1
|
Wu Z, Boyer C. Near-Infrared Light-Induced Reversible Deactivation Radical Polymerization: Expanding Frontiers in Photopolymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304942. [PMID: 37750445 PMCID: PMC10667859 DOI: 10.1002/advs.202304942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Photoinduced reversible deactivation radical polymerization (photo-RDRP) or photoinduced controlled/living radical polymerization has emerged as a versatile and powerful technique for preparing functional and advanced polymer materials under mild conditions by harnessing light energy. While UV and visible light (λ = 400-700 nm) are extensively employed in photo-RDRP, the utilization of near-infrared (NIR) wavelengths (λ = 700-2500 nm) beyond the visible region remains relatively unexplored. NIR light possesses unique properties, including enhanced light penetration, reduced light scattering, and low biomolecule absorption, thereby providing opportunities for applying photo-RDRP in the fields of manufacturing and medicine. This comprehensive review categorizes all known NIR light-induced RDRP (NIR-RDRP) systems into four mechanism-based types: mediation by upconversion nanoparticles, mediation by photocatalysts, photothermal conversion, and two-photon absorption. The distinct photoinitiation pathways associated with each mechanism are discussed. Furthermore, this review highlights the diverse applications of NIR-RDRP reported to date, including 3D printing, polymer brush fabrication, drug delivery, nanoparticle synthesis, and hydrogel formation. By presenting these applications, the review underscores the exceptional capabilities of NIR-RDRP and offers guidance for developing high-performance and versatile photopolymerization systems. Exploiting the unique properties of NIR light unlocks new opportunities for synthesizing functional and advanced polymer materials.
Collapse
Affiliation(s)
- Zilong Wu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicineSchool of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicineSchool of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
2
|
Kanbara T, Arase M, Tanaka M, Yamaguchi A, Tagami K, Yajima T. Amine-catalyzed Synthesis of Fluorine-containing Polymers through Halogen Bonding. Chem Asian J 2023; 18:e202300035. [PMID: 36811265 DOI: 10.1002/asia.202300035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Fluorine-containing polymers are one of the most useful materials among various polymers. In this study, we have developed synthesis methods for fluorine-containing polymers through sequential and chain polymerization based on the generation of perfluoroalkyl radicals by photoirradiation halogen bonding of perfluoroalkyl iodide and amines. In sequential polymerization, fluoroalkyl-alkyl-alternating polymers were synthesized by the polyaddition of diene and diiodoperfluoroalkane. In chain polymerization, polymers with perfluoroalkyl terminals were synthesized by polymerization of general-purpose monomers, with perfluoroalkyl iodide as the initiating species. Block polymers were also synthesized by successive chain polymerization to the polyaddition product.
Collapse
Affiliation(s)
- Tadashi Kanbara
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Mizuki Arase
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Miyu Tanaka
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Airi Yamaguchi
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Koto Tagami
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
3
|
Sun J, Ren S, Zhao H, Zhang S, Xu X, Zhang L, Cheng Z. NIR-Photocontrolled Aqueous RAFT Polymerization with Polymerizable Water-Soluble Zinc Phthalocyanine as Photocatalyst. ACS Macro Lett 2023; 12:165-171. [PMID: 36656621 DOI: 10.1021/acsmacrolett.2c00708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In order to give an answer for the challenges of long wavelength-photocontrolled radical polymerization in aqueous solutions and to address the shortcomings of conventional near-infrared (NIR) photocatalysts (PCs) that are difficult to subject to post-treatment, we designed and synthesized a series of β-tetra-substituted water-soluble zinc phthalocyanines (β-TS-Zns) as the NIR PCs for reversible addition-fragmentation chain transfer (RAFT) polymerization successfully under irradiation with NIR (λmax = 730 nm) light at room temperature. Importantly, the NIR PCs can also be designed as polymerizable monomers and covalently loaded on the polymer chains, which are endowed with permanent NIR photocatalysis of the resultant polymers. Moreover, the polymerization can not only be carried out in water but also in phosphate buffer saline (PBS) solution, yielding polymers with controlled molar mass and narrow dispersities (Đ = 1.03-1.25). Therefore, this NIR-photocontrolled aqueous RAFT polymerization system may provide a charming strategy for possible applications in tissue engineering biomaterial in situ benefiting from the high penetration ability of NIR light.
Collapse
Affiliation(s)
- Jiyuan Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shusu Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shunhu Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiang Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Salas A, Zanatta M, Sans V, Roppolo I. Chemistry in light-induced 3D printing. CHEMTEXTS 2023. [DOI: 10.1007/s40828-022-00176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractIn the last few years, 3D printing has evolved from its original niche applications, such as rapid prototyping and hobbyists, towards many applications in industry, research and everyday life. This involved an evolution in terms of equipment, software and, most of all, in materials. Among the different available 3D printing technologies, the light activated ones need particular attention from a chemical point of view, since those are based on photocurable formulations and in situ rapid solidification via photopolymerization. In this article, the chemical aspects beyond the preparation of a formulation for light-induced 3D printing are analyzed and explained, aiming at giving more tools for the development of new photocurable materials that can be used for the fabrication of innovative 3D printable devices.
