1
|
Schäfer J, Nehls J, Schön M, Mey I, Steinem C. Leaflet-Dependent Distribution of PtdIns[4,5]P 2 in Supported Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1320-1328. [PMID: 31951413 DOI: 10.1021/acs.langmuir.9b03793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supported planar lipid bilayers (SLBs) prepared by spreading of unilamellar vesicles on hydrophilic substrates such as silicon dioxide are frequently used to investigate lipid-protein interactions by means of surface-sensitive methods. In recent years, the receptor lipid phosphatidylinositol-4,5-bisphosphate (PtdIns[4,5]P2) became particularly important as a significant number of proteins bind to this lipid at the inner leaflet of the plasma membrane. Here, we investigated how the lipid PtdIns[4,5]P2 distributes between the two leaflets of an SLB on SiO2 surfaces. We prepared SLBs on SiO2 by spreading small unilamellar vesicles and quantified the adsorption of PtdIns[4,5]P2 binding proteins providing information about the accessibility of PtdIns[4,5]P2. We compared protein binding to PtdIns[4,5]P2 in SLBs with that in lipid monolayers on a 1,1,1-trimethyl-N-(trimethylsilyl)silanamine-functionalized SiO2 surface using reflectometric interference spectroscopy and atomic force microscopy. Our results clearly demonstrate that the accessibility of PtdIns[4,5]P2 for protein binding is reduced in SLBs compared to that in supported hybrid membranes, which is discussed in terms of PtdIns[4,5]P2 distribution in the two leaflets of SLBs.
Collapse
Affiliation(s)
- Jonas Schäfer
- Institute of Organic and Biomolecular Chemistry , University of Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Jessica Nehls
- Institute of Organic and Biomolecular Chemistry , University of Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Markus Schön
- Institute of Organic and Biomolecular Chemistry , University of Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Ingo Mey
- Institute of Organic and Biomolecular Chemistry , University of Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry , University of Göttingen , Tammannstrasse 2 , 37077 Göttingen , Germany
- Max Planck Institute for Dynamics and Self-Organization , Am Fassberg 17 , 37077 Göttingen , Germany
| |
Collapse
|
2
|
Li X, Smith AW. Quantifying Lipid Mobility and Peptide Binding for Gram-Negative and Gram-Positive Model Supported Lipid Bilayers. J Phys Chem B 2019; 123:10433-10440. [DOI: 10.1021/acs.jpcb.9b09709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaosi Li
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio 44325-3601, United States
| | - Adam W. Smith
- Department of Chemistry, The University of Akron, 190 Buchtel Common, Akron, Ohio 44325-3601, United States
| |
Collapse
|
3
|
Li X, Shi X, Kaliszewski MJ, Smith AW. Fluorescence cross-correlation spectroscopy of lipid-peptide interactions on supported lipid bilayers. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2019. [DOI: 10.1016/bs.abl.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
|
5
|
Zeng Z, Shi X, Mabe T, Christie S, Gilmore G, Smith AW, Wei J. Protein Trapping in Plasmonic Nanoslit and Nanoledge Cavities: The Behavior and Sensing. Anal Chem 2017; 89:5221-5229. [PMID: 28418634 DOI: 10.1021/acs.analchem.6b04493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel plasmonic nanoledge device was presented to explore the geometry-induced trapping of nanoscale biomolecules and examine a generation of surface plasmon resonance (SPR) for plasmonic sensing. To design an optimal plasmonic device, a semianalytical model was implemented for a quantitative analysis of SPR under plane-wave illumination and a finite-difference time-domain (FDTD) simulation was used to study the optical transmission and refractive index (RI) sensitivity. In addition, total internal reflection fluorescence (TIRF) imaging was used to visualize the migration of fluorescently labeled bovine serum albumin (BSA) into the nanoslits; and fluorescence correlation spectroscopy (FCS) was further used to investigate the diffusion of BSA in the nanoslits. Transmission SPR measurements of free prostate specific antigen (f-PSA), which is similar in size to BSA, were performed to validate the trapping of the molecules via specific binding reactions in the nanoledge cavities. The present study may facilitate further development of single nanomolecule detection and new nanomicrofluidic arrays for effective detection of multiple biomarkers in clinical biofluids.
