1
|
Czub MP, Uliana F, Grubić T, Padeste C, Rosowski KA, Lorenz C, Dufresne ER, Menzel A, Vakonakis I, Gasser U, Steinmetz MO. Phase separation of a microtubule plus-end tracking protein into a fluid fractal network. Nat Commun 2025; 16:1165. [PMID: 39885130 PMCID: PMC11782662 DOI: 10.1038/s41467-025-56468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Microtubule plus-end tracking proteins (+TIPs) participate in nearly all microtubule-based cellular processes and have recently been proposed to function as liquid condensates. However, their formation and internal organization remain poorly understood. Here, we have study the phase separation of Bik1, a CLIP-170 family member and key +TIP involved in budding yeast cell division. Bik1 is a dimer with a rod-shaped conformation primarily defined by its central coiled-coil domain. Its liquid condensation likely involves the formation of higher-order oligomers that phase separate in a manner dependent on the protein's N-terminal CAP-Gly domain and C-terminal EEY/F-like motif. This process is accompanied by conformational rearrangements in Bik1, leading to at least a two-fold increase in multivalent interactions between its folded and disordered domains. Unlike classical liquids, Bik1 condensates exhibit a heterogeneous, fractal supramolecular structure with protein- and solvent-rich regions. This structural evidence supports recent percolation-based models of biomolecular condensates. Together, our findings offer insights into the structure, dynamic rearrangement, and organization of a complex, oligomeric, and multidomain protein in both dilute and condensed states. Our experimental framework can be applied to other biomolecular condensates, including more complex +TIP networks.
Collapse
Affiliation(s)
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
- Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Tarik Grubić
- PSI Center for Life Sciences, Villigen PSI, Switzerland
| | | | - Kathryn A Rosowski
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Charlotta Lorenz
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Department of Materials Science and Engineering, Department of Physics, Cornell University, Ithaca, NY, USA
| | - Andreas Menzel
- PSI Center for Photon Science, Villigen PSI, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford, UK
- Lonza Biologics, Microbial Development, Visp, Switzerland
| | - Urs Gasser
- PSI Center for Neutron and Muon Sciences, Villigen PSI, Switzerland
| | - Michel O Steinmetz
- PSI Center for Life Sciences, Villigen PSI, Switzerland.
- University of Basel, Biozentrum, Basel, Switzerland.
| |
Collapse
|
2
|
Singh RP, Sharma A, Selim A, Kundu PP, Jayamurugan G. Gelation and post-gelation mechanism of methylcellulose in an aqueous medium: 1H NMR and dynamic compressive rheological studies. Int J Biol Macromol 2024; 283:137725. [PMID: 39566752 DOI: 10.1016/j.ijbiomac.2024.137725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Methylcellulose (MC) has become crucial in 3D bioprinting in the last decade. Researchers investigated MC aqueous solutions blended with biopolymers at room temperature, focusing on rheological studies. Even at low concentrations, the gel state of MC, which provides structural strength through hydrophilic and hydrophobic associations, was explored for injection-based 3D printability. Post-gelation phenomena were examined at 80 °C using a dynamic mechanical analyzer (DMA), revealing increased storage and loss moduli with frequency, indicating a robust gel network structure. Optical microscopy reveals that upon heating from 40 to 80 °C, the structural strength is enhanced via the formation of hydrophobic confirmations, starting from the micro-helical structure to the associated microarray. These microarrays are further synchronized to withstand the high frequency of the DMA probe. Compressive rheology outcomes allow us to elaborate on the possibility of injection-based 3D printability of aqueous MC gel at 80 °C. 1H and 13C NMR studies probed hydrophobic interactions among MC chains, showing evidence of H-bonding through temperature-dependent shifts. UV/Vis experiments traced gel formation, depicting a time-dependent network formation process. Overall experiments indicated that adjusting temperature could control gelation time, allowing precise tuning of the printing process and achieving fine layers (10 μm) in the printed membrane with maximum hydrophobic clusters.
Collapse
Affiliation(s)
- Ratan Pal Singh
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India; Department of Chemistry, GSSDGS Khalsa College, Patiala 1477001, India.
| | - Ashish Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Abdul Selim
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| |
Collapse
|
3
|
Majumder S, Coupe S, Fakhri N, Jain A. Sequence programmable nucleic acid coacervates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604687. [PMID: 39091847 PMCID: PMC11291106 DOI: 10.1101/2024.07.22.604687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Nature uses bottom-up self-assembly to build structures with remarkable complexity and functionality. Understanding how molecular-scale interactions translate to macroscopic properties remains a major challenge and requires systems that effectively bridge these two scales. Here, we generate DNA and RNA liquids with exquisite programmability in their material properties. Nucleic acids are negatively charged, and in the presence of polycations, they may condense to a liquid-like state. Within these liquids, DNA and RNA retain sequence-specific hybridization abilities. We show that intermolecular hybridization in the condensed phase cross-links molecules and slows down chain dynamics. This reduced chain mobility is mirrored in the macroscopic properties of the condensates. Molecular diffusivity and material viscosity scale with the intermolecular hybridization energy, enabling precise sequence-based modulation of condensate properties over orders of magnitude. Our work offers a robust platform to create self-assembling programmable fluids and may help advance our understanding of liquid-like compartments in cells.