Graphical abstract
Collapse
|
5
|
Ma Q, Zhang X, Liu Y, Graff B, Lalevee J. Dual photo/thermal initiation with charge transfer complexes based on bromide‐based electron acceptors. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiang Ma
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University Fuzhou China
| | - Xiaoxiang Zhang
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Yiwu Liu
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Ecole Nationale Supérieure de Chimie de Mulhouse Mulhouse France
- East China University of Science and Technology Shanghai China
| | - Bernadette Graff
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Jacques Lalevee
- Université de Haute‐Alsace, CNRS, IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| |
Collapse
|
6
|
Randhawa A, Dutta SD, Ganguly K, Patel DK, Patil TV, Lim KT. Recent Advances in 3D Printing of Photocurable Polymers: Types, Mechanism, and Tissue Engineering Application. Macromol Biosci 2023; 23:e2200278. [PMID: 36177687 DOI: 10.1002/mabi.202200278] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/09/2022] [Indexed: 01/19/2023]
Abstract
The conversion of liquid resin into solid structures upon exposure to light of a specific wavelength is known as photopolymerization. In recent years, photopolymerization-based 3D printing has gained enormous attention for constructing complex tissue-specific constructs. Due to the economic and environmental benefits of the biopolymers employed, photo-curable 3D printing is considered an alternative method for replacing damaged tissues. However, the lack of suitable bio-based photopolymers, their characterization, effective crosslinking strategies, and optimal printing conditions are hindering the extensive application of 3D printed materials in the global market. This review highlights the present status of various photopolymers, their synthesis, and their optimization parameters for biomedical applications. Moreover, a glimpse of various photopolymerization techniques currently employed for 3D printing is also discussed. Furthermore, various naturally derived nanomaterials reinforced polymerization and their influence on printability and shape fidelity are also reviewed. Finally, the ultimate use of those photopolymerized hydrogel scaffolds in tissue engineering is also discussed. Taken together, it is believed that photopolymerized 3D printing has a great future, whereas conventional 3D printing requires considerable sophistication, and this review can provide readers with a comprehensive approach to developing light-mediated 3D printing for tissue-engineering applications.
Collapse
Affiliation(s)
- Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
7
|
Pesqueira NM, Bignardi C, Oliveira LF, Machado AE, Carvalho-Jr VP, Goi BE. Visible light-induced radical polymerization of vinyl acetate mediated by organo-nickel N2O2 Schiff-base complexes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kitayama Y, Tokura D, Harada A. Reversible complexation mediated polymerization of methacrylates using amine catalysts in aqueous heterogeneous systems. Polym J 2022. [DOI: 10.1038/s41428-022-00715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Li YN, Zhang SY, Ma Y, Ding YJ, Chen ZH, Che QL, Qin L, Sun XL, Liu X, Feng X, Liu ZP, Wang XY, Tang Y. Hydrogen Bond Effects: A Strategy for Improving Controllability in Organocatalytic Photoinduced Controlled Radical Polymerization Targeting High Molecular Weight. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ya-Ning Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Sheng-Ye Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yang Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Yi-Jie Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Zhi-Hao Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qiao-Ling Che
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Long Qin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Li Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhi-Pan Liu
- Key Laboratory of Computational Physical Science (Ministry of Education), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xiao-Yan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
10
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of the Building Unit on Covalent Organic Frameworks in Mediating Photo‐induced Energy‐Transfer Reversible Complexation‐Mediated Radical Polymerization (PET‐RCMP). Angew Chem Int Ed Engl 2022; 61:e202208898. [DOI: 10.1002/anie.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen Lu
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- College of Chemistry Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Rui Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
| | - Hongjie Yang
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Yulai Zhao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Longqiang Xiao
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| | - Linxi Hou
- Qingyuan Innovation Laboratory Quanzhou 362801 P. R. China
- Department of Materials-Oriented Chemical Engineering School of Chemical Engineering Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University No. 2 Xueyuan Road Fuzhou 350116 P. R. China
| |
Collapse
|
11
|
Lu Z, Zhao R, Yang H, Fu X, Zhao Y, Xiao L, Hou L. Influence of Building Unit on the Covalent Organic Framework in Mediating Photo‐induced PET‐RCMP. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Lu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Rui Zhao
- Fuzhou University Qingyuan Innovation Laboratory CHINA
| | - Hongjie Yang
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Xiaoling Fu
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering xueyuan road,2 350116 fuzhou CHINA
| | - Yulai Zhao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Longqiang Xiao
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering CHINA
| | - Linxi Hou
- Fuzhou University Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering Xueyuan Road No. 2, Fuzhou 350116, China CHINA
| |
Collapse
|
12
|
Aydogan C, Yilmaz G, Shegiwal A, Haddleton DM, Yagci Y. Photoinduced Controlled/Living Polymerizations. Angew Chem Int Ed Engl 2022; 61:e202117377. [PMID: 35128771 DOI: 10.1002/anie.202117377] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/09/2022]
Abstract
The application of photochemistry in polymer synthesis is of interest due to the unique possibilities offered compared to thermochemistry, including topological and temporal control, rapid polymerization, sustainable low-energy processes, and environmentally benign features leading to established and emerging applications in adhesives, coatings, adaptive manufacturing, etc. In particular, the utilization of photochemistry in controlled/living polymerizations often offers the capability for precise control over the macromolecular structure and chain length in addition to the associated advantages of photochemistry. Herein, the latest developments in photocontrolled living radical and cationic polymerizations and their combinations for application in polymer syntheses are discussed. This Review summarizes and highlights recent studies in the emerging area of photoinduced controlled/living polymerizations. A discussion of mechanistic details highlights differences as well as parallels between different systems for different polymerization methods and monomer applicability.
