1
|
Zhu K, Tang S, Pan D, Wang X, Xu Y, Yan J, Wang L, Chen C, Yang M. Development and biological evaluation of a novel CEACAM6-targeted PET tracer for distinguishing malignant nodules in early-stage lung adenocarcinoma. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07107-3. [PMID: 39888423 DOI: 10.1007/s00259-025-07107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE Low-dose CT (LDCT) screening effectively reduces lung adenocarcinoma (LUAD) mortality. However, accurately evaluating the malignant potential of indeterminate lung nodules remains a challenge. Carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6), a potential biomarker for distinguishing benign pulmonary nodules from LUAD, may be leveraged for noninvasive positron emission tomography (PET) imaging to aid LUAD diagnosis. METHODS This study utilized mRNA, protein, and survival datasets of LUAD patients, along with an animal model of malignant pulmonary nodules, to investigate CEACAM6 expression specificity and its correlation with LUAD. Targeting ligands for CEACAM6 were designed using the Rosetta platform, labeled with [68Ga]Ga, and screened through high-throughput PET imaging to identify the optimal tracer. RESULTS CEACAM6 was found to be specifically overexpressed in LUAD and was significantly associated with poor prognosis and disease progression. In vivo, [68Ga]Ga-NODA-P3 demonstrated high specificity for delineating CEACAM6-positive A549 xenografts, a LUAD model, via PET imaging, achieving a highest target-to-background ratio of 7.68 ± 0.44. Region of interest (ROI) analysis showed significantly higher tracer uptake in A549 xenografts compared to CEACAM6-negative Huh7 xenografts (a hepatocellular carcinoma model) at 30 min post-injection (1.81 ± 0.10%ID/g vs. 0.54 ± 0.06%ID/g). Pre-treatment with an excess of unlabeled NODA-P3 significantly reduced tumor uptake to 0.52 ± 0.07%ID/g. CONCLUSION These preclinical findings indicate that [68Ga]Ga-NODA-P3 is a candidate radiotracer for the non-invasive visualization of CEACAM6-positive LUAD, demonstrating favorable imaging contrast. Although the current tumor uptake limits its immediate clinical application, ongoing optimization efforts are expected to improve its efficacy, enabling earlier and more accurate diagnosis of malignant pulmonary nodules in LUAD.
Collapse
Affiliation(s)
- Keying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Shimin Tang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China.
| | - Min Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, 214063, Wuxi, China.
| |
Collapse
|
2
|
Adjei-Sowah E, Rangasami V, Loiselle AE, Benoit DSW. Optimizing Ligand Valency to Maximize Tendon Accumulation of Peptide-Targeted Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68864-68876. [PMID: 39630483 DOI: 10.1021/acsami.4c13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
In many tissues, including musculoskeletal tissues such as tendon, systemic delivery typically results in poor targeting of free drugs. Hence, we previously developed a targeted drug delivery nanoparticle (NP) system for tendon healing, leveraging a tartrate resistant acid phosphatase (TRAP) binding peptide (TBP) ligand. The greatest tendon targeting was observed with NPs functionalized with 30 000 TBP ligands per NP at day 7 during the proliferative healing phase, relative to the inflammatory (day 3) and early remodeling (day 14) phases of healing. Nevertheless, TRAP activity varies throughout healing and, therefore, may offer an opportunity for optimizing temporal therapeutic targeting through multivalent interactions. Hence, in this study, we hypothesized that the ligand density (9000-55,000 TBPs per NP) can optimize tendon accumulation on the basis of variable TRAP levels. The multivalent nanoparticles were loaded with three different fluorophores. In vitro, the ligand density and fluorophore had no effect on the physicochemical properties of the NPs, including size, charge, polydispersity index, or dye loading efficiency; however, the TRAP binding affinity correlated positively with the ligand density. In vivo, the ligand density correlated positively with NP homing and retention in the tendon, establishing opportunities to leverage ligand density for tendon targeting across the tendon healing cascade, during aging, and in other tendon pathologies, including tendinopathies.
Collapse
Affiliation(s)
- Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Vigneshkumar Rangasami
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
| | - Alayna E Loiselle
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, New York 14642, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14623, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon 97403, United States
- Department of Orthopedics & Physical Performance, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
3
|
Frischauf N, Strasser J, Borg EG, Labrijn AF, Beurskens FJ, Preiner J. Complement activation by IgG subclasses is governed by their ability to oligomerize upon antigen binding. Proc Natl Acad Sci U S A 2024; 121:e2406192121. [PMID: 39436656 PMCID: PMC11536094 DOI: 10.1073/pnas.2406192121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
Complement activation through antibody-antigen complexes is crucial in various pathophysiological processes and utilized in immunotherapies to eliminate infectious agents, regulatory immune cells, or cancer cells. The tertiary structures of the four IgG antibody subclasses are largely comparable, with the most prominent difference being the hinge regions connecting the Fab and Fc domains, providing them with unique structural flexibility. Complement recruitment and activation depend strongly on IgG subclass, which is commonly rationalized by differences in hinge flexibility and the respective affinities for C1, the first component of the classical complement pathway. However, a unifying mechanism of how these different IgG subclass properties combine to modulate C1 activation has not yet been proposed. We here demonstrate that complement activation is determined by their varying ability to form IgG oligomers on antigenic surfaces large enough to multivalently bind and activate C1. We directly visualize the resulting IgG oligomer structures and characterize their distribution by means of high-speed atomic force microscopy, quantify their complement recruitment efficiency from quartz crystal microbalance experiments, and characterize their ability to activate complement on tumor cell lines as well as in vesicle-based complement lysis assays. We present a mechanistic model of the multivalent interactions that govern C1 binding to IgG oligomers and use it to extract kinetic rate constants from real-time interaction data from which we further calculate equilibrium dissociation constants. Together, we provide a comprehensive view on the parameters that govern complement activation by the different IgG subclasses, which may inform the design of future antibody therapies.
Collapse
Affiliation(s)
- Nikolaus Frischauf
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz4020, Austria
| | - Jürgen Strasser
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz4020, Austria
| | | | | | | | - Johannes Preiner
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz4020, Austria
| |
Collapse
|
4
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 PMCID: PMC11887860 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
5
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
6
|
Jin W, Nagao M, Kumon Y, Matsumoto H, Hoshino Y, Miura Y. Effects of Cyclic Glycopolymers Molecular Mobility on their Interactions with Lectins. Chempluschem 2024; 89:e202400136. [PMID: 38535777 DOI: 10.1002/cplu.202400136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 08/22/2024]
Abstract
Cyclic polymers, which are found in the field of biopolymers, exhibit unique physical properties such as suppressed molecular mobility. Considering thermodynamics, the suppressed molecular mobility of cyclic polymers is expected to prevent unfavorable entropy loss in molecular interactions. In this study, we synthesized cyclic glycopolymers carrying galactose units and investigated the effects of their molecular mobility on the interactions with a lectin (peanut agglutinin). The synthesized cyclic glycopolymers exhibited delayed elution time on size exclusion chromatography and a short spin-spin relaxation time, indicating typical characteristics of cyclic polymers, including smaller hydrodynamic size and suppressed molecular mobility. The hemagglutination inhibition assay revealed that the cyclic glycopolymers exhibited weakened interactions with peanut agglutinin compared to the linear counterparts, attributable to the suppressed molecular mobility. Although the results are contrary to our expectations, the impact of polymer topology on molecular recognition remains intriguing, particularly in the context of protein repellent activity in the biomedical field.