Collapse
Affiliation(s)
- Sumit Majumder
- Whitehead Institute for Biomedical Research, Cambridge 02142, USA
| | - Sebastian Coupe
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| | - Nikta Fakhri
- Department of Physics, Massachusetts Institute of Technology, Cambridge 02142, USA
| | - Ankur Jain
- Whitehead Institute for Biomedical Research, Cambridge 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| |
Collapse
|
4
|
Wan Y, Wang M, Ding P, Qiu Y, Guo X, Cohen Stuart M, Wang J. Robust Electrostatic-Templated Polymerization for Controllable Synthesis of Stable and Permeable Polyelectrolyte Vesicles. ACS Macro Lett 2024; 13:703-710. [PMID: 38767665 DOI: 10.1021/acsmacrolett.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Polymer vesicles are of profound interest for designing delivery vehicles and nanoreactors toward a variety of biomedical and catalytic applications, yet robust synthesis of stable and permeable vesicles remains challenging. Here, we propose an electrostatic-templated polymerization that enables fabrication of polyelectrolyte vesicles with simultaneously regulated stability and permeability. In our design, cationic monomers were copolymerized with cross-linkers in the presence of a polyanionic-neutral diblock copolymer as a template. By properly choosing the block length ratio of the template, we fabricated a type of polyion complex vesicle consisting of a cross-linked cationic membrane, electrostatically assembled with the template copolymer which can be removed by sequential dissociation and separation under concentrated salt. We finally obtained stable polyelectrolyte vesicles of regulated size, membrane permeability, and response properties by tuning the synthesis factors including ionic strength, cross-linker type, and fraction as well as different monomers and concentrations. As a proof-of-concept, lipase was loaded in the designed cationic vesicles, which exhibited enhanced enzyme stability and activity. Our study has developed a novel and robust strategy for controllable synthesis of a new class of stable and permeable polymer (polyelectrolyte) vesicles that feature great potential applications as functional delivery carriers and nanoreactors.
Collapse
Affiliation(s)
- Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Peng Ding
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuening Qiu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Martien Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| |
Collapse
|
5
|
Jin Z, Seong HG, Srivastava S, McGlasson A, Emrick T, Muthukumar M, Russell TP. 3D Printing of Aqueous Two-Phase Systems with Linear and Bottlebrush Polyelectrolytes. Angew Chem Int Ed Engl 2024; 63:e202404382. [PMID: 38616164 DOI: 10.1002/anie.202404382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
We formed core-shell-like polyelectrolyte complexes (PECs) from an anionic bottlebrush polymer with poly (acrylic acid) side chains with a cationic linear poly (allylamine hydrochloride). By varying the pH, the number of side chains of the polyanionic BB polymers (Nbb), the charge density of the polyelectrolytes, and the salt concentration, the phase separation behavior and salt resistance of the complexes could be tuned by the conformation of the BBs. By combining the linear/bottlebrush polyelectrolyte complexation with all-liquid 3D printing, flow-through tubular constructs were produced that showed selective transport across the PEC membrane comprising the walls of the tubules. These tubular constructs afford a new platform for flow-through delivery systems.
Collapse
Affiliation(s)
- Zichen Jin
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Hong-Gyu Seong
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Satyam Srivastava
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Alex McGlasson
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Todd Emrick
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
- Department of Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Singh A, Thutupalli S, Kumar M, Ameta S. Constrained dynamics of DNA oligonucleotides in phase-separated droplets. Biophys J 2024; 123:1458-1466. [PMID: 38169216 PMCID: PMC11163293 DOI: 10.1016/j.bpj.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Understanding the dynamics of biomolecules in complex environments is crucial for elucidating the effect of condensed and heterogeneous environments on their functional properties. A relevant environment-and one that can also be mimicked easily in vitro-is that of phase-separated droplets. While phase-separated droplet systems have been shown to compartmentalize a wide range of functional biomolecules, the effects of internal structuration of droplets on the dynamics and mobility of internalized molecules remain poorly understood. Here, we use fluorescence correlation spectroscopy to measure the dynamics of short oligonucleotides encapsulated within two representative kinds of uncharged and charged phase-separated droplets. We find that the internal structuration controls the oligonucleotide dynamics in these droplets, revealed by measuring physical parameters at high spatiotemporal resolution. By varying oligonucleotide length and salt concentrations (and thereby charge screening), we found that the dynamics are significantly affected in the noncharged droplets compared to the charged system. Our work lays the foundation for unraveling and quantifying the physical parameters governing biomolecular transport in the condensed environment.
Collapse
Affiliation(s)
- Anupam Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| | - Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India; Trivedi School of Biosciences, Ashoka University, Sonepat, India.