Collapse
Affiliation(s)
- Cansu Aydogan
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Gorkem Yilmaz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Ataulla Shegiwal
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - David M Haddleton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
13
|
Novel Copper Complexes as Visible Light Photoinitiators for the Synthesis of Interpenetrating Polymer Networks (IPNs). Polymers (Basel) 2022; 14:polym14101998. [PMID: 35631880 PMCID: PMC9145974 DOI: 10.3390/polym14101998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
This work is devoted to the study of two copper complexes (Cu) bearing pyridine ligands, which were synthesized, evaluated and tested as new visible light photoinitiators for the free radical photopolymerization (FRP) of acrylates functional groups in thick and thin samples upon light-emitting diodes (LED) at 405 and 455 nm irradiation. These latter wavelengths are considered to be safe to produce polymer materials. The photoinitiation abilities of these organometallic compounds were evaluated in combination with an iodonium (Iod) salt and/or amine (e.g., N-phenylglycine—NPG). Interestingly, high final conversions and high polymerization rates were obtained for both compounds using two and three-component photoinitiating systems (Cu1 (or Cu2)/Iodonium salt (Iod) (0.1%/1% w/w) and Cu1 (or Cu2)/Iod/amine (0.1%/1%/1% w/w/w)). The new proposed copper complexes were also used for direct laser write experiments involving a laser diode at 405 nm, and for the photocomposite synthesis with glass fibers using a UV-conveyor at 395 nm. To explain the obtained polymerization results, different methods and characterization techniques were used: steady-state photolysis, real-time Fourier transform infrared spectroscopy (RT-FTIR), emission spectroscopy and cyclic voltammetry.
Collapse
|
14
|
Ma Q, Buchon L, Magné V, Graff B, Morlet‐Savary F, Xu Y, Benltifa M, Lakhdar S, Lalevée J. Charge Transfer Complexes (CTCs) with Pyridinium Salts: Towards Efficient Dual Photochemical/Thermal Initiators and 3D Printing Applications. Macromol Rapid Commun 2022; 43:e2200314. [DOI: 10.1002/marc.202200314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Qiang Ma
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University) College of Chemistry Fuzhou University Fuzhou 350116 P. R. China
| | - Loïc Buchon
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| | - Valentin Magné
- Laboratoire Hétérochimie Fondamentale et Appliquée UMR CNRS Université Paul Sabatier France
| | - Bernadette Graff
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| | | | - Yangyang Xu
- College of Chemistry and Materials Science Anhui Normal University South Jiuhua Road 189 Wuhu 241002 P. R. China
| | - Mahmoud Benltifa
- Laboratory of Wastewaters and Environment Center for Water Research and Technologies CERTE BP 273 Soliman 8020 Tunisia
| | - Sami Lakhdar
- Laboratoire Hétérochimie Fondamentale et Appliquée UMR CNRS Université Paul Sabatier France
| | - Jacques Lalevée
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg Strasbourg F‐67081 France
| |
Collapse
|
15
|
Aydogan C, Yilmaz G, Shegiwal A, Haddleton DM, Yagci Y. Photoinduced Controlled/Living Polymerizations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cansu Aydogan
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469 Maslak Istanbul Turkey
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Gorkem Yilmaz
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469 Maslak Istanbul Turkey
| | - Ataulla Shegiwal
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | | | - Yusuf Yagci
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469 Maslak Istanbul Turkey
| |
Collapse
|
16
|
Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022; 122:5476-5518. [PMID: 34982536 PMCID: PMC9815102 DOI: 10.1021/acs.chemrev.1c00409] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.