Collapse
Affiliation(s)
- Wenkang Jin
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yusuke Kumon
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Hikaru Matsumoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yu Hoshino
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
7
|
Deal BR, Ma R, Narum S, Ogasawara H, Duan Y, Kindt JT, Salaita K. Heteromultivalency enables enhanced detection of nucleic acid mutations. Nat Chem 2024; 16:229-238. [PMID: 37884668 DOI: 10.1038/s41557-023-01345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Detecting genetic mutations such as single nucleotide polymorphisms (SNPs) is necessary to prescribe effective cancer therapies, perform genetic analyses and distinguish similar viral strains. Traditionally, SNP sensing uses short oligonucleotide probes that differentially bind the SNP and wild-type targets. However, DNA hybridization-based techniques require precise tuning of the probe's binding affinity to manage the inherent trade-off between specificity and sensitivity. As conventional hybridization offers limited control over binding affinity, here we generate heteromultivalent DNA-functionalized particles and demonstrate optimized hybridization specificity for targets containing one or two mutations. By investigating the role of oligo lengths, spacer lengths and binding orientation, we reveal that heteromultivalent hybridization enables fine-tuned specificity for a single SNP and dramatic enhancements in specificity for two non-proximal SNPs empowered by highly cooperative binding. Capitalizing on these abilities, we demonstrate straightforward discrimination between heterozygous cis and trans mutations and between different strains of the SARS-CoV-2 virus. Our findings indicate that heteromultivalent hybridization offers substantial improvements over conventional monovalent hybridization-based methods.
Collapse
Affiliation(s)
- Brendan R Deal
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Rong Ma
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Steven Narum
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - James T Kindt
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Kang JJ, Ohoka A, Sarkar CA. Designing Multivalent and Multispecific Biologics. Annu Rev Chem Biomol Eng 2023; 15:293-314. [PMID: 38064501 DOI: 10.1146/annurev-chembioeng-100722-112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design-domain affinities, valency, and spatial presentation-must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer J Kang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
- Present affiliation: AbbVie Inc., North Chicago, Illinois, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| |
Collapse
|
9
|
Grimm LM, Setiadi J, Tkachenko B, Schreiner PR, Gilson MK, Biedermann F. The temperature-dependence of host-guest binding thermodynamics: experimental and simulation studies. Chem Sci 2023; 14:11818-11829. [PMID: 37920355 PMCID: PMC10619620 DOI: 10.1039/d3sc01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023] Open
Abstract
The thermodynamic parameters of host-guest binding can be used to describe, understand, and predict molecular recognition events in aqueous systems. However, interpreting binding thermodynamics remains challenging, even for these relatively simple molecules, as they are determined by both direct and solvent-mediated host-guest interactions. In this contribution, we focus on the contributions of water to binding by studying binding thermodynamics, both experimentally and computationally, for a series of nearly rigid, electrically neutral host-guest systems and report the temperature-dependent thermodynamic binding contributions ΔGb(T), ΔHb(T), ΔSb(T), and ΔCp,b. Combining isothermal titration calorimetry (ITC) measurements with molecular dynamics (MD) simulations, we provide insight into the binding forces at play for the macrocyclic hosts cucurbit[n]uril (CBn, n = 7-8) and β-cyclodextrin (β-CD) with a range of guest molecules. We find consistently negative changes in heat capacity on binding (ΔCp,b) for all systems studied herein - as well as for literature host-guest systems - indicating increased enthalpic driving forces for binding at higher temperatures. We ascribe these trends to solvation effects, as the solvent properties of water deteriorate as temperature rises. Unlike the entropic and enthalpic contributions to binding, with their differing signs and magnitudes for the classical and non-classical hydrophobic effect, heat capacity changes appear to be a unifying and more general feature of host-guest complex formation in water. This work has implications for understanding protein-ligand interactions and other complex systems in aqueous environments.
Collapse
Affiliation(s)
- Laura M Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jeffry Setiadi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego 9255 Pharmacy Lane La Jolla CA 92093 USA
| | - Boryslav Tkachenko
- Institute of Organic Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego 9255 Pharmacy Lane La Jolla CA 92093 USA
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
10
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Zimmer O, Goepferich A. How clathrin-coated pits control nanoparticle avidity for cells. NANOSCALE HORIZONS 2023; 8:256-269. [PMID: 36594629 DOI: 10.1039/d2nh00543c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The paramount relevance of clathrin-coated pits (CCPs) to receptor-mediated endocytosis of nanoparticles, extracellular vesicles, and viruses has made them the focus of many studies; however, the role of CCP geometry in the ligand-receptor interactions between multivalent nanoparticles and cells has not been investigated. We hypothesized the general dependence of nanoparticle binding energy on local membrane curvature to be expandable to the specific case of ligand-functionalized nanoparticles binding cell membranes, in the sense that membrane structures whose curvature matches that of the particle (e.g., CCPs) signficantly contribute to binding avidity. We investigated this hypothesis with nanoparticles that bind multivalently to angiotensin II receptor type 1, which is subject to clathrin-mediated endocytosis. When we used cholesterol extraction to prevent the action of CCPs, we found a 67 to 100-fold loss in avidity. We created a theoretical model that predicts this decrease based on the loss of ligand-receptor interactions when CCPs, which perfectly match nanoparticle geometry, are absent. Our findings shed new light on how cells "see" nanoparticles. The presence or absence of CPPs is so influential on how cells interact with nanoparticles that the number of particles required to be visible to cells changes by two orders of magnitude depending on CCP presence.
Collapse
Affiliation(s)
- Oliver Zimmer
- Department for Pharmaceutical Technology, University of Regensburg, Regensburg, 93050, Germany.
| | - Achim Goepferich
- Department for Pharmaceutical Technology, University of Regensburg, Regensburg, 93050, Germany.
| |
Collapse
|
12
|
Huang C, Huang J, Zhu S, Tang T, Chen Y, Qian F. Multivalent nanobodies with rationally optimized linker and valency for intravitreal VEGF neutralization. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
14
|
Bruncsics B, Errington WJ, Sarkar CA. MVsim is a toolset for quantifying and designing multivalent interactions. Nat Commun 2022; 13:5029. [PMID: 36068204 PMCID: PMC9448752 DOI: 10.1038/s41467-022-32496-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Arising through multiple binding elements, multivalency can specify the avidity, duration, cooperativity, and selectivity of biomolecular interactions, but quantitative prediction and design of these properties has remained challenging. Here we present MVsim, an application suite built around a configurational network model of multivalency to facilitate the quantification, design, and mechanistic evaluation of multivalent binding phenomena through a simple graphical user interface. To demonstrate the utility and versatility of MVsim, we first show that both monospecific and multispecific multivalent ligand-receptor interactions, with their noncanonical binding kinetics, can be accurately simulated. Further, to illustrate the conceptual insights into multivalent systems that MVsim can provide, we apply it to quantitatively predict the ultrasensitivity and performance of multivalent-encoded protein logic gates, evaluate the inherent programmability of multispecificity for selective receptor targeting, and extract rate constants of conformational switching for the SARS-CoV-2 spike protein and model its binding to ACE2 as well as multivalent inhibitors of this interaction. MVsim and instructional tutorials are freely available at https://sarkarlab.github.io/MVsim/ .