| |
Collapse
|
7
|
Chremos A, Horkay F. Coexistence of Crumpling and Flat Sheet Conformations in Two-Dimensional Polymer Networks: An Understanding of Aggrecan Self-Assembly. PHYSICAL REVIEW LETTERS 2023; 131:138101. [PMID: 37832020 DOI: 10.1103/physrevlett.131.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
We investigate the conformational properties of self-avoiding two-dimensional (2D) ideal polymer networks with tunable mesh sizes as a model of self-assembled structures formed by aggrecan. Polymer networks having few branching points and large enough mesh tend to crumple, resulting in a fractal dimension of d_{f}≈2.7. The flat sheet behavior (d_{f}=2) emerges in 2D polymer networks having more branching points at large length scales; however, it coexists with crumpling conformations at intermediate length scales, a feature found in scattering profiles of aggrecan solutions. Our findings bridge the long-standing gap between theories and simulations of polymer sheets.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
8
|
Muthukumar M. Fluctuations, structure, and size inside coacervates. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:79. [PMID: 37682368 DOI: 10.1140/epje/s10189-023-00335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Aqueous solutions of oppositely charged macromolecules exhibit the ubiquitous phenomenon of coacervation. This subject is of considerable current interest due to numerous biotechnological applications of coacervates and the general premise of biomolecular condensates. Towards a theoretical foundation of structural features of coacervates, we present a field-theoretic treatment of coacervates formed by uniformly charged flexible polycations and polyanions in an electrolyte solution. We delineate different regimes of polymer concentration fluctuations and structural features of coacervates based on the concentrations of polycation and polyanion, salt concentration, and experimentally observable length scales. We present closed-form formulas for correlation length of polymer concentration fluctuations, scattering structure factor, and radius of gyration of a labelled polyelectrolyte chain inside a concentrated coacervate. Using random phase approximation suitable for concentrated polymer systems, we show that the inter-monomer electrostatic interaction is screened by interpenetration of all charged polymer chains and that the screening length depends on the individual concentrations of the polycation and the polyanion, as well as the salt concentration. Our calculations show that the scattering intensity decreases monotonically with scattering wave vector at higher salt concentrations, while it exhibits a peak at intermediate scattering wave vector at lower salt concentrations. Furthermore, we predict that the dependence of the radius of gyration of a labelled chain on its degree of polymerization generally obeys the Gaussian chain statistics. However, the chain is modestly swollen, the extent of which depending on polyelectrolyte composition, salt concentration, and the electrostatic features of the polycation and polyanion such as the degree of ionization.
Collapse
Affiliation(s)
- Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
9
|
Es Sayed J, Caïto C, Arunachalam A, Amirsadeghi A, van Westerveld L, Maret D, Mohamed Yunus RA, Calicchia E, Dittberner O, Portale G, Parisi D, Kamperman M. Effect of Dynamically Arrested Domains on the Phase Behavior, Linear Viscoelasticity and Microstructure of Hyaluronic Acid - Chitosan Complex Coacervates. Macromolecules 2023; 56:5891-5904. [PMID: 37576476 PMCID: PMC10413963 DOI: 10.1021/acs.macromol.3c00269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Complex coacervates make up a class of versatile materials formed as a result of the electrostatic associations between oppositely charged polyelectrolytes. It is well-known that the viscoelastic properties of these materials can be easily altered with the ionic strength of the medium, resulting in a range of materials from free-flowing liquids to gel-like solids. However, in addition to electrostatics, several other noncovalent interactions could influence the formation of the coacervate phase depending on the chemical nature of the polymers involved. Here, the importance of intermolecular hydrogen bonds on the phase behavior, microstructure, and viscoelasticity of hyaluronic acid (HA)-chitosan (CHI) complex coacervates is revealed. The density of intermolecular hydrogen bonds between CHI units increases with increasing pH of coacervation, which results in dynamically arrested regions within the complex coacervate, leading to elastic gel-like behavior. This pH-dependent behavior may be very relevant for the controlled solidification of complex coacervates and thus for polyelectrolyte material design.
Collapse
Affiliation(s)
- Julien Es Sayed
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Clément Caïto
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Abinaya Arunachalam
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Armin Amirsadeghi
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Larissa van Westerveld
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Denise Maret
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Roshan Akdar Mohamed Yunus
- Engineering
and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Eleonora Calicchia
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Department
of Nanomedicine & Drug Targeting, Groningen Research Institute
of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Olivia Dittberner
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Giuseppe Portale
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Daniele Parisi
- Engineering
and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Kamperman
- Zernike
Institute for Advanced Materials (ZIAM), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Saleh OA, Wilken S, Squires TM, Liedl T. Vacuole dynamics and popping-based motility in liquid droplets of DNA. Nat Commun 2023; 14:3574. [PMID: 37328453 PMCID: PMC10275875 DOI: 10.1038/s41467-023-39175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023] Open
Abstract
Liquid droplets of biomolecules play key roles in organizing cellular behavior, and are also technologically relevant, yet physical studies of dynamic processes of such droplets have generally been lacking. Here, we investigate and quantify the dynamics of formation of dilute internal inclusions, i.e., vacuoles, within a model system consisting of liquid droplets of DNA 'nanostar' particles. When acted upon by DNA-cleaving restriction enzymes, these DNA droplets exhibit cycles of appearance, growth, and bursting of internal vacuoles. Analysis of vacuole growth shows their radius increases linearly in time. Further, vacuoles pop upon reaching the droplet interface, leading to droplet motion driven by the osmotic pressure of restriction fragments captured in the vacuole. We develop a model that accounts for the linear nature of vacuole growth, and the pressures associated with motility, by describing the dynamics of diffusing restriction fragments. The results illustrate the complex non-equilibrium dynamics possible in biomolecular condensates.
