1
|
Vuorte M, Lokka A, Scacchi A, Sammalkorpi M. Dioctyl sodium sulfosuccinate surfactant self-assembly dependency of solvent hydrophilicity: a modelling study. Phys Chem Chem Phys 2023; 25:27250-27263. [PMID: 37791412 DOI: 10.1039/d3cp02173d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The self-assembly of dioctyl sodium sulfosuccinate (AOT) model surfactant in solvent environments of differing polarity is examined by means of dissipative particle dynamics (DPD) bead model parametrized against Hildebrand solubility parameters from atomistic molecular dynamics (MD) simulations. The model predicts that in hydrophobic solvents (e.g. dodecane) the surfactant forms small (Nagg ∼ 8) reverse micellar aggregates, while in a solvent corresponding to water lamellar assembly takes place, in good agreement with literature structural parameters. Interestingly, solvents of intermediate polarity lead to formation of large, internally structured aggregates. In these, the surfactant headgroups cluster within the aggregate, surrounded by a continuous phase formed by the hydrocarbon tails. We show that the partitioning of the headgroups between the aggregate surface layer and the inner clustered phase depends primarily on solvent polarity, and can be controlled by the solvent, but also system composition. Finally, we compare the DPD assembly response to simplified effective interaction potentials derived at dilute concentration limit for the interactions. The comparison reveals that the simplified effective potential descriptions provide good level of insight on the assembly morphologies, despite drastic, isotropic interactions simplification involved.
Collapse
Affiliation(s)
- Maisa Vuorte
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Aapo Lokka
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Applied Physics, School of Science, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
2
|
Liu J, Feng RR, Zhou L, Gai F, Zhang W. Photoenhancement of the C≡N Stretching Vibration Intensity of Aromatic Nitriles. J Phys Chem Lett 2022; 13:9745-9751. [PMID: 36222647 DOI: 10.1021/acs.jpclett.2c02418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The C≡N stretching vibration is a versatile infrared (IR) reporter that is useful for a wide range of applications. Aiming to further expand its spectroscopic utility, herein, we show that, using 4-cyanoindole and 4-cyano-7-azaindole as examples, photoexcitation can significantly shift the frequency (νCN) and enhance the molar extinction coefficient (εCN) of this vibrational mode of aromatic nitriles and that, for these indole derivatives, the enhancement factor can reach 13. Moreover, we find that while solvent relaxation at the excited electronic state(s) always leads to an increase in εCN, its effect on νCN depends on the solute and the solvent. Taken together, these results demonstrate that solvent relaxation can differently affect the local environment of the nitrile group and its conjugation with the indole ring and, more importantly, that the C≡N stretching vibration can serve as a sensitive IR probe of charge and electron transfer processes in which an aromatic nitrile is involved.
Collapse
Affiliation(s)
- Jingsong Liu
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liang Zhou
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Labrecque CL, Nolan AL, Develin AM, Castillo AJ, Offenbacher AR, Fuglestad B. Membrane-Mimicking Reverse Micelles for High-Resolution Interfacial Study of Proteins and Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3676-3686. [PMID: 35298177 DOI: 10.1021/acs.langmuir.1c03085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite substantial advances, the study of proteins interacting with membranes remains a significant challenge. While integral membrane proteins have been a major focus of recent efforts, peripheral membrane proteins (PMPs) and their interactions with membranes and lipids have far less high-resolution information available. Their small size and the dynamic nature of their interactions have stalled detailed interfacial study using structural methods like cryo-EM and X-ray crystallography. A major roadblock for the structural analysis of PMP interactions is limitations in membrane models to study the membrane recruited state. Commonly used membrane mimics such as liposomes, bicelles, nanodiscs, and micelles are either very large or composed of non-biological detergents, limiting their utility for the NMR study of PMPs. While there have been previous successes with integral and peripheral membrane proteins, currently employed reverse micelle (RM) compositions are optimized for their inertness with proteins rather than their ability to mimic membranes. Applying more native, membrane-like lipids and surfactants promises to be a valuable advancement for the study of interfacial interactions between proteins and membranes. Here, we describe the development of phosphocholine-based RM systems that mimic biological membranes and are compatible with high-resolution protein NMR. We demonstrate new formulations that are able to encapsulate the model soluble protein, ubiquitin, with minimal perturbations of the protein structure. Furthermore, one formula, DLPC:DPC, allowed the encapsulation of the PMPs glutathione peroxidase 4 (GPx4) and phosphatidylethanolamine-binding protein 1 (PEBP1) and enabled the embedment of these proteins, matching the expected interactions with biological membranes. Dynamic light scattering and small-angle X-ray scattering characterization of the RMs reveals small, approximately spherical, and non-aggregated particles, a prerequisite for protein NMR and other avenues of study. The formulations presented here represent a new tool for the study of elusive PMP interactions and other membrane interfacial investigations.
Collapse
Affiliation(s)
- Courtney L Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Aubree L Nolan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Angela M Develin
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Abdul J Castillo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
4
|
Ma J, Song X, Luo J, Zhao T, Yu H, Peng B, Zhao S. Molecular Dynamics Simulation Insight into Interfacial Stability and Fluidity Properties of Microemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13636-13645. [PMID: 31560551 DOI: 10.1021/acs.langmuir.9b02325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the interfacial properties of microemulsions have been extensively studied in both experimental and simulation research studies, the molecular mechanisms of stability and fluidity about microemulsion are still poorly understood. Herein, we report a molecular dynamics simulation study to elaborate the motion of an emulsion droplet involving dichain surfactant Aerosol OT (AOT) and its dynamics evolution at the oil-water interface. By varying the concentrations of AOT, we show that the interfacial thickness and emulsification rate display a piecewise change as the interfacial coverage increases and the W/O emulsion is more stable than the O/W one while O/W emulsion presents better fluidity. In addition, the dispersed system combined with water/AOT/n-heptane tends to form a W/O microemulsion instead of an O/W microemulsion due to the structural collapse of the latter. This work provides a molecular understanding of microemulsion interfacial stability and fluidity.
Collapse
Affiliation(s)
- Jule Ma
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Xianyu Song
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Jianhui Luo
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChina , Beijing 100083 , China
- Key Laboratory of Nano Chemistry (KLNC) , CNPC , Beijing 100083 , China
| | - Teng Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Hongping Yu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Baoliang Peng
- Research Institute of Petroleum Exploration & Development (RIPED), PetroChina , Beijing 100083 , China
- Key Laboratory of Nano Chemistry (KLNC) , CNPC , Beijing 100083 , China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
5
|
Kwac K, Cho M. Differential evolution algorithm approach for describing vibrational solvatochromism. J Chem Phys 2019; 151:134112. [PMID: 31594319 DOI: 10.1063/1.5120777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We model the solvation-induced vibrational frequency shifts of the amide I and amide II modes of N-methylacetamide in water and the nitrile stretch mode of acetonitrile in water by expressing the frequency shift as a polynomial function expanded by the inverse power of interatomic distances. The coefficients of the polynomial are optimized to minimize the deviation between the predicted frequency shifts and those calculated with quantum chemistry methods. Here, we show that a differential evolution algorithm combined with singular value decomposition is useful to find the optimum set of coefficients of polynomial terms. The differential evolution optimization shows that only a few terms in the polynomial are dominant in the contribution to the vibrational frequency shifts. We anticipate that the present work paves the way for further developing different genetic algorithms and machine learning schemes for their applications to vibrational spectroscopic studies.