Collapse
Affiliation(s)
- Bence Bruncsics
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| | - Wesley J Errington
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455-0215, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455-0215, USA.
| |
Collapse
|
15
|
dos Santos JC, Schäfer M, Bauder-Wüst U, Beijer B, Eder M, Leotta K, Kleist C, Meyer JP, Dilling TR, Lewis JS, Kratochwil C, Kopka K, Haberkorn U, Mier W. Refined Chelator Spacer Moieties Ameliorate the Pharmacokinetics of PSMA-617. Front Chem 2022; 10:898692. [PMID: 36017165 PMCID: PMC9396645 DOI: 10.3389/fchem.2022.898692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) binding tracers are promising agents for the targeting of prostate tumors. To further optimize the clinically established radiopharmaceutical PSMA-617, novel PSMA ligands for prostate cancer endoradiotherapy were developed. A series of PSMA binding tracers that comprise a benzyl group at the chelator moiety were obtained by solid-phase synthesis. The compounds were labeled with 68Ga or 177Lu. Competitive cell-binding assays and internalization assays were performed using the cell line C4-2, a subline of the PSMA positive cell line LNCaP (human lymph node carcinoma of the prostate). Positron emission tomography (PET) imaging and biodistribution studies were conducted in a C4-2 tumor bearing BALB/c nu/nu mouse model. All 68Ga-labeled ligands were stable in human serum over 2 h; 177Lu-CA030 was stable over 72 h. The PSMA ligands revealed inhibition potencies [Ki] (equilibrium inhibition constants) between 4.8 and 33.8 nM. The percentage of internalization of the injected activity/106 cells of 68Ga-CA028, 68Ga-CA029, and 68Ga-CA030 was 41.2 ± 2.7, 44.3 ± 3.9, and 53.8 ± 5.4, respectively; for the comparator 68Ga-PSMA-617, 15.5 ± 3.1 was determined. Small animal PET imaging of the compounds showed a high tumor-to-background contrast. Organ distribution studies revealed high specific uptake in the tumor, that is, approximately 34.4 ± 9.8% of injected dose per gram (%ID/g) at 1 h post injection for 68Ga-CA028. At 1 h p.i., 68Ga-CA028 and 68Ga-CA030 demonstrated lower kidney uptake than 68Ga-PSMA-617, but at later time points, kidney time–activity curves converge. In line with the preclinical data, first diagnostic PET imaging using 68Ga-CA028 and 68Ga-CA030 revealed high-contrast detection of bone and lymph node lesions in patients with metastatic prostate cancer. The novel PSMA ligands, in particular CA028 and CA030, are promising agents for targeting PSMA-positive tumor lesions as shown in the preclinical evaluation and in a first patient, respectively. Thus, clinical translation of 68Ga-CA028 and 68Ga/177Lu-CA030 for diagnostics and endoradiotherapy of prostate cancer in larger cohorts of patients is warranted.
Collapse
Affiliation(s)
| | - Martin Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center, Heidelberg, Germany
| | - Ulrike Bauder-Wüst
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center, Heidelberg, Germany
| | - Barbro Beijer
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Eder
- Department of Nuclear Medicine, Division of Radiopharmaceutical Development, University Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium, Partner Site Freiburg, University Medical Center, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Karin Leotta
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Jan-Philip Meyer
- Department of Radiology and the Program in Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Thomas R. Dilling
- Department of Radiology and the Program in Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jason S. Lewis
- Department of Radiology and the Program in Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Clemens Kratochwil
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Walter Mier,
| |
Collapse
|
16
|
Lundmark F, Olanders G, Rinne SS, Abouzayed A, Orlova A, Rosenström U. Design, Synthesis, and Evaluation of Linker-Optimised PSMA-Targeting Radioligands. Pharmaceutics 2022; 14:pharmaceutics14051098. [PMID: 35631684 PMCID: PMC9147442 DOI: 10.3390/pharmaceutics14051098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is overexpressed in the majority of prostate cancer cells and is considered to be an important target for the molecular imaging and therapy of prostate cancer. Herein, we present the design, synthesis, and evaluation of 11 PSMA-binding radioligands with modified linker structures, focusing on the relationship between molecular structure and targeting properties. The linker design was based on 2-naphthyl-L-alanine-tranexamic acid, the linker structure of PSMA-617. X-ray crystal-structure analysis of PSMA and structure-based design were used to generate the linker modifications, suggesting that substitution of tranexamic acid could lead to interactions with Phe546, Trp541, and Arg43 within the binding cavity. After synthesis through SPPS, analogues were labelled with indium-111 and evaluated in vitro for their specific binding, affinity, and cellular retention. Selected compounds were further evaluated in vivo in PSMA-expressing tumour-bearing mice. Based on the results, 2-naphthyl-L-alanine appears to be crucial for good targeting properties, whereas tranexamic acid could be replaced by other substituents. [111In]In-BQ7859, consisting of a 2-naphthyl-L-alanine-L-tyrosine linker, demonstrated favourable targeting properties. The substitution of tranexamic acid for L-tyrosine in the linker led to an improved tumour-to-blood ratio, highlighting [111In]In-BQ7859 as a promising PSMA-targeting radioligand.
Collapse
Affiliation(s)
- Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (F.L.); (G.O.); (S.S.R.); (A.A.); (A.O.)
| | - Gustav Olanders
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (F.L.); (G.O.); (S.S.R.); (A.A.); (A.O.)
| | - Sara Sophie Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (F.L.); (G.O.); (S.S.R.); (A.A.); (A.O.)
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (F.L.); (G.O.); (S.S.R.); (A.A.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (F.L.); (G.O.); (S.S.R.); (A.A.); (A.O.)
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Ulrika Rosenström
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (F.L.); (G.O.); (S.S.R.); (A.A.); (A.O.)
- Correspondence:
| |
Collapse
|
17
|
Imran A, Moyer BS, Wolfe AJ, Cosgrove MS, Makarov DE, Movileanu L. Interplay of Affinity and Surface Tethering in Protein Recognition. J Phys Chem Lett 2022; 13:4021-4028. [PMID: 35485934 PMCID: PMC9106920 DOI: 10.1021/acs.jpclett.2c00621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/27/2022] [Indexed: 05/10/2023]
Abstract
Surface-tethered ligand-receptor complexes are key components in biological signaling and adhesion. They also find increasing utility in single-molecule assays and biotechnological applications. Here, we study the real-time binding kinetics between various surface-immobilized peptide ligands and their unrestrained receptors. A long peptide tether increases the association of ligand-receptor complexes, experimentally proving the fly casting mechanism where the disorder accelerates protein recognition. On the other hand, a short peptide tether enhances the complex dissociation. Notably, the rate constants measured for the same receptor, but under different spatial constraints, are strongly correlated to one another. Furthermore, this correlation can be used to predict how surface tethering on a ligand-receptor complex alters its binding kinetics. Our results have immediate implications in the broad areas of biomolecular recognition, intrinsically disordered proteins, and biosensor technology.
Collapse
Affiliation(s)
- Ali Imran
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Brandon S. Moyer
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Aaron J. Wolfe
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
| | - Michael S. Cosgrove
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Dmitrii E. Makarov
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Oden
Institute
for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- The BioInspired
Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
18
|
Modulating binding affinity, specificity and configurations by multivalent interactions. Biophys J 2022; 121:1868-1880. [PMID: 35450827 DOI: 10.1016/j.bpj.2022.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Biological functions of proteins rely on their specific interactions with binding partners. Many proteins contain multiple domains, which can bind to their targets that often have more than one binding site, resulting in multivalent interactions. While it has been shown that multivalent interactions play an crucial role in modulating binding affinity and specificity, other potential effects of multivalent interactions are less explored. Here, we developed a broadly applicable transfer matrix formalism and used it to investigate the binding of two-domain ligands to targets with multiple binding sites. We show that 1) ligands with two specific binding domains can drastically boost both the binding affinity and specificity and down-shift the working concentration range, compared to single-domain ligands, 2) the presence of a positive domain-domain cooperativity or containing a non-specific binding domain can down-shift the working concentration range of ligands by increasing the binding affinity without compromising the binding specificity, 3) the configuration of the bound ligands has a strong concentration dependence, providing important insights into the physical origin of phase-separation processes taking place in living cells. In line with previous studies, our results suggest that multivalent interactions are utilized by cells for highly efficient regulation of target binding involved in a diverse range of cellular processes such as signal transduction, gene transcription, antibody-antigen recognition.