Collapse
Affiliation(s)
- Omar A Saleh
- Materials Department and Physics Department, University of California, Santa Barbara, CA, 93106, USA.
| | - Sam Wilken
- Materials Department and Physics Department, University of California, Santa Barbara, CA, 93106, USA
| | - Todd M Squires
- Chemical Engineering Department, University of California, Santa Barbara, CA, 93106, USA
| | - Tim Liedl
- Physics Department, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
11
|
Klačić T, Jugl A, Pekař M, Kovačević D. High-Resolution Ultrasonic Spectroscopy: Looking at the Interpolyelectrolyte Neutralization from a Different Perspective. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Tin Klačić
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Adam Jugl
- Institute of Physical and Applied Chemistry & Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200 Brno, Czech Republic
| | - Miloslav Pekař
- Institute of Physical and Applied Chemistry & Materials Research Centre, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-61200 Brno, Czech Republic
| | - Davor Kovačević
- Division of Physical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
12
|
Liu Y, Wang X, Wan Z, Ngai T, Tse YLS. Capturing coacervate formation and protein partition by molecular dynamics simulation. Chem Sci 2023; 14:1168-1175. [PMID: 36756326 PMCID: PMC9891350 DOI: 10.1039/d2sc01164f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
Biomolecules localize and function in microenvironments where their local concentration, spatial organization, and biochemical reactivity are regulated. To compartmentalize and control the local properties of the native microenvironment, cellular mimics and artificial bioreactors have been developed to study the properties of membraneless organelles or mimic the bio-environment for life origin. Here, we carried out molecular dynamics simulation with the Martini 3.0 model to reproduce the experimental salt concentration and pH dependency of different complex coacervates. We showed that coacervates inside vesicles are able to change their shape. In addition, we used these coacervate systems to explore the partitioning of the ubiquitous cytoskeletal protein actin and found that actin spontaneously partitions to all the coacervate peripheries. Therefore, we believe that our study can provide a better understanding of the versatile coacervate platform, where biomolecules partition and gather to fulfill their biological duties.
Collapse
Affiliation(s)
- Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 China.,Department of Chemistry, The Chinese University of Hong Kong Sha Tin Hong Kong China
| | - Xinyan Wang
- Department of Chemistry, The Chinese University of Hong Kong Sha Tin Hong Kong China
| | - Zhili Wan
- School of Food Science and Engineering, South China University of TechnologyGuangzhouChina
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong Sha Tin Hong Kong China
| | - Ying-Lung Steve Tse
- Department of Chemistry, The Chinese University of Hong Kong Sha Tin Hong Kong China
| |
Collapse
|
13
|
Kim S, Lee WB, de Souza NR, Choi SH. QENS study on local segmental dynamics of polyelectrolytes in complex coacervates. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
An Overview of Coacervates: The Special Disperse State of Amphiphilic and Polymeric Materials in Solution. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Individual amphiphiles, polymers, and colloidal dispersions influenced by temperature, pH, and environmental conditions or interactions between their oppositely charged pairs in solvent medium often produce solvent-rich and solvent-poor phases in the system. The solvent-poor denser phase found either on the top or the bottom of the system is called coacervate. Coacervates have immense applications in various technological fields. This review comprises a concise introduction, focusing on the types of coacervates, and the influence of different factors in their formation, structures, and stability. In addition, their physicochemical properties, thermodynamics of formation, and uses and multifarious applications are also concisely presented and discussed.
Collapse
|
15
|
Role of Substrate Type in the Process of Polyelectrolyte Multilayer Formation. Polymers (Basel) 2022; 14:polym14132566. [PMID: 35808612 PMCID: PMC9269168 DOI: 10.3390/polym14132566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/07/2022] Open
Abstract
Polyelectrolyte multilayers are coatings formed by the alternate deposition of polycations and polyanions on a charged surface. In this study we examined how the type of substrate affects a multilayer prepared from poly(allylamine hydrochloride) and poly(acrylic acid). Silicon and titanium wafers were used as substrates. Their properties were systematically studied using ellipsometry, tensiometry, atomic force microscopy and streaming potential measurements. Multilayers were built up at pH = 7 with tetramethylammonium chloride as the background salt. The growth of films was monitored by ellipsometry, while the morphology and surface roughness were determined by atomic force microscopy. It was found that the thickness of multilayers containing 10 layers on silicon is 10 nm, whereas the thickness of the same film on titanium is three times higher. It was shown that multilayers formed on silicon display a grain-like structure, which was not the case for a film formed on titanium. Such morphological properties are also reflected in the surface roughness. Finally, it was shown that, in addition to the electrostatic interactions, the hydrophobicity of the substrate also plays an important role in the polyelectrolyte multilayer formation process and influences its thickness and properties.