Collapse
Affiliation(s)
- Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | | | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium Incorporated, Boulder, Colorado 80303, United States
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
17
|
Aydogan C, Aykac FS, Yilmaz G, Chew YQ, Goto A, Yagci Y. Synthesis of Block Copolymers by Mechanistic Transformation from Reversible Complexation Mediated Living Radical Polymerization to the Photoinduced Radical Oxidation/Addition/Deactivation Process. ACS Macro Lett 2022; 11:342-346. [PMID: 35575368 PMCID: PMC8928464 DOI: 10.1021/acsmacrolett.2c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A versatile strategy for the fabrication of block copolymers by the combination of two discrete living polymerization techniques─reversible complexation mediated living radical polymerization (RCMP) and photoinduced radical oxidation addition deactivation (PROAD) processes─is reported. First, RCMP is conducted to yield poly(methyl methacrylate) with iodide end groups (PMMA-I). In the following step, PMMA-I is used as macroinitiator for living PROAD cationic polymerization of isobutyl vinyl ether. Successful formation of the block copolymers is confirmed by 1H NMR, FT-IR, GPC, and DSC investigations.
Collapse
Affiliation(s)
- Cansu Aydogan
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - F Simal Aykac
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Gorkem Yilmaz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Ye Qiu Chew
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Faculty of Science, Chemistry Department, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Chen ZH, Wang XY, Tang Y. Reversible complexation mediated polymerization: an emerging type of organocatalytically controlled radical polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00120a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reversible complexation mediated polymerization (RCMP) was developed as a new class of controlled radical polymerization (CRP) using organic catalysts. In particular, photo-RCMP is among the simplest, cheapest, and most robust photoinduced CRPs.
Collapse
Affiliation(s)
- Zhi-Hao Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiao-Yan Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
19
|
Li Q, Lu Z, Yang H, Cai J, Yin X, Zhao Y, Xiao L, Hou L. Photoinduced organocatalyzed controlled radical polymerization feasible over a wide range of wavelengths. Polym Chem 2022. [DOI: 10.1039/d1py01444g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We successfully synthesized a catalyst with a wide absorption range (300–1000 nm) for controlled radical polymerization of PEGMA in aqueous solution and MMA in bulk under the irradiation of white, blue, green, red, and NIR LED light, and sunlight.
Collapse
Affiliation(s)
- Qiuyu Li
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Zhen Lu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China
| | - Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China
| | - Xiangyu Yin
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
20
|
Ho HT, Montembault V, Pascual S, Fontaine L, Gigmes D, Phan TNT. Well-defined amine-reactive polymethacrylates through organocatalyzed controlled radical polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00873d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel alkyl iodide bearing an azlactone group was successfully employed as a reversible complex-mediated polymerization (RCMP) initiator for synthesizing for the first-time well-defined α-azlactone-terminated polymethacrylates (Đ < 1.30). The amine-scavenging ability of the resulting functional polymers was demonstrated by using benzylamine.
Collapse
Affiliation(s)
- Hien The Ho
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille, France
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS– Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS– Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS– Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille, France
| | - Trang N. T. Phan
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille, France
| |
Collapse
|
21
|
Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021; 122:2292-2352. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.
Collapse
Affiliation(s)
- Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
22
|
Photocontrolled reversible-deactivation radical polymerization of butyl acrylate mediated by Salen-type CoII complexes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Lu Z, Yang H, Fu X, Zhao Y, Xiao L, Zhang Z, Hou L. Visible Light-Regulated Heterogeneous Catalytic PET-RAFT by High Crystallinity Covalent Organic Framework. Macromol Rapid Commun 2021; 42:e2100384. [PMID: 34418210 DOI: 10.1002/marc.202100384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/14/2021] [Indexed: 11/07/2022]
Abstract
Covalent organic frameworks (COFs) are a class of promising photocatalysts for conversing light energy into chemical energy. Based on the tunable building blocks, COFs can be well-designed as photocatalyst for mediating reversible addition-fragmentation chain-transfer (RAFT) polymerization. Herein, 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) and 2,2″-bipyridine-5,5″-diamine (Bpy) are chosen to construct imine-based TFPPy-Bpy-COFs for catalyzing RAFT polymerization of methacrylates under white light irradiation. The well-defined polymers with precise molecular weight and narrow molecular weight distribution are obtained. The switch on/off light experiments suggest excellent temporal control toward RAFT polymerization system and the chain-extension reaction indicates high chain-end fidelity of macro-initiators. Mechanism study clarifies that the electron transfer between excited state of TFPPy-Bpy-COFs and RAFT agent can form living radicals to mediate polymerization. This methodology provides a novel platform for reversible-deactivation radical polymerization using COFs as heterogeneous catalysts.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Hongjie Yang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.,Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, 362801, China.,Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou, 350116, China
| | - Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.,Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, 362801, China.,Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou, 350116, China
| | - Zhuofan Zhang
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.,Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, 362801, China.,Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou, 350116, China
| |
Collapse
|
24
|
|
25
|
Zhao H, Li H, Tian C, Zhang L, Cheng Z. Facile Synthesis of Unimodal Polymethacrylates with Narrow Dispersity via NIR LED Light-Controlled Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization. Macromol Rapid Commun 2021; 42:e2100211. [PMID: 34028909 DOI: 10.1002/marc.202100211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Indexed: 11/08/2022]
Abstract
A facile and clean strategy for synthesizing unimodal polymethacrylates with narrow dispersity (Đ < 1.10) is successfully developed by a near-infrared (NIR) light-emitting diode (LED) light (λmax = 740 nm)-controlled in situ bromine-iodine transformation reversible-deactivation radical polymerization system without the use of NIR dyes and expensive catalysts. In this system, alkyl iodide ethyl α-iodophenylacetate (EIPA) initiator is generated in situ by the nucleophilic substitution reaction between an alkyl bromide compound ethyl α-bromophenylacetate and sodium iodide (NaI). At the same time, excessive NaI is also acted as a highly active catalyst by forming halogen bonds with terminal iodine of the polymer chains in this system to make it capable of precisely synthesizing polymethacrylates with narrow dispersities (Đ = 1.03-1.10). In addition, the strong penetration ability of NIR LED light is illustrated by the successful polymerization even through 11 pieces of A4 paper.