Collapse
Affiliation(s)
- Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea and Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, South Korea and Department of Chemistry, Korea University, Seoul 02841, South Korea
| |
Collapse
|
6
|
Ostrander JS, Lomont JP, Rich KL, Saraswat V, Feingold BR, Petti MK, Birdsall ER, Arnold MS, Zanni MT. Monolayer Sensitivity Enables a 2D IR Spectroscopic Immuno-biosensor for Studying Protein Structures: Application to Amyloid Polymorphs. J Phys Chem Lett 2019; 10:3836-3842. [PMID: 31246039 PMCID: PMC6823637 DOI: 10.1021/acs.jpclett.9b01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Immunosensors use antibodies to detect and quantify biomarkers of disease, though the sensors often lack structural information. We create a surface-sensitive two-dimensional infrared (2D IR) spectroscopic immunosensor for studying protein structures. We tether antibodies to a plasmonic surface, flow over a solution of amyloid proteins, and measure the 2D IR spectra. The 2D IR spectra provide a global assessment of antigen structure, and isotopically labeled proteins give residue-specific structural information. We report the 2D IR spectra of fibrils and monomers using a polyclonal antibody that targets human islet amyloid polypeptide (hIAPP). We observe two fibrillar polymorphs differing in their structure at the G24 residue, which supports the hypothesis that hIAPP polymorphs form from a common oligomeric intermediate. This work provides insight into the structure of hIAPP, establishes a new method for studying protein structures using 2D IR spectroscopy, and creates a spectroscopic immunoassay applicable for studying a wide range of biomarkers.
Collapse
Affiliation(s)
- Joshua S. Ostrander
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Justin P. Lomont
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Kacie L. Rich
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Vivek Saraswat
- Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Benjamin R. Feingold
- Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Megan K. Petti
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Erin R. Birdsall
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Michael S. Arnold
- Department of Materials Science and Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Urano R, Pantelopulos GA, Straub JE. Aerosol-OT Surfactant Forms Stable Reverse Micelles in Apolar Solvent in the Absence of Water. J Phys Chem B 2019; 123:2546-2557. [PMID: 30688469 DOI: 10.1021/acs.jpcb.8b07847] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Normal micelle aggregates of amphiphilic surfactant in aqueous solvents are formed by a process of entropically driven self-assembly. The self-assembly of reverse micelles from amphiphilic surfactant in a nonpolar solvent in the presence of water is considered to be an enthalpically driven process. Although the formation of normal and reverse surfactant micelles has been well characterized in theory and experiment, the nature of dry micelle formation, from amphiphilic surfactant in a nonpolar solvent in the absence of water, is poorly understood. In this study, a theory of dry reverse micelle formation is developed. Variation in free energy during micelle assembly is derived for the specific case of aerosol-OT surfactant in isooctane solvent using atomistic molecular dynamics simulation analyzed using the energy representation method. The existence and thermodynamic stability of dry reverse micelles of limited size are confirmed. The abrupt occurrence of monodisperse aggregates is a clear signature of a critical micelle concentration, commonly observed in the formation of normal surfactant micelles. The morphology of large dry micelles provides insight into the nature of the thermodynamic driving forces stabilizing the formation of the surfactant aggregates. Overall, this study provides detailed insight into the structure and stability of dry reverse micelles assembly in a nonpolar solvent.
Collapse
Affiliation(s)
- Ryo Urano
- Chemistry Department , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - George A Pantelopulos
- Chemistry Department , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - John E Straub
- Chemistry Department , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
8
|
Sowińska M, Laskowska A, Guśpiel A, Solecka J, Bochynska-Czyż M, Lipkowski AW, Trzeciak K, Urbanczyk-Lipkowska Z. Bioinspired Amphiphilic Peptide Dendrimers as Specific and Effective Compounds against Drug Resistant Clinical Isolates of E. coli. Bioconjug Chem 2018; 29:3571-3585. [PMID: 30235928 DOI: 10.1021/acs.bioconjchem.8b00544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Evolution-derived natural compounds have been inspirational for design of numerous pharmaceuticals, e.g., penicillins and tetracyclines. Herein, we present a bioinspired strategy to design peptide dendrimers for the effective therapy of E. coli infections where the selection of appropriate amino acids and the mode of their assembly are based on the information gained from research on membranolytic natural antimicrobial peptides (AMP's). On the molecular level two opposite effects were explored: the effect of multiple positive charges necessary for membrane disintegration was equilibrated by the anchoring role of tryptophanes. Indeed, a series of Trp-terminated dendrimers exhibited high potency against clinical isolates of antibiotic resistant ESBL E. coli strains, stability in human plasma along with very low hemo- and genotoxicity. Investigation of the underlying antimicrobial mechanism indicated that the dendrimers studied at minimal inhibitory concentration showed weak permeability toward membranes. Solid-state 2D NMR studies revealed their presence on and inside the model membranes. Therefore, their biological properties might be explained by targeting of extra- or intracellular receptors. Our results point to a new approach to design novel branched antimicrobials with high therapeutic index.