Collapse
|
16
|
Zhang P, Wang ZG. Supernatant Phase in Polyelectrolyte Complex Coacervation: Cluster Formation, Binodal, and Nucleation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
17
|
Liang H, de Pablo JJ. A Coarse-Grained Molecular Dynamics Study of Strongly Charged Polyelectrolyte Coacervates: Interfacial, Structural, and Dynamical Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Bos I, Brink E, Michels L, Sprakel J. DNA dynamics in complex coacervate droplets and micelles. SOFT MATTER 2022; 18:2012-2027. [PMID: 35191449 PMCID: PMC8905490 DOI: 10.1039/d1sm01787j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Single stranded DNA (ssDNA), or another polyanion, can be mixed with polycations to form liquid-like complex coacervates. When the polycations are replaced by cationic-neutral diblock copolymers, complex coacervate core micelles (C3Ms) can be formed instead. In both complex coacervates and C3Ms, dynamics plays an important role. Yet, to date, the effect of chain length on the dynamics effect is still not fully understood. The DNA complexes provide a versatile platform to further elucidate these chain length effects because the DNA is monodisperse and its length can be easily adapted. Therefore, we study in this paper the dynamics of fluorescently labelled ssDNA in both complex coacervate droplets and micelles. The DNA dynamics in the complex coacervate droplets is probed by fluorescence recovery after photobleaching (FRAP). We observe that the DNA diffusion coefficient depends more strongly on the DNA length than predicted by the sticky Rouse model and we show that this can be partly explained by changes in complex coacervate density, but that also other factors might play a role. We measure the molecular exchange of C3Ms by making use of Förster resonance energy transfer (FRET) and complement these measurements with Langevin dynamics simulations. We conclude that chain length polydispersity is the main cause of a broad distribution of exchange rates. We hypothesise that the different exchange rates that we observe for the monodisperse DNA are mainly caused by differences in dye interactions and show that the dye can indeed have a large effect on the C3M exchange. In addition, we show that a new description of the C3M molecular exchange is required that accounts among others for the effect of the length of the oppositely charged core species. Together our findings can help to better understand the dynamics in both specific DNA systems and in complex coacervate droplets and micelles in general.
Collapse
Affiliation(s)
- Inge Bos
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Eline Brink
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Lucile Michels
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
19
|
Xiao X, Ji J, Zhao W, Nangia S, Libera M. Salt Destabilization of Cationic Colistin Complexation within Polyanionic Microgels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xixi Xiao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jingjing Ji
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Wenhan Zhao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
20
|
Gong Z, Zacharia NS, Vogt BD. Sodium dodecyl sulfate modulates the structure and rheological properties of Pluronic F108-poly(acrylic acid) coacervates). SOFT MATTER 2022; 18:340-350. [PMID: 34882160 DOI: 10.1039/d1sm01273h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micelles formed within coacervate phases can impart functional properties, but it is unclear if this micellization provides mechanical reinforcement of the coacervate whereby the micelles act as high functionality crosslinkers. Here, we examine how sodium dodecyl sulfate (SDS) influences the structure and properties of Pluronic F108-polyacrylic acid (PAA) coacervates as SDS is known to decrease the aggregation number of Pluronic micelles. Increasing the SDS concentration leads to larger water content in the coacervate and an increase in the relative concentration of PAA to the other solids. Rheological characterization with small angle oscillatory shear (SAOS) demonstrates that these coacervates are viscoelastic liquids with the moduli decreasing with the addition of the SDS. The loss factor (tan δ) initially increases linearly with the addition of SDS, but a step function increase in the loss factor occurs near the reported CMC of SDS. However, this change in rheological properties does not appear to be correlated with any large scale structural differences in the coacervate as determined by small angle X-ray scattering (SAXS) with no signature of Pluronic micelles in the coacervate when SDS concentration is >4 mM during formation of the coacervate, which is less than that observed (6 mM SDS) in initial Pluronic F108 solution despite the higher polymer concentration in the coacervate. These results suggest that the mechanical properties of polyelectrolyte-non-ionic surfactant coacervates are driven by the efficicacy of binding between the complexing species driving the coacervate, which can be disrupted by competitive binding of the SDS to the Pluronic.
Collapse
Affiliation(s)
- Ziyuan Gong
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Nicole S Zacharia
- Department of Polymer Engineering, University of Akron, Akron, OH 44325, USA.
| | - Bryan D Vogt
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
21
|
Ma Y, Ali S, Prabhu VM. Enhanced Concentration Fluctuations in Model Polyelectrolyte Coacervate Mixtures along a Salt Isopleth Phase Diagram. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Samim Ali
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
22
|
Tom JK, Deniz AA. Complex dynamics of multicomponent biological coacervates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Affiliation(s)
- Pengfei Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
24
|
Influence of divalent ions on composition and viscoelasticity of polyelectrolyte complexes. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Lin K, Jing B, Zhu Y. pH-Dependent complexation and polyelectrolyte chain conformation of polyzwitterion-polycation coacervates in salted water. SOFT MATTER 2021; 17:8937-8949. [PMID: 34549769 DOI: 10.1039/d1sm00880c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phase behavior and chain conformational structure of biphasic polyzwitterion-polyelectrolyte coacervates in salted aqueous solution are investigated with a model weak cationic polyelectrolyte, poly(2-vinylpyridine) (P2VP), whose charge fraction can be effectively tuned by pH. It is observed that increasing the pH leads to the increase of the yielding volume fraction and the water content of dense coacervates formed between net neutral polybetaine and cationic P2VP in contrast to the decrease of critical salt concentration for the onset of coacervation, where the P2VP charge fraction is reduced correspondingly. Surprisingly, a single-molecule fluorescence spectroscopic study suggests that P2VP chains upon coacervation seem to adopt a swollen or an even more expanded conformational structure at higher pH. As the hydrophobicity of P2VP chains is accompanied by a reduced charge fraction by increasing the pH, a strong pH-dependent phase and conformational behaviors suggest the shift of entropic and enthalpic contribution to the underlying thermodynamic energy landscape and chain structural dynamics of polyelectrolyte coacervation involving weak polyelectrolytes in aqueous solution.