Collapse
Affiliation(s)
- Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haihui Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chun Tian
- Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, Zhejiang, 315201, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
26
|
Li F, Zhou L, Zhang Z, Li M, Lei L. Sub-ppm-level organic dyes catalyzed reversible deactivation radical polymerization (RDRP) via in situ bromine-iodine exchange under LED light irradiation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Bagheri A, Fellows CM, Boyer C. Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003701. [PMID: 33717856 PMCID: PMC7927619 DOI: 10.1002/advs.202003701] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Indexed: 05/04/2023]
Abstract
3D printing has changed the fabrication of advanced materials as it can provide customized and on-demand 3D networks. However, 3D printing of polymer materials with the capacity to be transformed after printing remains a great challenge for engineers, material, and polymer scientists. Radical polymerization has been conventionally used in photopolymerization-based 3D printing, as in the broader context of crosslinked polymer networks. Although this reaction pathway has shown great promise, it offers limited control over chain growth, chain architecture, and thus the final properties of the polymer networks. More fundamentally, radical polymerization produces dead polymer chains incapable of postpolymerization transformations. Alternatively, the application of reversible deactivation radical polymerization (RDRP) to polymer networks allows the tuning of network homogeneity and more importantly, enables the production of advanced materials containing dormant reactivatable species that can be used for subsequent processes in a postsynthetic stage. Consequently, the opportunities that (photoactivated) RDRP-based networks offer have been leveraged through the novel concepts of structurally tailored and engineered macromolecular gels, living additive manufacturing and photoexpandable/transformable-polymer networks. Herein, the advantages of RDRP-based networks over irreversibly formed conventional networks are discussed.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
| | - Christopher M. Fellows
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
- Desalination Technologies Research InstituteAl Jubail31951Kingdom of Saudi Arabia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
28
|
Xiao L, Li Q, Liu Y, Fu X, Zhao Y, Cai J, Yin X, Hou L. Durable and recyclable conjugated microporous polymer mediated controlled radical polymerization under white LED light irradiation. Polym Chem 2021. [DOI: 10.1039/d1py01241j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this work, we report the first example of the use of a conjugated microporous polymer material (EI-CMP) as a heterogeneous catalyst in reversible complexation-mediated radical polymerization under white LED light irradiation.