Collapse
Affiliation(s)
- Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro , Greensboro, North Carolina 27401, United States
| | - Xiaojun Shi
- Department of Chemistry, The University of Akron , Akron, Ohio 44325, United States
| | - Taylor Mabe
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro , Greensboro, North Carolina 27401, United States
| | - Shaun Christie
- Department of Chemistry, The University of Akron , Akron, Ohio 44325, United States
| | - Grant Gilmore
- Department of Chemistry, The University of Akron , Akron, Ohio 44325, United States
| | - Adam W Smith
- Department of Chemistry, The University of Akron , Akron, Ohio 44325, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering (JSNN), University of North Carolina at Greensboro , Greensboro, North Carolina 27401, United States
| |
Collapse
|
6
|
Duan X, Zhang Y, Li L, Zhang R, Ding M, Huang Q, Xu WS, Shi T, An L. Effects of Concentration and Ionization Degree of Anchoring Cationic Polymers on the Lateral Heterogeneity of Anionic Lipid Monolayers. J Phys Chem B 2017; 121:984-994. [DOI: 10.1021/acs.jpcb.6b12386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaozheng Duan
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yang Zhang
- Northeast Normal University, Changchun 130024, P. R. China
| | - Liangyi Li
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ran Zhang
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Mingming Ding
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Tongfei Shi
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lijia An
- State Key Laboratory
of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
7
|
Huang S, Lim SY, Gupta A, Bag N, Wohland T. Plasma membrane organization and dynamics is probe and cell line dependent. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:1483-1492. [PMID: 27998689 DOI: 10.1016/j.bbamem.2016.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/03/2016] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Abstract
The action and interaction of membrane receptor proteins take place within the plasma membrane. The plasma membrane, however, is not a passive matrix. It rather takes an active role and regulates receptor distribution and function by its composition and the interaction of its lipid components with embedded and surrounding proteins. Furthermore, it is not a homogenous fluid but contains lipid and protein domains of various sizes and characteristic lifetimes which are important in regulating receptor function and signaling. The precise lateral organization of the plasma membrane, the differences between the inner and outer leaflet, and the influence of the cytoskeleton are still debated. Furthermore, there is a lack of comparisons of the organization and dynamics of the plasma membrane of different cell types. Therefore, we used four different specific membrane markers to test the lateral organization, the differences between the inner and outer membrane leaflet, and the influence of the cytoskeleton of up to five different cell lines, including Chinese hamster ovary (CHO-K1), Human cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), fibroblast (WI-38) and rat basophilic leukemia (RBL-2H3) cells by Imaging Total Internal Reflection (ITIR)-Fluorescence Correlation Spectroscopy (FCS). We measure diffusion in the temperature range of 298-310K to measure the Arrhenius activation energy (EArr) of diffusion and apply the FCS diffusion law to obtain information on the spatial organization of the probe molecules on the various cell membranes. Our results show clear differences of the FCS diffusion law and EArr for the different probes in dependence of their localization. These differences are similar in the outer and inner leaflet of the membrane. However, these values can differ significantly between different cell lines raising the question how molecular plasma membrane events measured in different cell lines can be compared. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
Affiliation(s)
- Shuangru Huang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Shi Ying Lim
- NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | - Anjali Gupta
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Nirmalya Bag
- NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore; NUS Centre for Bio-Imaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore.