Collapse
|
19
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022; 61:e202114167. [PMID: 34982497 PMCID: PMC9303963 DOI: 10.1002/anie.202114167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Indexed: 01/16/2023]
Abstract
Numerous key biological processes rely on the concept of multivalency, where ligands achieve stable binding only upon engaging multiple receptors. These processes, like viral entry or immune synapse formation, occur on the diffusive cellular membrane. One crucial, yet underexplored aspect of multivalent binding is the mobility of coupled receptors. Here, we discuss the consequences of mobility in multivalent processes from four perspectives: (I) The facilitation of receptor recruitment by the multivalent ligand due to their diffusivity prior to binding. (II) The effects of receptor preassembly, which allows their local accumulation. (III) The consequences of changes in mobility upon the formation of receptor/ligand complex. (IV) The changes in the diffusivity of lipid environment surrounding engaged receptors. We demonstrate how understanding mobility is essential for fully unravelling the principles of multivalent membrane processes, leading to further development in studies on receptor interactions, and guide the design of new generations of multivalent ligands.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
20
|
Ye S, Li H, Hu K, Li L, Zhong J, Yan Q, Wang Q. Radiosynthesis and biological evaluation of 18F-labeled bispecific heterodimer targeted dual gastrin-releasing peptide receptor and prostate-specific membrane antigen for prostate cancer imaging. Nucl Med Commun 2022; 43:323-331. [PMID: 34919064 DOI: 10.1097/mnm.0000000000001520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Approximately 5% of prostatic primary tumors and 15% of metastatic tumors were found to be prostate-specific membrane antigen (PSMA)-negative. Targeting gastrin-releasing peptide receptor (GRPR) has been shown to complement patients with PSMA-negative prostate cancer (PCa). Based on previous findings, simultaneously targeting PSMA and GRPR imaging may improve the diagnosis of PCa. In this study, we report the radiosynthesis and biological evaluation of a bispecific heterodimer of NOTA-GRPR-PSMA that targeted both PSMA and GRPR for extended PCa imaging. METHODS NOTA-GRPR-PSMA was labeled using the Al18F-chelating one-step method. The competitive combination experiment and specific binding assay were performed in vitro using 22Rv1 (PSMA+) and PC-3 (GRPR+) cells. To determine the distribution and specificity in vivo, biodistribution and micro-PET/computed tomography of [18F]AlF-GRPR-PSMA were performed on mice bearing 22Rv1 or PC-3 tumors. RESULTS [18F]AlF-GRPR-PSMA had a radiochemical purity of over 98% and demonstrated high stability in vivo and in vitro, with a LogD of -1.2 ± 0.05. Cell uptake and inhibition studies of [18F]AlF-GRPR-PSMA in 22Rv1 and PC-3 cells revealed bispecific GRPR and PSMA bindings. According to the biodistribution study and PET imaging, [18F]AlF-GRPR-PSMA was mainly excreted through the kidney. Tumor uptake was high in 22Rv1 tumor (10.1 ± 0.4 %ID/g) and moderate in PC-3 tumor (2.1 ± 0.6 %ID/g) 2 h p.i., whereas blocking studies significantly decreased the tumor uptake of 22Rv1 and PC-3. CONCLUSION [18F]AlF-GRPR-PSMA has the potential to simultaneously target PSMA and GRPR for PCa imaging.
Collapse
Affiliation(s)
- Shimin Ye
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Hongsheng Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Li Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Jiawei Zhong
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Qingsong Yan
- Department of Chemistry, Jinan University, Guangzhou, China
| | - Quanshi Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou
| |
Collapse
|
21
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| |
Collapse
|
22
|
Bruncsics B, Errington WJ, Sarkar CA. MVsim : a toolset for quantifying and designing multivalent interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.01.454686. [PMID: 34373856 PMCID: PMC8351779 DOI: 10.1101/2021.08.01.454686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Arising through multiple binding elements, multivalency can specify the avidity, duration, cooperativity, and selectivity of biomolecular interactions, but quantitative prediction and design of these properties has remained challenging. Here we present MVsim , an application suite built around a configurational network model of multivalency to facilitate the quantification, design, and mechanistic evaluation of multivalent binding phenomena through a simple graphical user interface. To demonstrate the utility and versatility of MVsim , we first show that both monospecific and multispecific multivalent ligand-receptor interactions, with their noncanonical binding kinetics, can be accurately simulated. We then quantitatively predict the ultrasensitivity and performance of multivalent-encoded protein logic gates, evaluate the inherent programmability of multispecificity for selective receptor targeting, and extract rate constants of conformational switching for the SARS-CoV-2 spike protein and model its binding to ACE2 as well as multivalent inhibitors of this interaction. MVsim is freely available at https://sarkarlab.github.io/MVsim/ .
Collapse
Affiliation(s)
- Bence Bruncsics
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest H-1111, Hungary
| | - Wesley J. Errington
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455-0215, USA
| | - Casim A. Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455-0215, USA
| |
Collapse
|
23
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
24
|
Qin Q, Lang S, Huang X. Synthetic linear glycopolymers and their biological applications. J Carbohydr Chem 2021; 40:1-44. [PMID: 35308080 PMCID: PMC8932951 DOI: 10.1080/07328303.2021.1928156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
As typical affinities of carbohydrates with their receptors are modest, polymers of carbohydrates (glycopolymers) are exciting tools to probe the multifaceted biological activities of glycans. In this review, the linear glycopolymers and the multivalency effects are first introduced. This is followed by discussions of methods to synthesize these polymers. Subsequently, the interactions of glycopolymers with plant lectins and viral/bacterial carbohydrate binding proteins are discussed. In addition, applications of the glycopolymers in facilitating glycan microarray studies, mimicking cell surface glycans, modulation of the immune system, cryoprotection of protein, and electron-beam lithography are presented to stimulate further development of this fascinating technology.
Collapse
Affiliation(s)
- Qian Qin
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
25
|
Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021; 18:1261-1290. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The targeted delivery of anticancer agents to tumor is a major challenge because most of the drugs show off-target effect resulting in nonspecific cell death. Multifunctionalized metallic nanoparticles (NPs) are explored as new carrier system in the era of cancer therapeutics. Researchers investigated the potential of metallic NPs to target tumor cells by active and passive mechanisms, thereby reducing off-target effects of anticancer agents. Moreover, photocatalytic activity of upconversion nanoparticles (UCNPs) and the enhanced permeation and retention (EPR) effect have also gained wide potential in cancer treatment. Recent advancement in the field of nanotechnology highlights their potency for cancer therapy. AREAS COVERED This review summarizes the types of gold and silver metallic NPs with targeting mechanisms and their potentiality in cancer therapy. EXPERT OPINION Recent advances in the field of nanotechnology for cancer therapy offer high specificity and targeting efficiency. Targeting tumor cells through mechanistic pathways using metallic NPs for the disruption/alteration of molecular profile and survival rate of the tumor cells has led to an effective approach for cancer therapeutics. This alteration in the survival rate of the tumor cells might decrease the proliferation thereby resulting in more efficient management in the treatment of cancer.