Collapse
Affiliation(s)
- Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou 362801, P. R. China
| | - Qiuyu Li
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yabin Liu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Xiaoling Fu
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Xiangyu Yin
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P.R. China
- Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou 350116, P.R. China
| |
Collapse
|
29
|
Dual roles of 4-N,N-dimethylaminostyrene as both catalyst and monomer in reversible complexation mediated polymerization for the synthesis of functional polystyrene and polystyrene-block-polyisoprene-block-polystyrene. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
31
|
Yamamoto Y, Kawaguchi SI, Kodama S, Nomoto A, Ogawa A. Highly Selective Hydroiodination of Carbon-Carbon Double or Triple Bonds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666191227111257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Iodine is an element that exhibits characteristic features of heavy halogen, and
several compounds containing iodine constitute important synthetic intermediates due to
synthetically easy manipulation. To utilize iodine units for organic synthesis, a highly regio-
and stereoselective introduction of iodine to versatile building blocks is significant,
and a lot of research works for the selective introduction of iodine to alkynes or alkenes
have been conducted. In this review article, we describe regio- and stereoselective hydroiodination
to multiple bonds of building blocks, and its synthetic applications as key
intermediates to construct several important compounds in organic chemistry.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Shin-ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, Saga 847-0021, Japan
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| |
Collapse
|
32
|
Huo M, Tong G, Zhang C, Zhu X. Hybrid Polymerization of Reversible Complexation Mediated Polymerization (RCMP) and Reversible Addition–Fragmentation Chain-Transfer (RAFT) Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meng Huo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Department of Chemistry, Zhejiang Sci-Tech University, 5 Second Avenue, Hangzhou 310018, China
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chongyin Zhang
- Shanghai Engineering Research Center of Specialized Polymer Materials for Aerospace, Shanghai Aerospace Equipment Manufacturer Co., Ltd., 100 Huaning Road, Shanghai 200245, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
33
|
Derevyanko DI, Shelkovnikov VV, Kovalskii VY, Zilberberg IL, Aliev SI, Orlova NA, Ugozhaev VD. The Charge Transfer Complex Formed between the Components of Photopolymer Material as an Internal Sensitizer of Spectral Sensitivity. ChemistrySelect 2020. [DOI: 10.1002/slct.202002163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dmitry I. Derevyanko
- Laboratory of Organic Photosensitive Materials N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences 9 Lavrentiev Ave
| | - Vladimir V. Shelkovnikov
- Laboratory of Organic Photosensitive Materials N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences 9 Lavrentiev Ave
- Novosibirsk State Technical University 20 Prospekt K. Marksa Novosibirsk 630073 Russia
| | - Victor Y. Kovalskii
- Laboratory of Quantum Chemistry Boreskov Institute of Catalysis SB RAS, 5 Lavrentiev Ave. Novosibirsk 630090 Russia
| | - Igor L. Zilberberg
- Laboratory of Quantum Chemistry Boreskov Institute of Catalysis SB RAS, 5 Lavrentiev Ave. Novosibirsk 630090 Russia
- Novosibirsk State University 1 Pirogova str. Novosibirsk 630090 Russia
| | - Sergei I. Aliev
- Laboratory of Organic Photosensitive Materials N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences 9 Lavrentiev Ave
- Novosibirsk State Technical University 20 Prospekt K. Marksa Novosibirsk 630073 Russia
| | - Natalya A. Orlova
- Laboratory of Organic Photosensitive Materials N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of Russian Academy of Sciences 9 Lavrentiev Ave
| | - Vladimir D. Ugozhaev
- Laboratory of physics of lasers Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences 1 Academician Koptyug ave. Novosibirsk 630090 Russia
| |
Collapse
|
34
|
Garra P, Fouassier JP, Lakhdar S, Yagci Y, Lalevée J. Visible light photoinitiating systems by charge transfer complexes: Photochemistry without dyes. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101277] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
36
|
Photocontrolled Iodine‐Mediated Reversible‐Deactivation Radical Polymerization: Solution Polymerization of Methacrylates by Irradiation with NIR LED Light. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Tian C, Wang P, Ni Y, Zhang L, Cheng Z, Zhu X. Photocontrolled Iodine-Mediated Reversible-Deactivation Radical Polymerization: Solution Polymerization of Methacrylates by Irradiation with NIR LED Light. Angew Chem Int Ed Engl 2020; 59:3910-3916. [PMID: 31880856 DOI: 10.1002/anie.201914835] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/22/2019] [Indexed: 12/30/2022]
Abstract
Herein, near-infrared (NIR) photocontrolled iodide-mediated reversible-deactivation radical polymerization (RDRP) of methacrylates, without an external photocatalyst, was developed using an alkyl iodide (e.g., 2-iodo-2-methylpropionitrile) as the initiator at room temperature. This example is the first use of a series of special solvents containing carbonyl groups (e.g., 1,3-dimethyl-2-imidazolidinone) as both solvent and catalyst for photocontrolled RDRP using long-wavelength (λmax =730 nm) irradiation. The polymerization system comprises monomer, alkyl iodide initiator, and solvent. Well-defined polymers were synthesized with excellent control over the molecular weights and molecular weight distributions (Mw /Mn <1.21). The living features of this system were confirmed by polymerization kinetics, multiple controlled "on-off" light switching cycles, and chain extension experiments. Importantly, the polymerizations proceeded successfully with various barriers (pork skin and A4 paper), demonstrating the advantage of high-penetration NIR light.
Collapse
Affiliation(s)
- Chun Tian
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Peng Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuanyuan Ni
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
38
|
Cheng J, Tu K, He E, Wang J, Zhang L, Cheng Z, Zhu X. Photocontrolled iodine-mediated reversible-deactivation radical polymerization with a semifluorinated alternating copolymer as the macroinitiator. Polym Chem 2020. [DOI: 10.1039/d0py01357a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel strategy for preparing block copolymers with semifluorinated alternating copolymers as macroinitiators was established by photocontrolled iodine-mediated RDRP under irradiation with blue LED light at room temperature.