Collapse
Affiliation(s)
- Marta Sowińska
- Institute of Organic Chemistry PAS , Kasprzaka Str. 44/54 , Warsaw 01-224 , Poland
| | - Anna Laskowska
- National Institute of Public Health-National Institute of Hygiene , Chocimska Str. 24 , Warsaw 00-791 , Poland
| | - Adam Guśpiel
- National Institute of Public Health-National Institute of Hygiene , Chocimska Str. 24 , Warsaw 00-791 , Poland
| | - Jolanta Solecka
- National Institute of Public Health-National Institute of Hygiene , Chocimska Str. 24 , Warsaw 00-791 , Poland
| | - Marta Bochynska-Czyż
- Mossakowski Medical Research Centre PAS , Pawinskiego Str. 5 , 02-106 Warsaw , Poland
| | - Andrzej W Lipkowski
- Mossakowski Medical Research Centre PAS , Pawinskiego Str. 5 , 02-106 Warsaw , Poland
| | - Katarzyna Trzeciak
- Institute of Organic Chemistry PAS , Kasprzaka Str. 44/54 , Warsaw 01-224 , Poland.,Centre of Molecular and Macromolecular Studies PAS , Sienkiewicza 112 , 90-363 Lodz , Poland
| | | |
Collapse
|
9
|
Keiderling TA. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides. Chirality 2017; 29:763-773. [DOI: 10.1002/chir.22749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/07/2022]
|
10
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
11
|
Torii H. Unified Electrostatic Understanding on the Solvation-Induced Changes in the CN Stretching Frequency and the NMR Chemical Shifts of a Nitrile. J Phys Chem A 2016; 120:7137-44. [DOI: 10.1021/acs.jpca.6b06607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hajime Torii
- Department
of Chemistry,
Faculty of Education, and Department of Optoelectronics and Nanostructure
Science, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| |
Collapse
|
12
|
Oh KI, Smith-Dupont KB, Markiewicz BN, Gai F. Kinetics of peptide folding in lipid membranes. Biopolymers 2016; 104:281-90. [PMID: 25808575 DOI: 10.1002/bip.22640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022]
Abstract
Despite our extensive understanding of water-soluble protein folding kinetics, much less is known about the folding dynamics and mechanisms of membrane proteins. However, recent studies have shown that for relatively simple systems, such as peptides that form a transmembrane α-helix, helical dimer, or helix-turn-helix, it is possible to assess the kinetics of several important steps, including peptide binding to the membrane from aqueous solution, peptide folding on the membrane surface, helix insertion into the membrane, and helix-helix association inside the membrane. Herein, we provide a brief review of these studies and also suggest new initiation and probing methods that could lead to improved temporal and structural resolution in future experiments.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn B Smith-Dupont
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Phukon A, Ray S, Sahu K. How Does Interfacial Hydration Alter during Rod to Sphere Transition in DDAB/Water/Cyclohexane Reverse Micelles? Insights from Excited State Proton Transfer and Fluorescence Anisotropy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6656-6665. [PMID: 27292367 DOI: 10.1021/acs.langmuir.6b01254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
How does microscopic organization of an organized assembly alter during macroscopic structural transition? The question may be important to ascertain driving forces responsible for such transitions. Didodecyldimethylammonium bromide (DDAB)/water/cyclohexane reverse micelle is an attractive assembly that undergoes structural transition from rod to spherical shape when the amount of water loading, w0 ([water]/[surfactant]), exceeds a particular value (w0 ∼ 8). Here, we intend to investigate the effect of the morphological change upon interfacial hydration using steady-state and time-resolved fluorescence measurements. The anionic fluorophore 8-hydroxypyrene-1,3,6-trisulfonate (HPTS or pyranine) is expected to be trapped within the positively charged RM interface. The fluorophore can undergo excited-state proton transfer (ESPT) in the presence of water and, thus, is able to provide insight on the level of hydration within the interface. The ESPT process is markedly inhibited within the interface at low w0 and gradually favored with increase of w0. The time-resolved fluorescence decays could be best analyzed by assuming distribution of HPTS over two distinct interfacial regions- partly hydrated and mostly dehydrated. The relative population of the two regions varies distinctly at low w0 (<6) and high w0 (>6) regimes. Moreover, fluorescence anisotropy (steady-state and time-resolved) varies differently with respect to w0, before and after the transition point (w0 ∼ 8).
Collapse
Affiliation(s)
- Aparajita Phukon
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Sudipta Ray
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| |
Collapse
|
14
|
Phukon A, Barman N, Sahu K. Wet Interface of Benzylhexadecyldimethylammonium Chloride Reverse Micelle Revealed by Excited State Proton Transfer of a Localized Probe. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12587-12596. [PMID: 26540303 DOI: 10.1021/acs.langmuir.5b03632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Excited state proton transfer (ESPT) of an anionic photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS or pyranine) has been studied inside a cationic reverse micelle (RM), water/benzylhexadecyldimethylammonium chloride (BHDC)/benzene, using steady-state and time-resolved fluorescence spectroscopy. The observed ESPT behavior is found to be remarkably different from the known ESPT trend of HPTS inside anionic AOT and cationic CTAB RMs; the ESPT dynamics approaches that of bulk water at higher w0 (≥10) inside AOT RM while no ESPT was observed for CTAB reverse micelle [ Sedgwick J. Am. Chem. Soc. 2012 , 134 , 11904 - 11907 ]. The ESPT dynamics inside BHDC RM is remarkably slower compared to that of water at all w0 (= [water]/[surfactant]) values and relatively much less sensitive to w0 variation compared to AOT RM. 2D NOESY and fluorescence anisotropy measurements reveal that the probe (HPTS) is embedded inside the positive interface of BHDC RM. Despite its trapped location, HPTS is able to undergo ESPT due to significant penetration of water molecules into the interface. Furthermore, facile ESPT at higher w0 is consistent with higher degree of interface hydration as predicted by a recent MD simulation [ Agazzi Langmuir 2014 , 30 , 9643 - 9653 ]. The study shows that ESPT dynamics inside RM varies not only with the interface charge but also on the nature of the headgroup and solvation.
Collapse
Affiliation(s)
- Aparajita Phukon
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Nabajeet Barman
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati , Guwahati 781039, Assam, India
| |
Collapse
|
15
|
Adhikary R, Zimmermann J, Dawson PE, Romesberg FE. Temperature Dependence of CN and SCN IR Absorptions Facilitates Their Interpretation and Use as Probes of Proteins. Anal Chem 2015; 87:11561-7. [DOI: 10.1021/acs.analchem.5b03437] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - Philip E. Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
16
|
Bobone S, De Zotti M, Bortolotti A, Biondi B, Ballano G, Palleschi A, Toniolo C, Formaggio F, Stella L. The fluorescence and infrared absorption probepara-cyanophenylalanine: Effect of labeling on the behavior of different membrane-interacting peptides. Biopolymers 2015; 104:521-32. [DOI: 10.1002/bip.22674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Bobone
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Marta De Zotti
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Annalisa Bortolotti
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Gema Ballano
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Antonio Palleschi
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| | - Claudio Toniolo
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; 35131 Padova Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; 00133 Rome Italy
| |
Collapse
|
17
|
Rabe M, Zope HR, Kros A. Interplay between Lipid Interaction and Homo-coiling of Membrane-Tethered Coiled-Coil Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9953-9964. [PMID: 26302087 DOI: 10.1021/acs.langmuir.5b02094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The designed coiled-coil-forming peptides E [(EIAALEK)3] and K [(KIAALKE)3] are known to trigger efficient membrane fusion when they are tethered to lipid vesicles in the form of lipopeptides. Knowledge of their secondary structure is a key element in understanding their role in membrane fusion. Special conditions can be found at the interface of the membrane, where the peptides are confined in close proximity to other peptide molecules as well as to the lipid interface. Consequently, different structural states were proposed for the peptides when tethered to this interface. Due to the multitude of possible states, determining the structure solely on the basis of circular dichroism (CD) spectra at a single temperature can be misleading. In addition, it has not yet been possible to unambiguously distinguish between the membrane-bound and the coiled-coil states of these peptides by means of infrared (IR) spectroscopy due to their very similar amide I' bands. Here, the molecular basis of this similarity is investigated by means of site-specific (13)C-labeled FTIR spectroscopy. Structural similarities between the membrane-interacting helix of K and the homo-coiled-coil-forming helix of E are shown to cause the similar spectroscopic properties. Furthermore, the peptide structure is investigated using temperature-dependent CD and IR spectroscopy, and it is shown that the different states can be distinguished on the basis of their thermal behavior. It is shown that the two peptides behave fundamentaly differently when tethered to the lipid membrane, which implies that their role during membrane fusion is different and the mechanism of this process is asymmetric.