Collapse
Affiliation(s)
- Neha Desai
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | | | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
26
|
Erlendsson S, Teilum K. Binding Revisited-Avidity in Cellular Function and Signaling. Front Mol Biosci 2021; 7:615565. [PMID: 33521057 PMCID: PMC7841115 DOI: 10.3389/fmolb.2020.615565] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
When characterizing biomolecular interactions, avidity, is an umbrella term used to describe the accumulated strength of multiple specific and unspecific interactions between two or more interaction partners. In contrast to the affinity, which is often sufficient to describe monovalent interactions in solution and where the binding strength can be accurately determined by considering only the relationship between the microscopic association and dissociation rates, the avidity is a phenomenological macroscopic parameter linked to several microscopic events. Avidity also covers potential effects of reduced dimensionality and/or hindered diffusion observed at or near surfaces e.g., at the cell membrane. Avidity is often used to describe the discrepancy or the "extra on top" when cellular interactions display binding that are several orders of magnitude stronger than those estimated in vitro. Here we review the principles and theoretical frameworks governing avidity in biological systems and the methods for predicting and simulating avidity. While the avidity and effects thereof are well-understood for extracellular biomolecular interactions, we present here examples of, and discuss how, avidity and the underlying kinetics influences intracellular signaling processes.
Collapse
Affiliation(s)
- Simon Erlendsson
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Hashidzume A, Itami T, Kamon Y, Harada A. A Simplified Model for Multivalent Interaction Competing with a Low Molecular Weight Competitor. CHEM LETT 2020. [DOI: 10.1246/cl.200501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takahiro Itami
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
28
|
Abbasi Gharibkandi N, Conlon JM, Hosseinimehr SJ. Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. Peptides 2020; 133:170385. [PMID: 32822772 DOI: 10.1016/j.peptides.2020.170385] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Tumor cells overexpress a variety of receptors that are emerging targets in cancer chemotherapy. Radiolabeled peptides with high affinity and selectivity for these overexpressed receptors have been designed for both imaging and therapy purposes. Such peptides display advantages such as high selectivity for tumor cells, rapid tumor tissue penetration, and rapid clearance from non-target tissues and the circulation. However, the very short in vivo half-life of radiolabeled peptides, arising from enzymatic degradation and/or efficient clearance by the kidney, limits their accumulation in tumors. This review presents various strategies that have been applied to extend the half-life extension and improve the pharmacokinetic characteristics of radiolabeled peptides. These include amino acid substitution, modification of the peptide termini, dimerization and multimerization of the peptide, cyclization, conjugation with polymers, sugars and albumin and use of peptidase inhibitors.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
29
|
Winkler K, Karner A, Horner A, Hannesschlaeger C, Knyazev D, Siligan C, Zimmermann M, Kuttner R, Pohl P, Preiner J. Interaction of the motor protein SecA and the bacterial protein translocation channel SecYEG in the absence of ATP. NANOSCALE ADVANCES 2020; 2:3431-3443. [PMID: 36134293 PMCID: PMC9418451 DOI: 10.1039/d0na00427h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/27/2020] [Indexed: 06/16/2023]
Abstract
Translocation of many secretory proteins through the bacterial plasma membrane is facilitated by a complex of the SecYEG channel with the motor protein SecA. The ATP-free complex is unstable in detergent, raising the question how SecA may perform several rounds of ATP hydrolysis without being released from the membrane embedded SecYEG. Here we show that dual recognition of (i) SecYEG and (ii) vicinal acidic lipids confers an apparent nanomolar affinity. High-speed atomic force microscopy visualizes the complexes between monomeric SecA and SecYEG as being stable for tens of seconds. These long-lasting events and complementary shorter ones both give rise to single ion channel openings of equal duration. Furthermore, luminescence resonance energy transfer reveals two conformations of the SecYEG-SecA complex that differ in the protrusion depth of SecA's two-helix finger into SecYEG's aqueous channel. Such movement of the finger is in line with the power stroke mechanism of protein translocation.
Collapse
Affiliation(s)
- Klemens Winkler
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Andreas Karner
- University of Applied Sciences Upper Austria, TIMED Center 4020 Linz Austria
| | - Andreas Horner
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | | | - Denis Knyazev
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Christine Siligan
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Mirjam Zimmermann
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Roland Kuttner
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Peter Pohl
- Johannes Kepler University Linz, Institute of Biophysics 4020 Linz Austria
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, TIMED Center 4020 Linz Austria
| |
Collapse
|
30
|
Structural modifications of amino acid sequences of radiolabeled peptides for targeted tumor imaging. Bioorg Chem 2020; 99:103802. [DOI: 10.1016/j.bioorg.2020.103802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
31
|
Deal BR, Ma R, Ma VPY, Su H, Kindt JT, Salaita K. Engineering DNA-Functionalized Nanostructures to Bind Nucleic Acid Targets Heteromultivalently with Enhanced Avidity. J Am Chem Soc 2020; 142:9653-9660. [PMID: 32338896 PMCID: PMC7340273 DOI: 10.1021/jacs.0c01568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Improving the affinity of nucleic acids to their complements is an important goal for many fields spanning from genomics to antisense therapy and diagnostics. One potential approach to achieving this goal is to use multivalent binding, which often boosts the affinity between ligands and receptors, as exemplified by virus-cell binding and antibody-antigen interactions. Herein, we investigate the binding of heteromultivalent DNA-nanoparticle conjugates, where multiple unique oligonucleotides displayed on a nanoparticle form a multivalent complex with a long DNA target containing the complementary sequences. By developing a strategy to spatially pattern oligonucleotides on a nanoparticle, we demonstrate that the molecular organization of heteromultivalent nanostructures is critical for effective binding; patterned particles have a ∼23 order-of-magnitude improvement in affinity compared to chemically identical particles patterned incorrectly. We envision that nanostructures presenting spatially patterned heteromultivalent DNA will offer important biomedical applications given the utility of DNA-functionalized nanostructures in diagnostics and therapeutics.
Collapse
|
32
|
Sun L, Gai Y, McNitt CD, Sun J, Zhang X, Xing W, Li Z, Popik VV, Zeng D. Photo-Click-Facilitated Screening Platform for the Development of Hetero-Bivalent Agents with High Potency. J Org Chem 2020; 85:5771-5777. [PMID: 32223160 DOI: 10.1021/acs.joc.9b03122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel photo-click-based platform has been developed for rapid screening and affinity optimization of heterobivalent agents. This method allows for the efficient selection of high-affinity dual receptor-targeting agents via streamlining tedious organic synthesis and biological evaluation procedures required by traditional approaches. The high-avidity heterobivalent agents targeting both integrin αvβ3 and urokinase-type plasminogen activator receptors have been developed using this photo-click-facilitated screening platform. The affinity screening results were further validated by traditional in vitro and in vivo evaluation techniques, reaffirming the reliability of the method. The convenience, rapidity, universality, and robustness of the screening platform, discussed in this report, can greatly facilitate the development of new heterobivalent agents for research and/or clinical applications.