| |
Collapse
|
8
|
|
9
|
Duan X, Zhang Y, Zhang R, Ding M, Shi T, An L, Huang Q, Xu WS. Spatial Rearrangement and Mobility Heterogeneity of an Anionic Lipid Monolayer Induced by the Anchoring of Cationic Semiflexible Polymer Chains. Polymers (Basel) 2016; 8:polym8060235. [PMID: 30979330 PMCID: PMC6432547 DOI: 10.3390/polym8060235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 01/19/2023] Open
Abstract
We use Monte Carlo simulations to investigate the interactions between cationic semiflexible polymer chains and a model fluid lipid monolayer composed of charge-neutral phosphatidyl-choline (PC), tetravalent anionic phosphatidylinositol 4,5-bisphosphate (PIP₂), and univalent anionic phosphatidylserine (PS) lipids. In particular, we explore how chain rigidity and polymer concentration influence the spatial rearrangement and mobility heterogeneity of the monolayer under the conditions where the cationic polymers anchor on the monolayer. We find that the anchored cationic polymers only sequester the tetravalent PIP₂ lipids at low polymer concentrations, where the interaction strength between the polymers and the monolayer exhibits a non-monotonic dependence on the degree of chain rigidity. Specifically, maximal anchoring occurs at low polymer concentrations, when the polymer chains have an intermediate degree of rigidity, for which the PIP₂ clustering becomes most enhanced and the mobility of the polymer/PIP₂ complexes becomes most reduced. On the other hand, at sufficiently high polymer concentrations, the anchoring strength decreases monotonically as the chains stiffen-a result that arises from the pronounced competitions among polymer chains. In this case, the flexible polymers can confine all PIP₂ lipids and further sequester the univalent PS lipids, whereas the stiffer polymers tend to partially dissociate from the monolayer and only sequester smaller PIP₂ clusters with greater mobilities. We further illustrate that the mobility gradient of the single PIP₂ lipids in the sequestered clusters is sensitively modulated by the cooperative effects between anchored segments of the polymers with different rigidities. Our work thus demonstrates that the rigidity and concentration of anchored polymers are both important parameters for tuning the regulation of anionic lipids.
Collapse
Affiliation(s)
- Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yang Zhang
- School of Business, Northeast Normal University, Changchun 130024, China.
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Mingming Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Wen-Sheng Xu
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Shi X, Kohram M, Zhuang X, Smith AW. Interactions and Translational Dynamics of Phosphatidylinositol Bisphosphate (PIP2) Lipids in Asymmetric Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1732-1741. [PMID: 26829708 DOI: 10.1021/acs.langmuir.5b02814] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphatidylinositol phosphate (PIP) lipids are critical to many cell signaling pathways, in part by acting as molecular beacons that recruit peripheral membrane proteins to specific locations within the plasma membrane. Understanding the biophysics of PIP-protein interactions is critical to developing a chemically detailed model of cell communication. Resolving such interactions is challenging, even in model membrane systems, because of the difficulty in preparing PIP-containing membranes with high fluidity and integrity. Here we report on a simple, vesicle-based protocol for preparing asymmetric supported lipid bilayers in which fluorescent PIP lipid analogues are found only on the top leaflet of the supported membrane facing the bulk solution. With this asymmetric distribution of lipids between the leaflets, the fluorescent signal from the PIP lipid analogue reports directly on interactions between the peripheral molecules and the top leaflet of the membrane. Asymmetric PIP-containing bilayers are an ideal platform to investigate the interaction of PIP with peripheral membrane proteins using fluorescence-based imaging approaches. We demonstrate their usefulness here with a combined fluorescence correlation spectroscopy and single particle tracking study of the interaction between PIP2 lipids and a polycationic polymer, quaternized polyvinylpyridine (QPVP). With this approach we are able to quantify the microscopic features of the mobility coupling between PIP2 lipids and polybasic QPVP. With single particle tracking we observe individual PIP2 lipids switch from Brownian to intermittent motion as they become transiently trapped by QPVP.
Collapse
Affiliation(s)
| | | | - Xiaodong Zhuang
- Institute of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University , 315 Jiangong Building, 800 Dongchuan Road, Shanghai 200240, China
| | | |
Collapse
|