Collapse
Affiliation(s)
- Martin Rabe
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Harshal R Zope
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry-Supramolecular and Biomaterial Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| |
Collapse
|
18
|
Hilaire MR, Abaskharon RM, Gai F. Biomolecular Crowding Arising from Small Molecules, Molecular Constraints, Surface Packing, and Nano-Confinement. J Phys Chem Lett 2015; 6:2546-53. [PMID: 26266732 PMCID: PMC4610718 DOI: 10.1021/acs.jpclett.5b00957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The effect of macromolecular crowding on the structure, dynamics, and reactivity of biomolecules is well established and the relevant research has been extensively reviewed. Herein, we focus our discussion on crowding effects arising from small cosolvent molecules and densely packed surface conditions. In addition, we highlight recent efforts that capitalize on the excluded volume effect for various tailored biochemical and biophysical applications. Specifically, we discuss how a targeted increase in local mass density can be exploited to gain insight into the folding dynamics of the protein of interest and how confinement via reverse micelles can be used to study a range of biophysical questions, from protein hydration dynamics to amyloid formation.
Collapse
Affiliation(s)
| | | | - Feng Gai
- To whom correspondence should be addressed; ; Phone: 215-573-6256; Fax: 215-573-2112
| |
Collapse
|
19
|
New aspects of the structure and mode of action of the human cathelicidin LL-37 revealed by the intrinsic probe p-cyanophenylalanine. Biochem J 2015; 465:443-57. [PMID: 25378136 DOI: 10.1042/bj20141016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human cathelicidin peptide LL-37 is an important effector of our innate immune system and contributes to host defence with direct antimicrobial activity and immunomodulatory properties, and by stimulating wound healing. Its sequence has evolved to confer specific structural characteristics that strongly affect these biological activities, and differentiate it from orthologues of other primate species. In the present paper we report a detailed study of the folding and self-assembly of this peptide in comparison with rhesus monkey peptide RL-37, taking into account the different stages of its trajectory from bulk solution to contact with, and insertion into, biological membranes. Phenylalanine residues in different positions throughout the native sequences of LL-37 and RL-37 were systematically replaced with the non-invasive fluorescent and IR probe p-cyanophenylalanine. Steady-state and time-resolved fluorescence studies showed that LL-37, in contrast to RL-37, forms oligomers with a loose hydrophobic core in physiological solutions, which persist in the presence of biological membranes. Fourier transform IR and surface plasmon resonance studies also indicated different modes of interaction for LL-37 and RL-37 with anionic and neutral membranes. This correlated with a distinctly different mode of bacterial membrane permeabilization, as determined using a flow cytometric method involving impermeant fluorescent dyes linked to polymers of defined sizes.
Collapse
|
20
|
Shrestha R, Cardenas AE, Elber R, Webb LJ. Measurement of the membrane dipole electric field in DMPC vesicles using vibrational shifts of p-cyanophenylalanine and molecular dynamics simulations. J Phys Chem B 2015; 119:2869-76. [PMID: 25602635 DOI: 10.1021/jp511677j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The magnitude of the membrane dipole field was measured using vibrational Stark effect (VSE) shifts of nitrile oscillators placed on the unnatural amino acid p-cyanophenylalanine (p-CN-Phe) added to a peptide sequence at four unique positions. These peptides, which were based on a repeating alanine-leucine motif, intercalated into small unilamellar DMPC vesicles which formed an α-helix as confirmed by circular dichroic (CD) spectroscopy. Molecular dynamics simulations of the membrane-intercalated helix containing two of the nitrile probes, one near the headgroup region of the lipid (αLAX(25)) and one buried in the interior of the bilayer (αLAX(16)), were used to examine the structure of the nitrile with respect to the membrane normal, the assumed direction of the dipole field, by quantifying both a small tilt of the helix in the bilayer and conformational rotation of the p-CN-Phe side chain at steady state. Vibrational absorption energies of the nitrile oscillator at each position showed a systematic blue shift as the nitrile was stepped toward the membrane interior; for several different concentrations of peptide, the absorption energy of the nitrile located in the middle of the bilayer was ∼3 cm(-1) greater than that of the nitrile closest to the surface of the membrane. Taken together, the measured VSE shifts and nitrile orientations within the membrane resulted in an absolute magnitude of 8-11 MV/cm for the dipole field, at the high end of the range of possible values that have been accumulated from a variety of indirect measurements. Implications for this are discussed.
Collapse
Affiliation(s)
- Rebika Shrestha
- Department of Chemistry, ‡Institute for Cell and Molecular Biology, §Center for Nano- and Molecular Science and Technology, and ∥Institute for Computational Engineering and Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | |
Collapse
|
21
|
Rabe M, Schwieger C, Zope HR, Versluis F, Kros A. Membrane interactions of fusogenic coiled-coil peptides: implications for lipopeptide mediated vesicle fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7724-7735. [PMID: 24914996 DOI: 10.1021/la500987c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fusion of lipid membranes is an important natural process for the intra- and intercellular exchange of molecules. However, little is known about the actual fusion mechanism at the molecular level. In this study we examine a system that models the key features of this process. For the molecular recognition between opposing membranes two membrane anchored heterodimer coiled-coil forming peptides called 'E' (EIAALEK)3 and 'K' (KIAALKE)3 were used. Lipid monolayers and IR reflection absorption spectroscopy (IRRAS) revealed the interactions of the peptides 'E', 'K', and their parallel coiled-coil complex 'E/K' with the phospholipid membranes and thereby mimicked the pre- and postfusion states, respectively. The peptides adopted α-helical structures and were incorporated into the monolayers with parallel orientation. The strength of binding to the monolayer differed for the peptides and tethering them to the membrane increased the interactions even further. Remarkably, these interactions played a role even in the postfusion state. These findings shed light on important mechanistic details of the membrane fusion process in this model system. Furthermore, their implications will help to improve the rational design of new artificial membrane fusion systems, which have a wide range of potential applications in supramolecular chemistry and biomedicine.
Collapse
Affiliation(s)
- Martin Rabe
- Leiden Institute of Chemistry - Supramolecular and Biomaterials Chemistry, Leiden University , Einsteinweg 55, 2333CC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Carbon-deuterium bonds as non-perturbative infrared probes of protein dynamics, electrostatics, heterogeneity, and folding. Methods Mol Biol 2014; 1084:101-19. [PMID: 24061918 DOI: 10.1007/978-1-62703-658-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Vibrational spectroscopy is uniquely able to characterize protein dynamics and microenvironmental heterogeneity because it possesses an inherently high temporal resolution and employs probes of ultimately high structural resolution-the bonds themselves. The use of carbon-deuterium (C-D) bonds as vibrational labels circumvents the spectral congestion that otherwise precludes the use of vibrational spectroscopy to proteins and makes the observation of single vibrations within a protein possible while being wholly non-perturbative. Thus, C-D probes can be used to site-specifically characterize conformational heterogeneity and thermodynamic stability. C-D probes are also uniquely useful in characterizing the electrostatic microenvironment experienced by a specific residue side chain or backbone due to its effect on the C-D absorption frequency. In this chapter we describe the experimental procedures required to use C-D bonds and FT IR spectroscopy to characterize protein dynamics, structural and electrostatic heterogeneity, ligand binding, and folding.