Collapse
Affiliation(s)
- Lingyi Sun
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Yongkang Gai
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Christopher D McNitt
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jun Sun
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu 213003, China
| | - Xiaohui Zhang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu 213003, China
| | - Zhonghan Li
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Vladimir V Popik
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Dexing Zeng
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States.,Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|
33
|
Shandilya E, Maiti S. Deconvolution of Transient Species in a Multivalent Fuel‐Driven Multistep Assembly under Dissipative Conditions. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.201900040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ekta Shandilya
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Subhabrata Maiti
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| |
Collapse
|
34
|
Strasser J, de Jong RN, Beurskens FJ, Schuurman J, Parren PWHI, Hinterdorfer P, Preiner J. Weak Fragment Crystallizable (Fc) Domain Interactions Drive the Dynamic Assembly of IgG Oligomers upon Antigen Recognition. ACS NANO 2020; 14:2739-2750. [PMID: 31887016 DOI: 10.1021/acsnano.9b08347] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Activation of membrane receptors through clustering is a common mechanism found in various biological systems. Spatial proximity of receptors may be transduced across the membrane to initiate signaling pathways or alternatively be recognized by peripheral proteins or immune cells to trigger external effector functions. Here we show how specific immunoglobulin G (IgG) binding induces clustering of monomeric target molecules in lipid membranes through Fc-Fc interactions. We visualize and characterize the dynamic IgG oligomerization process and the molecular interactions involved using high-speed atomic force microscopy, single-molecule force spectroscopy, and quartz crystal microbalance experiments. We found that the Fc-Fc interaction strength is precisely tuned to be weak enough to prevent IgG oligomerization in solution at physiological titers, but enabling IgG oligomerization when Fabs additionally bind to their cognate surface epitopes, a mechanism that ultimately targets IgG-mediated effector functions such as classical complement activation to antigenic membranes.
Collapse
Affiliation(s)
- Jürgen Strasser
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | | | | | | | - Paul W H I Parren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
| | | | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| |
Collapse
|
35
|
Mechanisms of noncanonical binding dynamics in multivalent protein-protein interactions. Proc Natl Acad Sci U S A 2019; 116:25659-25667. [PMID: 31776263 DOI: 10.1073/pnas.1902909116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein multivalency can provide increased affinity and specificity relative to monovalent counterparts, but these emergent biochemical properties and their mechanistic underpinnings are difficult to predict as a function of the biophysical properties of the multivalent binding partners. Here, we present a mathematical model that accurately simulates binding kinetics and equilibria of multivalent protein-protein interactions as a function of the kinetics of monomer-monomer binding, the structure and topology of the multidomain interacting partners, and the valency of each partner. These properties are all experimentally or computationally estimated a priori, including approximating topology with a worm-like chain model applicable to a variety of structurally disparate systems, thus making the model predictive without parameter fitting. We conceptualize multivalent binding as a protein-protein interaction network: ligand and receptor valencies determine the number of interacting species in the network, with monomer kinetics and structural properties dictating the dynamics of each species. As predicted by the model and validated by surface plasmon resonance experiments, multivalent interactions can generate several noncanonical macroscopic binding dynamics, including a transient burst of high-energy configurations during association, biphasic equilibria resulting from interligand competition at high concentrations, and multiexponential dissociation arising from differential lifetimes of distinct network species. The transient burst was only uncovered when extending our analysis to trivalent interactions due to the significantly larger network, and we were able to predictably tune burst magnitude by altering linker rigidity. This study elucidates mechanisms of multivalent binding and establishes a framework for model-guided analysis and engineering of such interactions.
Collapse
|
36
|
Jha P, Chaturvedi S, Anju, Kaul A, Jain N, Mishra AK. Acetylated Benzothiazolone as Homobivalent SPECT Metallo-Radiopharmaceutical 99mTc-(6-AcBTZ) 2DTPA: Design, Synthesis, and Preclinical Evaluation for Mapping 5-HT 1A/7 Receptors. ACS OMEGA 2019; 4:10044-10055. [PMID: 31460097 PMCID: PMC6647941 DOI: 10.1021/acsomega.9b00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/22/2019] [Indexed: 02/27/2025]
Abstract
Mapping different structural forms of serotonin subtypes 5-HT1A-5-HT7 using a selective-specific ligand with good pharmacokinetics and brain permeability can open avenues for personalized medication in depressed population. Herein, the selective 5-HT1A/7 antagonist, modified for enhanced brain permeation, is developed as a homobivalent ligand, (6-AcBTZ)2DTPA. After in-depth computational studies to probe the binding mechanism, two-step synthesis lead to (6-AcBTZ)2DTPA. Biocompatibility studies indicated cytocompatibility with 3.6-1.64% cell death (0.1 mM-1 pM) and hemocompatibility with 2.33% hemolysis of human erythrocytes. When 99mTc-radiolabeled in a quantitative yield (98%), a stable preparation was obtained with 7.4 and 3.5% dissociation upon incubation with human serum and excess cysteine. The single-photon-emission computed tomography (SPECT) tracer 99mTc-(6-AcBTZ)2DTPA showed biphasic clearance (t 1/2, distribution = 0.5 min and t 1/2, elimination = 482 min) and maximum brain uptake of 0.42 ± 0.02% ID/g with the regional localization (hippocampus: 11.38% ID/g; cortex: 26.42% ID/g; cerebellum: 25.23% ID/g). Thus, the 99mTc-metal-based SPECT neurotracer holds potential for neuroreceptor mapping.
Collapse
Affiliation(s)
- Preeti Jha
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, Delhi 110016, India
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| | - Shubhra Chaturvedi
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| | - Anju
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| | - Ankur Kaul
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| | - Nidhi Jain
- Department
of Chemistry, Indian Institute of Technology
Delhi, Hauz Khas, Delhi 110016, India
| | - Anil K. Mishra
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| |
Collapse
|
37
|
Yamini G, Nestorovich EM. Multivalent Inhibitors of Channel-Forming Bacterial Toxins. Curr Top Microbiol Immunol 2019; 406:199-227. [PMID: 27469304 PMCID: PMC6814628 DOI: 10.1007/82_2016_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rational design of multivalent molecules represents a remarkable modern tool to transform weak non-covalent interactions into strong binding by creating multiple finely-tuned points of contact between multivalent ligands and their supposed multivalent targets. Here, we describe several prominent examples where the multivalent blockers were investigated for their ability to directly obstruct oligomeric channel-forming bacterial exotoxins, such as the pore-forming bacterial toxins and B component of the binary bacterial toxins. We address problems related to the blocker/target symmetry match and nature of the functional groups, as well as chemistry and length of the linkers connecting the functional groups to their multivalent scaffolds. Using the anthrax toxin and AB5 toxin case studies, we briefly review how the oligomeric toxin components can be successfully disabled by the multivalent non-channel-blocking inhibitors, which are based on a variety of multivalent scaffolds.
Collapse
Affiliation(s)
- Goli Yamini
- Department of Biology, The Catholic University of America, Washington, D.C., 20064, USA
| | | |
Collapse
|
38
|
Paleos CM. Organization and Compartmentalization by Lipid Membranes Promote Reactions Related to the Origin of Cellular Life. ASTROBIOLOGY 2019; 19:547-552. [PMID: 30431329 DOI: 10.1089/ast.2018.1832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Liquid crystals have certain physical properties that promote chemical reactions which cannot occur in bulk phase media. These properties are displayed, among other molecules, by amphiphilic compounds which assemble into membrane structures then concentrate and organize biologically relevant monomers within their confined spaces. When mixtures of lipids and nucleotides are cycled multiple times between hydrated and anhydrous conditions, the monomers polymerize in the dry phase into oligonucleotides. Upon rehydration, mixtures of the polymers are encapsulated in lipid-bounded compartments called protocells. Reactions in liquid crystalline organizing matrices represent a promising approach for future research on how primitive cells could emerge on the early Earth and other habitable planets.