Collapse
Affiliation(s)
- Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Enjie He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jinying Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
39
|
Li M, Wang S, Li F, Zhou L, Lei L. Organocatalyzed atom transfer radical polymerization (ATRP) using triarylsulfonium hexafluorophosphate salt (THS) as a photocatalyst. Polym Chem 2020. [DOI: 10.1039/c9py01742a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Triarylsulfonium hexafluorophosphate salt (THS), an organic and inexpensive compound, was employed as a photocatalyst for metal free atom transfer radical polymerization (ATRP) of methacrylate monomers.
Collapse
Affiliation(s)
- Mengmeng Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Sixuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Lin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
40
|
Wang CG, Chong AML, Pan HM, Sarkar J, Tay XT, Goto A. Recent development in halogen-bonding-catalyzed living radical polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00939c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development and applications of an organocatalyzed living radical polymerization via halogen-bonding catalysis, i.e., reversible complexation mediated polymerization (RCMP), are highlighted.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Amerlyn Ming Liing Chong
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Houwen Matthew Pan
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Jit Sarkar
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Xiu Ting Tay
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
| |
Collapse
|
41
|
Li F, Yang W, Li M, Zhou L, Lei L. Cationic quaternary ammonium salt-catalyzed LED-induced living radical polymerization with in situhalogen exchange. Polym Chem 2020. [DOI: 10.1039/d0py00474j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cationic quaternary ammonium salts were employed as organocatalysts for light-emitting diode (LED)-induced living radical polymerization (LRP) with thein situhalogen exchange of methacrylate monomers.
Collapse
Affiliation(s)
- Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Wanting Yang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Mengmeng Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Lin Zhou
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| | - Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education College of Chemistry and Materials Science
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
42
|
Ni Y, Tian C, Zhang L, Cheng Z, Zhu X. Photocontrolled Iodine-Mediated Green Reversible-Deactivation Radical Polymerization of Methacrylates: Effect of Water in the Polymerization System. ACS Macro Lett 2019; 8:1419-1425. [PMID: 35651188 DOI: 10.1021/acsmacrolett.9b00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photocontrolled iodine-mediated reversible-deactivation radical polymerization (RDRP) is a facile and highly efficient access to precision polymers. Herein, a facile photocontrolled iodine-mediated green RDRP strategy was successfully established in water by using 2-iodo-2-methylpropionitrile (CP-I) as the initiator and water-soluble functional monomers including poly(ethylene glycol) methyl ether methacrylate (PEGMA), 2-hydroxyethyl methacrylate (HEMA), and 2-hydroxypropyl methacrylate (HPMA) as the model monomers under blue-light-emitting diode (LED) irradiation at room temperature. Well-defined polymers (PPEGMA, PHEMA, PHPMA) with narrow polydispersities (1.09-1.21) were obtained, and amphiphilic block copolymers which can form nanospheres in situ in water (PPEGMA-b-poly(benzyl methacrylate) (PPEGMA-b-PBnMA) and PPEGMA-b-PHPMA) were prepared. To explore the role of water in our polymerization, control experiments were successfully carried out by using oil-soluble monomer methyl methacrylate (MMA) with the help of trace amounts of water. Notably, the green solvent-water-has an additionally positive effect in accelerating the polymerization and makes our polymerization system an environmentally friendly polymerization system. Therefore, this simple strategy conducted in the presence of water enables the green preparation of well-defined water-soluble or water-insoluble polymers and clean synthesis of amphiphilic copolymer nanoparticles in situ.
Collapse
Affiliation(s)
- Yuanyuan Ni
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chun Tian
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Tao H, Xia L, Chen G, Zeng T, Nie X, Zhang Z, You Y. PET-RAFT Polymerization Catalyzed by Small Organic Molecule under Green Light Irradiation. Polymers (Basel) 2019; 11:E892. [PMID: 31096643 PMCID: PMC6572999 DOI: 10.3390/polym11050892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022] Open
Abstract
Photocatalyzed polymerization using organic molecules as catalysts has attracted broad interest because of its easy operation in ambient environments and low toxicity compared with metallic catalysts. In this work, we reported that 4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DTBT) can act as an efficient photoredox catalyst for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization under green light irradiation. Well-defined (co)polymers can be obtained using this technique without any additional additives like noble metals and electron donors or acceptors. The living characteristics of polymerization were verified by kinetic study and the narrow dispersity (Đ) of the produced polymer. Excellent chain-end fidelity was demonstrated through chain extension as well. In addition, this technique showed great potential for various RAFT agents and monomers including acrylates and acrylamides.