Collapse
Affiliation(s)
- Kehua Lin
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
26
|
Wanasingha N, Dutta NK, Choudhury NR. Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Adv Colloid Interface Sci 2021; 296:102521. [PMID: 34534751 DOI: 10.1016/j.cis.2021.102521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
Bioadhesives have reached significant milestones over the past two decades. Research has shown not only to produce adhesives capable of adhering to dry tissue but recently wet tissue as well. However, most bioadhesives developed have exhibited high adhesion strength yet lack other properties required for versatility in application, such as elasticity, biocompatibility and biodegradability. Adapting from limitations met from early bioadhesives and meeting the current demand allows novel bioadhesives to reach new milestones for the future. In this review, we overview the progression and variations of bioadhesives, current trends, characterisation techniques and conclude with future perspectives for bioadhesives for tissue engineering applications.
Collapse
Affiliation(s)
- Nisal Wanasingha
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
27
|
Hill C, Abdullahi W, Dalgliesh R, Crossman M, Griffiths PC. Charge Modification as a Mechanism for Tunable Properties in Polymer-Surfactant Complexes. Polymers (Basel) 2021; 13:2800. [PMID: 34451340 PMCID: PMC8397960 DOI: 10.3390/polym13162800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Oppositely charged polymer-surfactant complexes are frequently explored as a function of phase space defined by the charge ratio Z, (where Z = [+polymer]/[-surfactant]), commonly accessed through the surfactant concentration. Tuning the phase behaviour and related properties of these complexes is an important tool for optimising commercial formulations; hence, understanding the relationship between Z and bulk properties is pertinent. Here, within a homologous series of cationic hydroxyethyl cellulose (cat-HEC) polymers with minor perturbations in the degree of side chain charge modification, phase space is instead explored through [+polymer] at fixed Cpolymer. The nanostructures were characterised by small-angle neutron scattering (SANS) in D2O solutions and in combination with the oppositely charged surfactant sodium dodecylsulfate (h- or d-SDS). Scattering consistent with thin rods with an average radius of ∼7.7 Å and length of ∼85 Å was observed for all cat-HEC polymers and no significant interactions were shown between the neutral HEC polymer and SDS (CSDS < CMC). For the charge-modified polymers, interactions with SDS were evident and the radius of the formed complexes grew up to ∼15 Å with increasing Z. This study demonstrates a novel approach in which the Z phase space of oppositely charged polymer-surfactant complexes can be controlled at fixed concentrations.
Collapse
Affiliation(s)
- Christopher Hill
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (C.H.); (W.A.)
| | - Wasiu Abdullahi
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (C.H.); (W.A.)
| | - Robert Dalgliesh
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxford OX11 0QX, UK;
| | - Martin Crossman
- Unilever Research, Port Sunlight, Quarry Road East, Bebington, Wirral CH63 3JW, UK;
| | - Peter Charles Griffiths
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (C.H.); (W.A.)
| |
Collapse
|
28
|
Le ML, Rawlings D, Danielsen SPO, Kennard RM, Chabinyc ML, Segalman RA. Aqueous Formulation of Concentrated Semiconductive Fluid Using Polyelectrolyte Coacervation. ACS Macro Lett 2021; 10:1008-1014. [PMID: 35549124 DOI: 10.1021/acsmacrolett.1c00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Conjugated polyelectrolytes (CPEs), which combine π-conjugated backbones with ionic side chains, are intrinsically soluble in polar solvents and have demonstrated tunability with respect to solution processability and optoelectronic performance. However, this class of polymers often suffers from limited solubility in water. Here, we demonstrate how polyelectrolyte coacervation can be utilized for aqueous processing of conjugated polymers at extremely high polymer loading. Sampling various mixing conditions, we identify compositions that enable the formation of complex coacervates of an alkoxysulfonate-substituted PEDOT (PEDOT-S) with poly(3-methyl-1-propylimidazolylacrylamide) (PA-MPI). The resulting coacervate is a viscous fluid containing 50% w/v polymer and can be readily blade-coated into films of 4 ± 0.5 μm thick. Subsequent acid doping of the film increased the electrical conductivity of the coacervate to twice that of a doped film of neat PEDOT-S. This higher conductivity of the doped coacervate film suggests an enhancement in charge carrier transport along PEDOT-S backbone, in agreement with spectroscopic data, which shows an enhancement in the conjugation length of PEDOT-S upon coacervation. This study illustrates the utilization of electrostatic interactions in aqueous processing of conjugated polymers, which will be useful in large-scale industrial processing of semiconductive materials using limited solvent and with added enhancements to optoelectronic properties.