Collapse
|
23
|
Serrano S, Araujo A, Apellániz B, Bryson S, Carravilla P, de la Arada I, Huarte N, Rujas E, Pai EF, Arrondo JLR, Domene C, Jiménez MA, Nieva JL. Structure and immunogenicity of a peptide vaccine, including the complete HIV-1 gp41 2F5 epitope: implications for antibody recognition mechanism and immunogen design. J Biol Chem 2014; 289:6565-6580. [PMID: 24429284 DOI: 10.1074/jbc.m113.527747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The membrane-proximal external region (MPER) of gp41 harbors the epitope recognized by the broadly neutralizing anti-HIV 2F5 antibody, a research focus in HIV-1 vaccine development. In this work, we analyze the structure and immunogenic properties of MPERp, a peptide vaccine that includes the following: (i) the complete sequence protected from proteolysis by the 2F5 paratope; (ii) downstream residues postulated to establish weak contacts with the CDR-H3 loop of the antibody, which are believed to be crucial for neutralization; and (iii) an aromatic rich anchor to the membrane interface. MPERp structures solved in dodecylphosphocholine micelles and 25% 1,1,1,3,3,3-hexafluoro-2-propanol (v/v) confirmed folding of the complete 2F5 epitope within continuous kinked helices. Infrared spectroscopy (IR) measurements demonstrated the retention of main helical conformations in immunogenic formulations based on alum, Freund's adjuvant, or two different types of liposomes. Binding to membrane-inserted MPERp, IR, molecular dynamics simulations, and characterization of the immune responses further suggested that packed helical bundles partially inserted into the lipid bilayer, rather than monomeric helices adsorbed to the membrane interface, could encompass effective MPER peptide vaccines. Together, our data constitute a proof-of-concept to support MPER-based peptides in combination with liposomes as stand-alone immunogens and suggest new approaches for structure-aided MPER vaccine development.
Collapse
Affiliation(s)
- Soraya Serrano
- Institute of Physical Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
| | - Aitziber Araujo
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Beatriz Apellániz
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Steve Bryson
- Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; The Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Pablo Carravilla
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Igor de la Arada
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Nerea Huarte
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Edurne Rujas
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Emil F Pai
- Departments of Biochemistry, Medical Biophysics, and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; The Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - José L R Arrondo
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain
| | - Carmen Domene
- Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, United Kingdom; Department of Chemistry, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - María Angeles Jiménez
- Institute of Physical Chemistry "Rocasolano," Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain.
| | - José L Nieva
- Biophysics Unit, Consejo Superior de Investigaciones Científicas and University of the Basque Country (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
24
|
Gonzalez JD, Levonyak NS, Schneider SC, Smith MJ, Cremeens ME. Using infrared spectroscopy of a nitrile labeled phenylalanine and tryptophan fluorescence to probe the α-MSH peptide’s side-chain interactions with a micelle model membrane. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2013.09.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Choi JH, Kwak KW, Cho M. Computational infrared and two-dimensional infrared photon echo spectroscopy of both wild-type and double mutant myoglobin-CO proteins. J Phys Chem B 2013; 117:15462-78. [PMID: 23869523 DOI: 10.1021/jp405210s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The CO stretching mode of both wild-type and double mutant ( T67R / S92D ) MbCO (carbonmonoxymyoglobin) proteins is an ideal infrared (IR) probe for studying the local electrostatic environment inside the myoglobin heme pocket. Recently, to elucidate the conformational switching dynamics between two distinguishable states, extensive IR absorption, IR pump-probe, and two-dimensional (2D) IR spectroscopic studies for various mutant MbCO's have been performed by the Fayer group. They showed that the 2D IR spectroscopy of the double mutant, which has a peroxidase enzyme activity, reveals a rapid chemical exchange between two distinct states, whereas that of the wild-type does not. Despite the fact that a few simulation studies on these systems were already performed and reported, such complicated experimental results have not been fully reproduced nor described in terms of conformational state-to-state transition processes. Here, we first develop a distributed vibrational solvatochromic charge model for describing the CO stretch frequency shift reflecting local electric potential changes. Then, by carrying out molecular dynamic simulations of the two MbCO's and examining their CO frequency trajectories, it becomes possible to identify a proper reaction coordinate consisting of His64 imidazole ring rotation and its distance to the CO ligand. From the 2D surfaces of the resulting potential of mean forces, the spectroscopically distinguished A1 and A3 states of the wild-type as well as two more substates of the double mutant are identified and their vibrational frequencies and distributions are separately examined. Our simulated IR absorption and 2D IR spectra of the two MbCO's are directly compared with the previous experimental results reported by the Fayer group. The chemical exchange rate constants extracted from the two-state kinetic analyses of the simulated 2D IR spectra are in excellent agreement with the experimental values. On the basis of the quantitative agreement between the simulated spectra and experimental ones, we further examine the conformational differences in the heme pockets of the two proteins and show that the double mutation, T67R / S92D , suppresses the A1 population, restricts the imidazole ring rotation, and increases hydrogen-bond strength between the imidazole Nε-H and the oxygen atom of the CO ligand. It is believed that such delicate change of distal His64 imidazole ring dynamics induced by the double mutation may be responsible for its enhanced peroxidase catalytic activity as compared to the wild-type myoglobin.
Collapse
Affiliation(s)
- Jun-Ho Choi
- Department of Chemistry, Korea University , Seoul 136-713, Korea
| | | | | |
Collapse
|
26
|
Kim H, Cho M. Infrared Probes for Studying the Structure and Dynamics of Biomolecules. Chem Rev 2013; 113:5817-47. [DOI: 10.1021/cr3005185] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Heejae Kim
- Department of Chemistry, Korea University, Seoul 136-713, Korea
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-713, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute,
Seoul 136-713, Korea
| |
Collapse
|
27
|
Xue L, Zou F, Zhao Y, Huang X, Qu Y. Nitrile group as infrared probe for the characterization of the conformation of bovine serum albumin solubilized in reverse micelles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 97:858-863. [PMID: 22902928 DOI: 10.1016/j.saa.2012.07.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/08/2012] [Accepted: 07/22/2012] [Indexed: 06/01/2023]
Abstract
Infrared spectroscopy is a powerful technique for structure characterization. For a protein hosted in a reversed micellar medium, the spectral features of the protein are always interfered by the IR absorption bands of the medium in addition to the congestion in their IR spectra. Fortunately, there is a transparent window in the 2500-2200 cm(-1) region. Incorporation of a vibrational probe with IR absorption frequencies in this region into proteins represents a promising strategy for the study of the conformation of a protein in a reverse micelle. In the present work, we incorporated 4-cyanobenzyl group (CN) into bovine serum albumin (BSA) via cysteine alkylation reactions under mild conditions. Circular dichroism spectroscopy showed that the CN modified BSA (CNBSA) could retain its conformation. When CNBSA was hosted in AOT reverse micelle, it was found that the nitrile group on BSA was sensitive to the conformational change of BSA induced by urea as an additive in the reverse micelle. The peak splitting of nitrile group was also observed when the size of AOT reverse micelle and the concentration of an electrolyte were varied. Obviously, the shift of the IR absorption peak and/or peak splitting of nitrile group on BSA are correlated with the change of BSA conformation in AOT reverse micelle. So we conclude that the nitrile infrared probe can be used to study protein conformation in a reverse micelle.