Collapse
Affiliation(s)
- Huazhen Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Lei Xia
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Guang Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Tianyou Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Xuan Nie
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Ze Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Yezi You
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
44
|
Baralle A, Garra P, Graff B, Morlet-Savary F, Dietlin C, Fouassier JP, Lakhdar S, Lalevée J. Iodinated Polystyrene for Polymeric Charge Transfer Complexes: Toward High-Performance Near-UV and Visible Light Macrophotoinitiators. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alexandre Baralle
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, 67081 Strasbourg, France
| | - Patxi Garra
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, 67081 Strasbourg, France
| | - Bernadette Graff
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, 67081 Strasbourg, France
| | - Fabrice Morlet-Savary
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, 67081 Strasbourg, France
| | - Céline Dietlin
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, 67081 Strasbourg, France
| | | | - Sami Lakhdar
- Normandy University, Laboratoire de Chimie Moléculaire et Thio-organique, CNRS-UMR 6507, ENSICAEN, 6, Boulevard Maréchal juin, Caen 14000, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, 67081 Strasbourg, France
| |
Collapse
|
45
|
Wang J, Han J, Peng H, Tang X, Zhu J, Liao RZ, Xie X, Xue Z, Fliedel C, Poli R. Bromoalkyl ATRP initiator activation by inorganic salts: experiments and computations. Polym Chem 2019. [DOI: 10.1039/c9py00113a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bromoalkyl ATRP initiator EBrPA is activated by many alkali, alkaline-earth and ammonium salts, leading to MMA polymerization, but only the iodides yield a controlled process because of a degenerative transfer mechanism contribution.
Collapse
|
46
|
Yang Y, An Z. Visible light induced aqueous RAFT polymerization using a supramolecular perylene diimide/cucurbit[7]uril complex. Polym Chem 2019. [DOI: 10.1039/c9py00393b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A water-soluble perylene diimide (PDI), in the presence of triethanolamine (TEOA), is used as a metal-free photocatalyst for aqueous reversible addition–fragmentation chain transfer (RAFT) polymerization under green light.
Collapse
Affiliation(s)
- Yongqi Yang
- Institute of Nanochemistry and Nanobiology
- College of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology
- College of Environmental and Chemical Engineering
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
47
|
Li F, Yang W, Li M, Lei L. LED-induced controlled radical polymerization with an in situ bromine–iodine transformation and block polymerization combined with ring-opening polymerization using one organocatalyst. Polym Chem 2019. [DOI: 10.1039/c9py00685k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Organocatalysts were employed in LED-induced controlled radical polymerization, sequentially combined with ring-opening polymerization to obtain copolymers using one organocatalyst.
Collapse
Affiliation(s)
- Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Wanting Yang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Mengmeng Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| | - Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education
- College of Chemistry and Materials Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi'an
- P. R. China
| |
Collapse
|
48
|
Bonardi AH, Dumur F, Noirbent G, Lalevée J, Gigmes D. Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region. Beilstein J Org Chem 2018; 14:3025-3046. [PMID: 30591826 PMCID: PMC6296434 DOI: 10.3762/bjoc.14.282] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Recent progresses achieved in terms of synthetic procedures allow now the access to polymers of well-defined composition, molecular weight and architecture. Thanks to these recent progresses in polymer engineering, the scope of applications of polymers is far wider than that of any other class of material, ranging from adhesives, coatings, packaging materials, inks, paints, optics, 3D printing, microelectronics or textiles. From a synthetic viewpoint, photoredox catalysis, originally developed for organic chemistry, has recently been applied to the polymer synthesis, constituting a major breakthrough in polymer chemistry. Thanks to the development of photoredox catalysts of polymerization, a drastic reduction of the amount of photoinitiators could be achieved, addressing the toxicity and the extractability issues; high performance initiating abilities are still obtained due to the catalytic approach which regenerates the catalyst. As it is a fast-growing field, this review will be mainly focused on an overview of the recent advances concerning the development of organic and organometallic photoredox catalysts for the photoreticulation of multifunctional monomers for a rapid and efficient access to 3D polymer networks.
Collapse
Affiliation(s)
- Aude-Héloise Bonardi
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, France
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| | | | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
- Université de Strasbourg, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| |
Collapse
|
49
|
Garra P, Caron A, Al Mousawi A, Graff B, Morlet-Savary F, Dietlin C, Yagci Y, Fouassier JP, Lalevée J. Photochemical, Thermal Free Radical, and Cationic Polymerizations Promoted by Charge Transfer Complexes: Simple Strategy for the Fabrication of Thick Composites. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01596] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Patxi Garra
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Aurore Caron
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Assi Al Mousawi
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Bernadette Graff
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Fabrice Morlet-Savary
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Céline Dietlin
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Jean-Pierre Fouassier
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| | - Jacques Lalevée
- CNRS, IS2M UMR 7361, Université de Haute-Alsace, F-68100 Mulhouse, France
- Université
de Strasbourg, Strasbourg, France
| |
Collapse
|
50
|
Wang CG, Li F, Goto A. The Photopolymer Science and Technology Award. J PHOTOPOLYM SCI TEC 2018. [DOI: 10.2494/photopolymer.31.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|