Collapse
Affiliation(s)
- My Linh Le
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Dakota Rawlings
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| | - Scott P. O. Danielsen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Rhiannon M. Kennard
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Chemical Engineering Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
29
|
Fekih-Ahmed K, Khemissi H, Aschi A. Structural transition induced by physicochemical parameters during complexation and coacervation of Poly-L-Ornithine with poly-(sodium 4-styrene sulfonate). INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Khouloud Fekih-Ahmed
- Faculté des Sciences de Tunis, LR99ES16 Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, Université de Tunis El Manar, Tunis, Tunisia
| | - Hela Khemissi
- Faculté des Sciences de Tunis, LR99ES16 Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, Université de Tunis El Manar, Tunis, Tunisia
| | - Adel Aschi
- Faculté des Sciences de Tunis, LR99ES16 Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
30
|
Ion-Specific and Solvent Effects on PDADMA–PSS Complexation and Multilayer Formation. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5030038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among various parameters that influence the formation of polyelectrolyte complexes and multilayers, special emphasis should be placed on ion-specific and solvent effects. In our study, we systematically examined the above-mentioned effects on poly(diallyldimethylammonium chloride) (PDADMACl)-sodium poly(4-styrenesulfonate) (NaPSS) complexation in solution and at the surface by means of dynamic light scattering, ellipsometry and atomic force microscopy measurements. As solvents, we used water and water/ethanol mixture. The obtained results confirm the importance of ion-specific and solvent effects on complexes prepared in solution, as well as on multilayers built up on a silica surface. The experiments in mixed solvent solution showed that at a higher ethanol mole fraction, the decrease in monomer titrant to titrand ratio, at which the increase in the size of complexes is observed, takes place. The difference between chloride and bromide ions was more pronounced at a higher mole fraction of ethanol and in the case of positive complex formation, suggesting that the larger amount of bromide ions could be condensed to the polycation chain. These findings are in accordance with the results we obtained for polyelectrolyte multilayers and could be helpful for designing polyelectrolyte multilayers with tuned properties needed for various applications, primarily in the field of biomedicine.
Collapse
|
31
|
Meng X, Du Y, Liu Y, Coughlin EB, Perry SL, Schiffman JD. Electrospinning Fibers from Oligomeric Complex Coacervates: No Chain Entanglements Needed. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiangxi Meng
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yifeng Du
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Yalin Liu
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - E. Bryan Coughlin
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-930, United States
| |
Collapse
|
32
|
Filippov AD, Sprakel J, Kamperman M. Complex coacervation and metal-ligand bonding as synergistic design elements for aqueous viscoelastic materials. SOFT MATTER 2021; 17:3294-3305. [PMID: 33655283 DOI: 10.1039/d0sm02236e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The application of complex coacervates in promising areas such as coatings and surgical glues requires a tight control of their viscous and elastic behaviour, and a keen understanding of the corresponding microscopic mechanisms. While the viscous, or dissipative, aspect is crucial at pre-setting times and in preventing detachment, elasticity at long waiting times and low strain rates is crucial to sustain a load-bearing joints. The independent tailoring of dissipative and elastic properties proves to be a major challenge that can not be addressed adequately by the complex coacervate motif by itself. We propose a versatile model of complex coacervates with customizable rheological fates by functionalization of polyelectrolytes with terpyridines, which provide transient crosslinks through complexation with metals. We show that the rheology of the hybrid complexes shows distinct footprints of both metal-ligand and coacervate dynamics, the former as a contribution very close to pure Maxwell viscoelasticity, the latter approaching a sticky Rouse fluid. Strikingly, when the contribution of metal-ligand bonds is dominant at long times, the relaxation of the overall complex is much slower than either the "native" coacervate relaxation time or the dissociation time of a comparable non-coacervate polyelectrolyte-metal-ligand complex. We recognize this slowing-down of transient bonds as a synergistic effect that has important implications for the use of complementary transient bonding in coacervate complexes.
Collapse
Affiliation(s)
- Alexei D Filippov
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | | | | |
Collapse
|
33
|
Grzetic DJ, Delaney KT, Fredrickson GH. Electrostatic Manipulation of Phase Behavior in Immiscible Charged Polymer Blends. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Douglas J. Grzetic
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kris T. Delaney
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Departments of Chemical Engineering and Materials, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
34
|
Jia D, Muthukumar M. Electrostatically Driven Topological Freezing of Polymer Diffusion at Intermediate Confinements. PHYSICAL REVIEW LETTERS 2021; 126:057802. [PMID: 33605762 DOI: 10.1103/physrevlett.126.057802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Breaking the paradigm that polymers in crowded aqueous media obey Einstein's law of diffusion, we report a localized nondiffusive hierarchical metastable state at intermediate confinements. Combining electrostatic and topological effects, we can tune the propensity of this new universality class in a quasicoacervate gel system consisting of guest polyamino acid chains inside an oppositely charged host hydrogel. Our observations offer strategies for controlled release and retention of macromolecules in aqueous crowded media, while opening a new direction for understanding topologically frustrated dynamics in polymers and other soft matter systems.
Collapse
Affiliation(s)
- Di Jia
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
35
|
Jing B, Ferreira M, Lin K, Li R, Yavitt BM, Qiu J, Fukuto M, Zhu Y. Ultrastructure of Critical-Gel-like Polyzwitterion–Polyoxometalate Complex Coacervates: Effects of Temperature, Salt Concentration, and Shear. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Manuela Ferreira
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Kehua Lin
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin M. Yavitt
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jie Qiu
- School of Nuclear Science and Technology and State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
36
|
Seddon WD, Alfhaid L, Dunbar ADF, Geoghegan M, Williams NH. Adhesion of Grafted-to Polyelectrolyte Brushes Functionalized with Calix[4]resorcinarene and Deposited as a Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13843-13852. [PMID: 33172276 DOI: 10.1021/acs.langmuir.0c02236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyelectrolyte adhesives, either poly[2-(dimethylamino)ethyl methacrylate] or poly(methacrylic acid), functionalized with a surface-active calix[4]resorcinarene were grafted onto silicon wafers. Adhesion studies on these grafted-to brushes using polyelectrolyte hydrogels of opposite charge showed that it is the calix[4]resorcinarene, rather than adsorption of polyelectrolyte monomers, that adheres the brush to the silicon substrate. The adhesion measured was similar to that measured using polymers grafted from the surface, and was stronger than a control layer of poly(vinyl acetate) under the same test conditions. The limiting factor was determined to be adhesive failure at the hydrogel-brush interface, rather than the brush-silicon interface. Therefore, the adhesion has not been adversely affected by changing from a grafted-from to a grafted-to brush, demonstrating the possibility of a one-pot approach to creating switchable adhesives.