Collapse
Affiliation(s)
- Luyan Xue
- Key Laboratory of Colloid & Interface Chemistry of the Education Ministry of China, Shandong University, Jinan 250100, PR China
| | | | | | | | | |
Collapse
|
28
|
Alfieri KN, Vienneau AR, Londergan CH. Using infrared spectroscopy of cyanylated cysteine to map the membrane binding structure and orientation of the hybrid antimicrobial peptide CM15. Biochemistry 2011; 50:11097-108. [PMID: 22103476 PMCID: PMC3246368 DOI: 10.1021/bi200903p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthetic antimicrobial peptide CM15, a hybrid of N-terminal sequences from cecropin and melittin peptides, has been shown to be extremely potent. Its mechanism of action has been thought to involve pore formation based on prior site-directed spin labeling studies. This study examines four single-site β-thiocyanatoalanine variants of CM15 in which the artificial amino acid side chain acts as a vibrational reporter of its local environment through the frequency and line shape of the unique CN stretching band in the infrared spectrum. Circular dichroism experiments indicate that the placements of the artificial side chain have only small perturbative effects on the membrane-bound secondary structure of the CM15 peptide. All variant peptides were placed in buffer solution, in contact with dodecylphosphatidylcholine micelles, and in contact with vesicles formed from Escherichia coli polar lipid extract. At each site, the CN stretching band reports a different behavior. Time-dependent attenuated total reflectance infrared spectra were also collected for each variant as it was allowed to remodel the E. coli lipid vesicles. The results of these experiments agree with the previously proposed formation of toroidal pores, in which each peptide finds itself in an increasingly homogeneous and curved local environment without apparent peptide-peptide interactions. This work also demonstrates the excellent sensitivity of the SCN stretching vibration to small changes in the peptide-lipid interfacial structure.
Collapse
Affiliation(s)
| | - Alice R. Vienneau
- Department of Chemistry, Haverford College, Haverford, PA 19041-1392
| | | |
Collapse
|
29
|
Waegele MM, Culik RM, Gai F. Site-Specific Spectroscopic Reporters of the Local Electric Field, Hydration, Structure, and Dynamics of Biomolecules. J Phys Chem Lett 2011; 2:2598-2609. [PMID: 22003429 PMCID: PMC3192500 DOI: 10.1021/jz201161b] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Elucidating the underlying molecular mechanisms of protein folding and function is a very exciting and active research area, but poses significant challenges. This is due in part to the fact that existing experimental techniques are incapable of capturing snapshots along the 'reaction coordinate' in question with both sufficient spatial and temporal resolutions. In this regard, recent years have seen increased interests and efforts in development and employment of site-specific probes to enhance the structural sensitivity of spectroscopic techniques in conformational and dynamical studies of biological molecules. In particular, the spectroscopic and chemical properties of nitriles, thiocyanates, and azides render these groups attractive for the interrogation of complex biochemical constructs and processes. Here, we review their signatures in vibrational, fluorescence and NMR spectra and their utility in the context of elucidating chemical structure and dynamics of protein and DNA molecules.
Collapse
Affiliation(s)
| | | | - Feng Gai
- To whom correspondence should be addressed; ; Phone: 215-573-6256; Fax: 215-573-2112
| |
Collapse
|
30
|
Choi JH, Raleigh D, Cho M. Azido Homoalanine is a Useful Infrared Probe for Monitoring Local Electrostatistics and Sidechain Solvation in Proteins. J Phys Chem Lett 2011; 2:2158-2162. [PMID: 22389750 PMCID: PMC3290331 DOI: 10.1021/jz200980g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of IR probes to monitor protein structure, deduce local electric field, and investigate the mechanism of enzyme catalysis and protein folding has attracted increasing attention. Here, the azidohomoalanine (Aha) is considered as a useful IR probe. The intricate details of the distinct effects of backbone peptide bonds and H-bonded water molecules on the azido stretch mode of the IR probe Aha were revealed by carrying out QM/MM MD simulations of two variants of the protein NTL9, NTL9-Met1Aha and NTL9-Ile4Aha and comparing the resulting simulated IR spectra with experiments.
Collapse
Affiliation(s)
- Jun-Ho Choi
- Department of Chemistry, Korea University, Seoul 136-701, Korea
| | - Daniel Raleigh
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A
| | - Minhaeng Cho
- Department of Chemistry, Korea University, Seoul 136-701, Korea
- Multidimensional Spectroscopy Laboratory, Korea Basic Science Institute, Seoul 136-713, Korea
- Corresponding Author:
| |
Collapse
|
31
|
Zimmermann J, Thielges MC, Seo YJ, Dawson PE, Romesberg FE. Cyano Groups as Probes of Protein Microenvironments and Dynamics. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Zimmermann J, Thielges MC, Seo YJ, Dawson PE, Romesberg FE. Cyano groups as probes of protein microenvironments and dynamics. Angew Chem Int Ed Engl 2011; 50:8333-7. [PMID: 21780257 DOI: 10.1002/anie.201101016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/26/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Tian J, García AE. Simulations of the confinement of ubiquitin in self-assembled reverse micelles. J Chem Phys 2011; 134:225101. [PMID: 21682536 PMCID: PMC3133568 DOI: 10.1063/1.3592712] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/30/2011] [Indexed: 11/14/2022] Open
Abstract
We describe the effects of confinement on the structure, hydration, and the internal dynamics of ubiquitin encapsulated in reverse micelles (RM). We performed molecular dynamics simulations of the encapsulation of ubiquitin into self-assembled protein/surfactant reverse micelles to study the positioning and interactions of the protein with the RM and found that ubiquitin binds to the RM interface at low salt concentrations. The same hydrophobic patch that is recognized by ubiquitin binding domains in vivo is found to make direct contact with the surfactant head groups, hydrophobic tails, and the iso-octane solvent. The fast backbone N-H relaxation dynamics show that the fluctuations of the protein encapsulated in the RM are reduced when compared to the protein in bulk. This reduction in fluctuations can be explained by the direct interactions of ubiquitin with the surfactant and by the reduced hydration environment within the RM. At high concentrations of excess salt, the protein does not bind strongly to the RM interface and the fast backbone dynamics are similar to that of the protein in bulk. Our simulations demonstrate that the confinement of protein can result in altered protein dynamics due to the interactions between the protein and the surfactant.
