A) isotherms provided information on the physical state of the films at a given surface pressure, the monolayer packing and ordering, and the type and strength of intermolecular interactions. Surface potential-area (ΔV-A) isotherms revealed the molecular orientation changes at the interface upon compression. In addition, the apparent dipole moment of the monolayer-forming molecules was determined from the surface potential isotherms. The obtained results indicated that the film compression provoked subsequent changes of CsA conformation and/or orientation, conferring better affinity for the hydrocarbon environment. The mutual interactions between the components were analyzed here in terms of the excess and total Gibbs energy of mixing, whose values depended on the stoichiometry of the mixed films. The strongest attraction, thus the highest thermodynamic stability, was found for a DOPC-CsA-LG mixture with a 1:1:2 molar ratio. Based on these results, a molecular model for the organization of the molecules within the Langmuir film was proposed. Through this model, we elucidated the significant role of LG in improving the miscibility of CsA in the model DOPC membrane and thus in increasing the stability of self-assembled monolayers by noncovalent interactions, such as H-bonds and Lifshitz-van der Waals forces. The above 1:1:2 combination of three components is revealed as the most promising film composition for the modification of implant device surfaces to improve their biocompatibility. Further insight into mechanisms concerning drug-membrane interactions at the molecular level is provided, which results in great importance for biocoating design and development as well as for drug release at target sites.
Collapse
Affiliation(s)
- Małgorzata Jurak
- Department
of Interfacial Phenomena, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Skłodowska
University, 20031 Lublin, Poland
- . Phone: +48815375547. Fax: +48815375656
| | - Klaudia Szafran
- Department
of Interfacial Phenomena, Institute of Chemical Sciences, Faculty
of Chemistry, Maria Curie-Skłodowska
University, 20031 Lublin, Poland
| | - Pilar Cea
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Santiago Martín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Kimura Y, Mashiyama Y, Maruyama H, Fujimori A. Extension of "Interfacial Adsorption Denaturation" Behavior Interpretation Based on Gibbs Monolayer Formation by Biomolecules. J Oleo Sci 2021; 70:349-362. [PMID: 33658466 DOI: 10.5650/jos.ess20222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using glucose oxidase and salmon testis-derived DNA molecules, we sought to extend the recently proposed idea of interfacial adsorption denaturation. The surface pressure-time (π-t) isotherm of the glucose oxidase Gibbs monolayer exhibited a rapid increase in surface pressure and a relatively prompt transition to a liquid condensed film. The appearance of this rapid liquid expansion phase occurred much earlier than that previously identified for lysozyme, trypsin, cytochrome C, and luciferase. This experimental finding was linked to the number of hydrophobic residues in the constituent unit, and the number of hydrophobic residues in glucose oxidase was the highest among these biomolecules. On the other hand, DNA molecules do not have such hydrophobic groups, or present a positive surface on the π-t curve. However, interfacial adsorption occurred, and the existence of molecules at the air/water interface was confirmed, even in the two-dimensional gas phase state. Furthermore, it was confirmed that an increase in surface pressure was detected during the formation of a mixed film of DNA molecules and biomolecules, forming a stable Gibbs monolayer. This mimic the behavior of mixed monolayer formation with matrix molecules in Langmuir monolayers. Moreover, it was clarified that the interfacial adsorption denaturation behavior changed when pH dependence was evaluated considering the isoelectric point of the biomolecular group.