Collapse
|
39
|
Tjandra KC, Thordarson P. Multivalency in Drug Delivery–When Is It Too Much of a Good Thing? Bioconjug Chem 2019; 30:503-514. [DOI: 10.1021/acs.bioconjchem.8b00804] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kristel C. Tjandra
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pall Thordarson
- School of Chemistry, the Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
40
|
Arsiwala A, Castro A, Frey S, Stathos M, Kane RS. Designing Multivalent Ligands to Control Biological Interactions: From Vaccines and Cellular Effectors to Targeted Drug Delivery. Chem Asian J 2019; 14:244-255. [DOI: 10.1002/asia.201801677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Ammar Arsiwala
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Ana Castro
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Steven Frey
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Mark Stathos
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| | - Ravi S. Kane
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia- 30332 USA
| |
Collapse
|
41
|
Csizmar CM, Petersburg JR, Perry TJ, Rozumalski L, Hackel BJ, Wagner CR. Multivalent Ligand Binding to Cell Membrane Antigens: Defining the Interplay of Affinity, Valency, and Expression Density. J Am Chem Soc 2018; 141:251-261. [PMID: 30507196 DOI: 10.1021/jacs.8b09198] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nature uses multivalency to govern many biological processes. The development of macromolecular and cellular therapies has largely been dependent on engineering similar polyvalent interactions to enable effective targeting. Such therapeutics typically utilize high-affinity binding domains that have the propensity to recognize both antigen-overexpressing tumors and normal-expressing tissues, leading to "on-target, off-tumor" toxicities. One strategy to improve these agents' selectivity is to reduce the binding affinity, such that biologically relevant interactions between the therapeutic and target cell will only exist under conditions of high avidity. Preclinical studies have validated this principle of avidity optimization in the context of chimeric antigen receptor (CAR) T cells; however, a rigorous analysis of this approach in the context of soluble multivalent targeting scaffolds has yet to be undertaken. Using a modular protein nanoring capable of displaying ≤8 fibronectin domains with engineered specificity for a model antigen, epithelial cell adhesion molecule (EpCAM), this study demonstrates that binding affinity and ligand valency can be optimized to afford discrimination between EpCAMHigh (2.8-3.8 × 106 antigens/cell) and EpCAMLow (5.2 × 104 to 2.2 × 105 antigens/cell) tissues both in vitro and in vivo.
Collapse
|
42
|
Dynamic recognition and linkage specificity in K63 di-ubiquitin and TAB2 NZF domain complex. Sci Rep 2018; 8:16478. [PMID: 30405169 PMCID: PMC6220233 DOI: 10.1038/s41598-018-34605-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Poly-ubiquitin (poly-Ub) is involved in various cellular processes through the linkage-specific recognition of Ub-binding domains (UBD). In this study, using molecular dynamics (MD) simulation together with an enhanced sampling method, we demonstrated that K63-linked di-Ub recognizes the NZF domain of TAB2, a zinc finger UBD, in an ensemble of highly dynamic structures that form from the weak interactions between UBD and the flexible linker connecting the two Ubs. However, the K63 di-Ub/TAB2 NZF complex showed a much more compact and stable ensemble than the non-native complexes, linear di-Ub/TAB2 NZF and K33 di-Ub/TAB2 NZF, that were modeled from linear di-Ub/HOIL-1L NZF and K33 di-Ub/TRABID NZF1, respectively. We further demonstrated the importance of the length and position of the Ub-Ub linker in the results of MD simulations of K63 di-Ub/TAB2 NZF by changing the Ub linkage from the native K63 to four different non-native linkages, linear, K6, K11, and K48, while maintaining inter-molecular contacts in the native complex. No systems with non-native linkage maintained the native binding configuration. These simulation results provide an atomistic picture of the linkage specific recognition of poly-Ubs leading to the biological functions such as cellular colocalization of various component proteins in the signal transduction pathways.
Collapse
|
43
|
Kim YS, Sung DK, Kong WH, Kim H, Hahn SK. Synergistic effects of hyaluronate - epidermal growth factor conjugate patch on chronic wound healing. Biomater Sci 2018; 6:1020-1030. [PMID: 29616250 DOI: 10.1039/c8bm00079d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proteolytic microenvironment in the wound area reduces the stability and the half-life of growth factors in vivo, making difficult the topical delivery of growth factors. Here, epidermal growth factor (EGF) was conjugated to hyaluronate (HA) to improve the long-term stability against enzymatic degradation and the therapeutic effect by enhancing the biological interaction with HA receptors on skin cells. After the synthesis of HA-EGF conjugates, they were incorporated into a patch-type formulation for the facile topical application and sustained release of EGF. According to ELISA, the HA-EGF conjugates showed a long-term stability compared with native EGF. Furthermore, HA-EGF conjugates appeared to interact with skin cells through two types of HA and EGF receptors, resulting in a synergistically improved healing effect. Taken together, we could confirm the feasibility of HA-EGF conjugates for the transdermal treatment of chronic wounds.
Collapse
Affiliation(s)
- Yun Seop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongamro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | | | | | | | | |
Collapse
|
44
|
Peterson E, Joseph C, Peterson H, Bouwman R, Tang S, Cannon J, Sinniah K, Choi SK. Measuring the Adhesion Forces for the Multivalent Binding of Vancomycin-Conjugated Dendrimer to Bacterial Cell-Wall Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7135-7146. [PMID: 29792710 DOI: 10.1021/acs.langmuir.8b01137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multivalent ligand-receptor interaction provides the fundamental basis for the hypothetical notion that high binding avidity relates to the strong force of adhesion. Despite its increasing importance in the design of targeted nanoconjugates, an understanding of the physical forces underlying the multivalent interaction remains a subject of urgent investigation. In this study, we designed three vancomycin (Van)-conjugated dendrimers G5(Van) n ( n = mean valency = 0, 1, 4) for bacterial targeting with generation 5 (G5) poly(amidoamine) dendrimer as a multivalent scaffold and evaluated both their binding avidity and physical force of adhesion to a bacterial model surface by employing surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. The SPR experiment for these conjugates was performed in a biosensor chip surface immobilized with a bacterial cell-wall peptide Lys-d-Ala-d-Ala. Of these, G5(Van)4 bound most tightly with a KD of 0.34 nM, which represents an increase in avidity by 2 or 3 orders of magnitude relative to a monovalent conjugate G5(Van)1 or free vancomycin, respectively. By single-molecule force spectroscopy, we measured the adhesion force between G5(Van) n and the same cell-wall peptide immobilized on the surface. The distribution of adhesion forces increased in proportion to vancomycin valency with the mean force of 134 pN at n = 4 greater than 96 pN at n = 1 at a loading rate of 5200 pN/s. In summary, our results are strongly supportive of the positive correlation between the avidity and adhesion force in the multivalent interaction of vancomycin nanoconjugates.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | | | - Hannah Peterson
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | - Rachael Bouwman
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | | | | | - Kumar Sinniah
- Department of Chemistry & Biochemistry , Calvin College , Grand Rapids , Michigan 49546 , United States
| | | |
Collapse
|
45
|
Zbinden A, Browne S, Altiok EI, Svedlund FL, Jackson WM, Healy KE. Multivalent conjugates of basic fibroblast growth factor enhance in vitro proliferation and migration of endothelial cells. Biomater Sci 2018; 6:1076-1083. [PMID: 29595848 PMCID: PMC5930118 DOI: 10.1039/c7bm01052d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Growth factors hold great promise for regenerative therapies. However, their clinical use has been halted by poor efficacy and rapid clearance from tissue, necessitating the delivery of extremely high doses to achieve clinical effectiveness which has raised safety concerns. Thus, strategies to either enhance growth factor activity at low doses or to increase their residence time within target tissues are necessary for clinical success. In this study, we generated multivalent conjugates (MVCs) of basic fibroblast growth factor (bFGF), a key growth factor involved in angiogenesis and wound healing, to hyaluronic acid (HyA) polymer chains. Multivalent bFGF conjugates (mvbFGF) were fabricated with minimal non-specific interaction observed between bFGF and the HyA chain. The hydrodynamic radii of mvbFGF ranged from ∼50 to ∼75 nm for conjugation ratios of bFGF to HyA chains at low (10 : 1) and high (30 : 1) feed ratios, respectively. The mvbFGF demonstrated enhanced bioactivity compared to unconjugated bFGF in assays of cell proliferation and migration, processes critical to angiogenesis and tissue regeneration. The 30 : 1 mvbFGF outperformed the 10 : 1 conjugate, which could be due to either FGF receptor clustering or interference with receptor mediated internalization and signal deactivation. This study simultaneously investigated the role of both protein to polymer ratio and multivalent conjugate size on their bioactivity, and determined that increasing the protein-to-polymer ratio and conjugate size resulted in greater cell bioactivity.