Collapse
Affiliation(s)
- Jianhui Tian
- Department of Physics, Applied Physics and Astronomy and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
34
|
Martinez AV, DeSensi SC, Dominguez L, Rivera E, Straub JE. Protein folding in a reverse micelle environment: the role of confinement and dehydration. J Chem Phys 2011; 134:055107. [PMID: 21303167 DOI: 10.1063/1.3545982] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Characterization of the molecular interactions that stabilize the folded state of proteins including hydrogen bond formation, solvation, molecular crowding, and interaction with membrane environments is a fundamental goal of theoretical biophysics. Inspired by recent experimental studies by Gai and co-workers, we have used molecular dynamics simulations to explore the structure and dynamics of the alanine-rich AKA(2) peptide in bulk solution and in a reverse micelle environment. The simulated structure of the reverse micelle shows substantial deviations from a spherical geometry. The AKA(2) peptide is observed to (1) remain in a helical conformation within a spherically constrained reverse micelle and (2) partially unfold when simulated in an unconstrained reverse micelle environment, in agreement with experiment. While aqueous solvation is found to stabilize the N- and C-termini random coil portions of the peptide, the helical core region is stabilized by significant interaction between the nonpolar surface of the helix and the aliphatic chains of the AOT surfactant. The results suggest an important role for nonpolar peptide-surfactant and peptide-lipid interactions in stabilizing helical geometries of peptides in reverse micelle environments.
Collapse
|
35
|
Jo H, Culik RM, Korendovych IV, Degrado WF, Gai F. Selective incorporation of nitrile-based infrared probes into proteins via cysteine alkylation. Biochemistry 2010; 49:10354-6. [PMID: 21077670 DOI: 10.1021/bi101711a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nitrile stretching vibration is increasingly used as a sensitive infrared probe of local protein environments. However, site-specific incorporation of a nitrile moiety into proteins is difficult. Here we show that various aromatic nitriles can be easily incorporated into peptides and proteins via either thiol alkylation or arylation reaction.
Collapse
Affiliation(s)
- Hyunil Jo
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia,Pennsylvania 19104, United States
| | | | | | | | | |
Collapse
|
36
|
Abstract
Three different nitrile-containing amino acids, p-cyanophenylalanine, m-cyanophenylalanine, and S-cyanohomocysteine, have been introduced near the active site of the semisynthetic enzyme ribonuclease S (RNase S) to serve as probes of electrostatic fields. Vibrational Stark spectra, measured directly on the probe-modified proteins, confirm the predominance of the linear Stark tuning rate in describing the sensitivity of the nitrile stretch to external electric fields, a necessary property for interpreting observed frequency shifts as a quantitative measure of local electric fields that can be compared with simulations. The X-ray structures of these nitrile-modified RNase variants and enzymatic assays demonstrate minimal perturbation to the structure and function, respectively, by the probes and provide a context for understanding the influence of the environment on the nitrile stretching frequency. We examine the ability of simulation techniques to recapitulate the spectroscopic properties of these nitriles as a means to directly test a computational electrostatic model for proteins, specifically that in the ubiquitous Amber-99 force field. Although qualitative agreement between theory and experiment is observed for the largest shifts, substantial discrepancies are observed in some cases, highlighting the ongoing need for experimental metrics to inform the development of theoretical models of electrostatic fields in proteins.
Collapse
Affiliation(s)
- Aaron Fafarman
- Department of Chemistry Stanford University Stanford, California 94305-5080
| | - Steven G. Boxer
- Department of Chemistry Stanford University Stanford, California 94305-5080
| |
Collapse
|
37
|
Stafford AJ, Ensign DL, Webb LJ. Vibrational Stark Effect Spectroscopy at the Interface of Ras and Rap1A Bound to the Ras Binding Domain of RalGDS Reveals an Electrostatic Mechanism for Protein−Protein Interaction. J Phys Chem B 2010; 114:15331-44. [DOI: 10.1021/jp106974e] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amy J. Stafford
- Department of Chemistry and Biochemistry and Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, United States
| | - Daniel L. Ensign
- Department of Chemistry and Biochemistry and Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, United States
| | - Lauren J. Webb
- Department of Chemistry and Biochemistry and Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station, A5300, Austin, Texas 78712, United States
| |
Collapse
|
38
|
Dhar S, Rana DK, Sarkar A, Mandal TK, Bhattacharya SC. Fluorescence resonance energy transfer from serum albumins to 1-anthracene sulphonate entrapped in reverse micellar nanocavities. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Miller CS, Corcelli SA. Carbon−Deuterium Vibrational Probes of the Protonation State of Histidine in the Gas-Phase and in Aqueous Solution. J Phys Chem B 2010; 114:8565-73. [DOI: 10.1021/jp1028596] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. S. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - S. A. Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
40
|
Abstract
The non-natural amino acid p-cyanophenylalanine (Phe(CN)) has recently emerged as a useful fluorescent probe of proteins; however, its photophysical properties have not been systematically examined. Herein, we measure the fluorescence quantum yield and the fluorescence lifetime of Phe(CN) in a series of solvents. It is found that the fluorescence lifetime of Phe(CN) shows a linear dependence on the Kamlet-Taft parameter α of the protic solvents used, indicating that the solute-solvent hydrogen bonding interactions mediate the non-radiative decay rate. Thus, results of this study provide a basis for quantitative application of Phe(CN) fluorescence in protein conformational studies.
Collapse
|
41
|
Woys AM, Lin YS, Reddy AS, Xiong W, de Pablo JJ, Skinner JL, Zanni MT. 2D IR Line Shapes Probe Ovispirin Peptide Conformation and Depth in Lipid Bilayers. J Am Chem Soc 2010; 132:2832-8. [DOI: 10.1021/ja9101776] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ann Marie Woys
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Yu-Shan Lin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Allam S. Reddy
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Wei Xiong
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Juan J. de Pablo
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - James L. Skinner
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemical Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| |
Collapse
|
42
|
Waegele MM, Gai F. Computational Modeling of the Nitrile Stretching Vibration of 5-Cyanoindole in Water. J Phys Chem Lett 2010; 1:781-786. [PMID: 20436926 PMCID: PMC2860969 DOI: 10.1021/jz900429z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The bandwidth of the nitrile (C≡N) stretching vibration of 5-cyanotryptophan shows a significant broadening upon hydration. Thus, it has been proposed to be a useful infrared probe of the local hydration environment of proteins. However, the molecular mechanism underlying this hydration-induced spectral broadening is not known, making interpretation of the experimental results difficult. Herein, we investigate how interactions of water with various sites of 5-cyanoindole, the sidechain of 5-cyanotryptophan, affect its C≡N stretching vibration via a combined electronic structure/molecular dynamics approach. It is found that, besides those interactions with the nitrile group, interactions of water with the indole ring also play a significant role in mediating the C≡N stretching frequency. Thus, this study provides a molecular basis for understanding how hydration affects the C≡N stretching band of 5-cyanotryptophan. In addition, an empirical model, which includes interactions of water with both the nitrile and indole groups, is developed for predicting the C≡N stretching vibrational band via molecular dynamics simulations.