Collapse
Affiliation(s)
- Yusuke Kimura
- Graduate School of Science and Engineering, Saitama University
| | | | - Haruka Maruyama
- Graduate School of Science and Engineering, Saitama University
| | | |
Collapse
|
9
|
Miclette Lamarche R, DeWolf C. Strong Headgroup Interactions Drive Highly Directional Growth and Unusual Phase Co-Existence in Self-Assembled Phenolic Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45354-45363. [PMID: 31710200 DOI: 10.1021/acsami.9b16958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Self-assembled materials as surface coatings are used to confer functional properties to substrates, but such properties are highly dependent on molecular organization that can be controlled through tailoring the noncovalent interactions. For monomolecular films, it is well-known that strong, dipolar interactions can oppose line tension generating noncircular domain growth. While many surfactant films exhibit liquid crystalline arrangement of the alkyl chains, there are relatively few reports of crystalline headgroups. Here, we report the self-assembly of phenolic surfactants where the combination of hydrogen bonding and π-stacking leads to a herringbone arrangement of the headgroups, generating a molecular super-lattice that can be observed using grazing incidence X-ray diffraction; such an arrangement has been previously proposed for related phenolic systems but never experimentally observed. We also investigated using pH to modulate the intermolecular interactions and the response of the system in terms of molecular organization. The first hydroxyl deprotonation does not appear to impact the structure but has significant impact on the domain size and morphology. Higher pH generates both strong directional domain growth and a loss of the molecular lattice structure, attributed to a second deprotonation. In contrast, a shorter chain surfactant, lauryl gallate, forms a liquid expanded phase that can contract upon deprotonation. In the condensed phase, the deprotonation kinetics are unusually slow for which an internal charge re-organization is proposed. The slow kinetics leads to the co-existence of three distinct phases for a single component system over relatively long timescales and provides evidence of a liquid-mediated polymorphic transformation process in two-dimensional, soft-matter films. This work has implications for understanding the long-range ordering in aromatic self-assembled structures and the mechanisms underlying Langmuir monolayer polymorphism.
Collapse
Affiliation(s)
- Renaud Miclette Lamarche
- Department of Chemistry and Biochemistry and Centre for NanoScience Research , Concordia University , 7141 Sherbrooke St. West , Montreal H4B 1R6 , Quebec , Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research , Concordia University , 7141 Sherbrooke St. West , Montreal H4B 1R6 , Quebec , Canada
| |
Collapse
|
10
|
Deschênes L, Lyklema J, Danis C, Saint-Germain F. Phase transitions in polymer monolayers: Application of the Clapeyron equation to PEO in PPO-PEO Langmuir films. Adv Colloid Interface Sci 2015; 222:199-214. [PMID: 25488283 DOI: 10.1016/j.cis.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/19/2022]
Abstract
In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature. Once this is validated, the Clapeyron law allows us to obtain the entropy and enthalpy differences between two coexisting phases. In turn, this information can be used to obtain insight into the conformational properties of the films and changes therein. This approach has a wide potential for obtaining additional information on polymer adsorption at interfaces and the structure of their monolayer films. The 2D Clapeyron law was applied emphasizing polyethylene oxide (PEO) in polypropylene oxide (PPO)-PEO block copolymers, based on new well-defined data for their Langmuir films. Values for enthalpy per monomer of 0.12 and 0.23 kT were obtained for the phase transition of two different PEO chains (Neo of 2295 and 409, respectively). This enthalpy was estimated to correspond to 1.2±0.4 kT per EO monomer present in train conformation at the air/water interface.
Collapse
Affiliation(s)
- Louise Deschênes
- Food Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Johannes Lyklema
- Laboratory for Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, Netherlands
| | - Claude Danis
- Food Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada
| | - François Saint-Germain
- Food Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
11
|
Thomas DA, Wang L, Goh B, Kim ES, Beauchamp JL. Mass Spectrometric Sampling of a Liquid Surface by Nanoliter Droplet Generation from Bursting Bubbles and Focused Acoustic Pulses: Application to Studies of Interfacial Chemistry. Anal Chem 2015; 87:3336-44. [DOI: 10.1021/ac504494t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Daniel A. Thomas
- Arthur
Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Lingtao Wang
- Department
of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089, United States
| | - Byoungsook Goh
- Arthur
Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Eun Sok Kim
- Department
of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089, United States
| | - J. L. Beauchamp
- Arthur
Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|