Collapse
Affiliation(s)
- Aline Zbinden
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Hottin A, Wright DW, Moreno-Clavijo E, Moreno-Vargas AJ, Davies GJ, Behr JB. Exploring the divalent effect in fucosidase inhibition with stereoisomeric pyrrolidine dimers. Org Biomol Chem 2018; 14:4718-27. [PMID: 27138139 DOI: 10.1039/c6ob00647g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multi-valent inhibitors offer promise for the enhancement of therapeutic compounds across a range of chemical and biological processes. Here, a significant increase in enzyme-inhibition potencies was observed with a dimeric iminosugar-templated fucosidase inhibitor (IC50 = 0.108 μM) when compared to its monovalent equivalent (IC50 = 2.0 μM). Such a gain in binding is often attributed to a "multivalent effect" rising from alternative recapture of the scaffolded binding epitopes. The use of control molecules such as the meso analogue (IC50 = 0.365 μM) or the enantiomer (IC50 = 569 μM), as well as structural analysis of the fucosidase-inhibitor complex, allowed a detailed analysis of the possible mechanism of action, at the molecular level. Here, the enhanced binding affinity of the dimer over the monomer can be attributed to additional interactions in non-catalytic sites as also revealed in the 3-D structure of a bacterial fucosidase inhibitor complex.
Collapse
Affiliation(s)
- Audrey Hottin
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France.
| | - Daniel W Wright
- Structural Biology Laboratory Department of Chemistry, University of York, York YO10 5DD, UK
| | - Elena Moreno-Clavijo
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Prof. García González, 1, 41012 Sevilla, Spain
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, C/ Prof. García González, 1, 41012 Sevilla, Spain
| | - Gideon J Davies
- Structural Biology Laboratory Department of Chemistry, University of York, York YO10 5DD, UK
| | - Jean-Bernard Behr
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, UFR des Sciences Exactes et Naturelles, 51687 Reims Cedex 2, France.
| |
Collapse
|
47
|
Gormley AJ, Yeow J, Ng G, Conway Ó, Boyer C, Chapman R. An Oxygen-Tolerant PET-RAFT Polymerization for Screening Structure-Activity Relationships. Angew Chem Int Ed Engl 2018; 57:1557-1562. [PMID: 29316089 PMCID: PMC9641662 DOI: 10.1002/anie.201711044] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/22/2017] [Indexed: 12/23/2022]
Abstract
The complexity of polymer-protein interactions makes rational design of the best polymer architecture for any given biointerface extremely challenging, and the high throughput synthesis and screening of polymers has emerged as an attractive alternative. A porphyrin-catalysed photoinduced electron/energy transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerisation was adapted to enable high throughput synthesis of complex polymer architectures in dimethyl sulfoxide (DMSO) on low-volume well plates in the presence of air. The polymerisation system shows remarkable oxygen tolerance, and excellent control of functional 3- and 4-arm star polymers. We then apply this method to investigate the effect of polymer structure on protein binding, in this case to the lectin concanavalin A (ConA). Such an approach could be applied to screen the structure-activity relationships for any number of polymer-protein interactions.
Collapse
Affiliation(s)
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney (Australia)
| | - Gervase Ng
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney (Australia)
| | - Órla Conway
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW, Sydney (Australia)
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney (Australia)
| | - Robert Chapman
- Australian Centre for Nanomedicine, UNSW, Sydney (Australia)
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW, Sydney (Australia)
| |
Collapse
|
48
|
Gormley AJ, Yeow J, Ng G, Conway Ó, Boyer C, Chapman R. An Oxygen‐Tolerant PET‐RAFT Polymerization for Screening Structure–Activity Relationships. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711044] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Jonathan Yeow
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemical Engineering UNSW Sydney Australia
| | - Gervase Ng
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemical Engineering UNSW Sydney Australia
| | - Órla Conway
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemistry UNSW Sydney Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemical Engineering UNSW Sydney Australia
| | - Robert Chapman
- Australian Centre for Nanomedicine UNSW Sydney Australia
- Centre for Advanced Macromolecular Design School of Chemistry UNSW Sydney Australia
| |
Collapse
|
49
|
Jha P, Chaturvedi S, Kaul A, Pant P, Anju A, Pal S, Jain N, Mishra AK. Design, physico-chemical and pre-clinical evaluation of a homo-bivalent 99mTc-(BTZ)2DTPA radioligand for targeting dimeric 5-HT1A/5-HT7 receptors. NEW J CHEM 2018. [DOI: 10.1039/c8nj00089a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A 99mTc-labelled bis-benzothiazolone-DTPA radio-complex as a SPECT neuroimaging agent.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- India
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| | - Pradeep Pant
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- India
| | - Anju Anju
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| | - Sunil Pal
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| | - Nidhi Jain
- Department of Chemistry
- Indian Institute of Technology Delhi (IITD)
- India
| | - Anil K. Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- Delhi-110054
- India
| |
Collapse
|
50
|
Li MH, Zong H, Leroueil PR, Choi SK, Baker JR. Ligand Characteristics Important to Avidity Interactions of Multivalent Nanoparticles. Bioconjug Chem 2017; 28:1649-1657. [PMID: 28398751 DOI: 10.1021/acs.bioconjchem.7b00098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multivalent interactions involve the engagement of multiple ligand-receptor pairs and are important in synthetic biology as design paradigms for targeted nanoparticles (NPs). However, little is known about the specific ligand parameters important to multivalent interactions. We employed a series of oligonucleotides as ligands conjugated to dendrimers as nanoparticles, and used complementary oligonucleotides on a functionalized SPR surface to measure binding. We compared the effect of ligand affinity to ligand number on the avidity characteristics of functionalized NPs. Changing the ligand affinity, either by changing the temperature of the system or by substitution noncomplementary base pairs into the oligonucleotides, had little effect on multivalent interaction; the overall avidity, number of ligands required for avidity per particle, and the number of particles showing avidity did not significantly change. We then made NP conjugates with the same oligonucleotide using an efficient copper-free click chemistry that resulted in essentially all of the NPs in the population exceeding the threshold ligand value. The particles exceeding the threshold ligand number again demonstrated high avidity interactions. This work validates the concept of a threshold ligand valence and suggests that the number of ligands per nanoparticle is the defining factor in achieving high avidity interactions.
Collapse
Affiliation(s)
- Ming-Hsin Li
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Hong Zong
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Pascale R Leroueil
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - James R Baker
- Department of Biomedical Engineering, ‡Michigan Nanotechnology Institute for Medicine and Biological Sciences, and §Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|