Collapse
|
43
|
Membrane-induced peptide structural changes monitored by infrared and circular dichroism spectroscopy. Biophys Chem 2009; 145:72-8. [DOI: 10.1016/j.bpc.2009.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 11/20/2022]
|
44
|
Aschaffenburg DJ, Moog RS. Probing Hydrogen Bonding Environments: Solvatochromic Effects on the CN Vibration of Benzonitrile. J Phys Chem B 2009; 113:12736-43. [DOI: 10.1021/jp905802a] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Richard S. Moog
- Department of Chemistry, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003
| |
Collapse
|
45
|
Miller CS, Ploetz EA, Cremeens ME, Corcelli SA. Carbon-deuterium vibrational probes of peptide conformation: alanine dipeptide and glycine dipeptide. J Chem Phys 2009; 130:125103. [PMID: 19334896 DOI: 10.1063/1.3100185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The utility of alpha-carbon deuterium-labeled bonds (C(alpha)-D) as infrared reporters of local peptide conformation was investigated for two model dipeptide compounds: C(alpha)-D labeled alanine dipeptide (Adp-d(1)) and C(alpha)-D(2) labeled glycine dipeptide (Gdp-d(2)). These model compounds adopt structures that are analogous to the motifs found in larger peptides and proteins. For both Adp-d(1) and Gdp-d(2), we systematically mapped the entire conformational landscape in the gas phase by optimizing the geometry of the molecule with the values of phi and psi, the two dihedral angles that are typically used to characterize the backbone structure of peptides and proteins, held fixed on a uniform grid with 7.5 degrees spacing. Since the conformations were not generally stationary states in the gas phase, we then calculated anharmonic C(alpha)-D and C(alpha)-D(2) stretch transition frequencies for each structure. For Adp-d(1) the C(alpha)-D stretch frequency exhibited a maximum variability of 39.4 cm(-1) between the six stable structures identified in the gas phase. The C(alpha)-D(2) frequencies of Gdp-d(2) show an even more substantial difference between its three stable conformations: there is a 40.7 cm(-1) maximum difference in the symmetric C(alpha)-D(2) stretch frequencies and an 81.3 cm(-1) maximum difference in the asymmetric C(alpha)-D(2) stretch frequencies. Moreover, the splitting between the symmetric and asymmetric C(alpha)-D(2) stretch frequencies of Gdp-d(2) is remarkably sensitive to its conformation.
Collapse
Affiliation(s)
- C S Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
46
|
Zou H, Liu J, Blasie JK. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, III: Molecular dynamics simulation incorporating a cyanophenylalanine spectroscopic probe. Biophys J 2009; 96:4188-99. [PMID: 19450489 DOI: 10.1016/j.bpj.2009.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/02/2008] [Accepted: 01/28/2009] [Indexed: 11/17/2022] Open
Abstract
A nitrile-derived amino acid, Phe(CN), has been used as an internal spectroscopic probe to study the binding of an inhalational anesthetic to a model membrane protein. The infrared spectra from experiment showed a blue-shift of the nitrile vibrational frequency in the presence of the anesthetic halothane. To interpret the infrared results and explore the nature of the interaction between halothane and the model protein, all-atom molecular dynamics (MD) simulations have been used to probe the structural and dynamic properties of the protein in the presence and absence of one halothane molecule. The frequency shift analyzed from MD simulations agrees well with the experimental infrared results. Decomposition of the forces acting on the nitrile probes demonstrates an indirect impact on the probes from halothane, namely a change of the protein's electrostatic local environment around the probes induced by halothane. Although the halothane remains localized within the designed hydrophobic binding cavity, it undergoes a significant amount of translational and rotational motion, modulated by the interaction of the trifluorine end of halothane with backbone hydrogens of the residues forming the cavity. This dominant interaction between halothane and backbone hydrogens outweighs the direct interaction between halothane and the nitrile groups, making it a good "spectator" probe of the halothane-protein interaction. These MD simulations provide insight into action of anesthetic molecules on the model membrane protein, and also support the further development of nitrile-labeled amino acids as spectroscopic probes within the designed binding cavity.
Collapse
Affiliation(s)
- Hongling Zou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
47
|
Liu J, Strzalka J, Tronin A, Johansson JS, Blasie JK. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, II: Fluorescence and vibrational spectroscopy using a cyanophenylalanine probe. Biophys J 2009; 96:4176-87. [PMID: 19450488 DOI: 10.1016/j.bpj.2009.01.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/02/2008] [Accepted: 01/07/2009] [Indexed: 11/15/2022] Open
Abstract
We demonstrate that cyano-phenylalanine (Phe(CN)) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-Phe(CN). The Trp to Phe(CN) mutation alters neither the alpha-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this Phe(CN) mutant hbAP-Phe(CN), based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-Phe(CN), enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four Phe(CN) probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-Phe(CN) therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the anesthetic binding cavity.
Collapse
Affiliation(s)
- Jing Liu
- Departments of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
48
|
Tian J, Garcia AE. An alpha-helical peptide in AOT micelles prefers to be localized at the water/headgroup interface. Biophys J 2009; 96:L57-9. [PMID: 19450460 DOI: 10.1016/j.bpj.2009.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 11/19/2022] Open
Abstract
A model alpha-helical peptide encapsulated in a reverse micelle is used to study the structure and dynamics of proteins under constrained environments that mimic the membrane-water environment in cells. Molecular dynamics simulations of the self assembly of systems composed of a peptide, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), water, and isooctane show that the peptide prefers to be located at the water/AOT headgroups interface. We explore the effect of the AOT headgroup charge and the peptide charge and find that the peptides migrate to the interface in all cases. These results show that the peptides prefer the constrained hydration environment of the AOT headgroups. The driving force for this configuration is the gain in entropy by released water molecules that otherwise would solvate the protein and surfactant headgroups.
Collapse
|
49
|
Waegele MM, Tucker MJ, Gai F. 5-Cyanotryptophan as an Infrared Probe of Local Hydration Status of Proteins. Chem Phys Lett 2009; 478:249-253. [PMID: 20161057 DOI: 10.1016/j.cplett.2009.07.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nitrile (C≡N) stretching vibration is sensitive to environment, making nitrile-derivatized amino acids an increasingly utilized tool to study various biological processes. Herein, we show that the bandwidth of the C≡N stretching vibration of 5-cyanotryptophan is particularly sensitive to water, rendering it an attractive infrared probe of local hydration status. We confirm the utility of this probe in biological applications by using it to examine how the hydration status of individual tryptophan sidechains of an antimicrobial peptide, indolicidin, changes upon peptide binding to model membranes. Furthermore, we show that p-cyanophenylalanine and 5-cyanotryptophan constitute a useful fluorescence energy transfer pair.
Collapse
Affiliation(s)
- Matthias M Waegele
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
50
|
Kim YS, Hochstrasser RM. Applications of 2D IR spectroscopy to peptides, proteins, and hydrogen-bond dynamics. J Phys Chem B 2009; 113:8231-51. [PMID: 19351162 PMCID: PMC2845308 DOI: 10.1021/jp8113978] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Following a survey of 2D IR principles, this article describes recent experiments on the hydrogen-bond dynamics of small ions, amide-I modes, nitrile probes, peptides, reverse transcriptase inhibitors, and amyloid fibrils.
Collapse
Affiliation(s)
- Yung Sam Kim
- Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104-6323, U.S.A
| | - Robin M. Hochstrasser
- Department of Chemistry, University of Pennsylvania Philadelphia, Pennsylvania 19104-6323, U.S.A
| |
Collapse
|