Collapse
Affiliation(s)
- William D Seddon
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K
| | - Latifah Alfhaid
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K
| | - Alan D F Dunbar
- Department of Chemical and Biological Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, U.K
| | - Mark Geoghegan
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, U.K
| | - Nicholas H Williams
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|
37
|
Manoj Lalwani S, Eneh CI, Lutkenhaus JL. Emerging trends in the dynamics of polyelectrolyte complexes. Phys Chem Chem Phys 2020; 22:24157-24177. [PMID: 33094301 DOI: 10.1039/d0cp03696j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyelectrolyte complexes (PECs) are highly tunable materials that result from the phase separation that occurs upon mixing oppositely charged polymers. Over the years, they have gained interest due to their broad range of applications such as drug delivery systems, protective coatings, food packaging, and surface adhesives. In this review, we summarize the structure, phase transitions, chain dynamics, and rheological and thermal properties of PECs. Although most literature focuses upon the thermodynamics and application of PECs, this review highlights the fundamental role of salt and water on mechanical and thermal properties impacting the PEC's dynamics. A special focus is placed upon experimental results and techniques. Specifically, the review examines phase behaviour and salt partitioning in PECs, as well as different techniques used to measure diffusion coefficients, relaxation times, various superpositioning principles, glass transitions, and water microenvironments in PECs. This review concludes with future areas of opportunity in fundamental studies and best practices in reporting.
Collapse
Affiliation(s)
- Suvesh Manoj Lalwani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Chikaodinaka I Eneh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA.
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77840, USA. and Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
38
|
Fares HM, Marras AE, Ting JM, Tirrell MV, Keating CD. Impact of wet-dry cycling on the phase behavior and compartmentalization properties of complex coacervates. Nat Commun 2020; 11:5423. [PMID: 33110067 PMCID: PMC7592044 DOI: 10.1038/s41467-020-19184-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Wet-dry cycling on the early Earth is thought to have facilitated production of molecular building blocks of life, but its impact on self-assembly and compartmentalization remains largely unexplored. Here, we investigate dehydration/rehydration of complex coacervates, which are membraneless compartments formed by phase separation of polyelectrolyte solutions. Solution compositions are identified for which tenfold water loss results in maintenance, disappearance, or appearance of coacervate droplets. Systems maintaining coacervates throughout the dehydration process are further evaluated to understand how their compartmentalization properties change with drying. Although added total RNA concentrations increase tenfold, RNA concentration within coacervates remains steady. Exterior RNA concentrations rise, and exchange rates for encapsulated versus free RNAs increase with dehydration. We explain these results in light of the phase diagram, with dehydration-driven ionic strength increase being particularly important in determining coacervate properties. This work shows that wet-dry cycling can alter the phase behavior and protocell-relevant functions of complex coacervates. Wet-dry cycling is thought to have enabled the production of molecular building blocks of life. Here, the authors investigate the impact of dehydration/rehydration on RNA-containing complex coacervates, which are membraneless compartments formed by phase separation of polyelectrolyte solutions.
Collapse
Affiliation(s)
- Hadi M Fares
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.,NASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, 21046, USA
| | - Alexander E Marras
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jeffrey M Ting
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.,3M Company, 3M Center, Saint Paul, MN, 55144, USA
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.,Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Christine D Keating
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
39
|
Mintis DG, Mavrantzas VG. Phase Boundary and Salt Partitioning in Coacervate Complexes Formed between Poly(acrylic acid) and Poly(N,N-dimethylaminoethyl methacrylate) from Detailed Atomistic Simulations Combined with Free Energy Perturbation and Thermodynamic Integration Calculations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dimitris G. Mintis
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras GR26504, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, Patras GR26504, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
40
|
Prabhu VM, Ali S, Bleuel M, Mao Y, Ma Y. Ultra-small angle neutron scattering to study droplet formation in polyelectrolyte complex coacervates. Methods Enzymol 2020; 646:261-276. [PMID: 33453928 DOI: 10.1016/bs.mie.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Associating soft matter such as surfactants, polymers, proteins, and liposomes, may form structures with dimensions not readily accessible by optical methods. Scattering methods can provide detailed information about the mechanism of associative phase separation including nucleation density, size, and shape. Ultra-small angle neutron scattering, a reciprocal space method, provides sensitivity to submicron to micron-scale structures in a non-invasive manner and described in the context of nucleation and growth of dilute droplets formed by a temperature jump into the meta-stable region of polyelectrolyte complex coacervates.
Collapse
Affiliation(s)
- Vivek M Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States.
| | - Samim Ali
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Markus Bleuel
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, United States; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, United States; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Yuanchi Ma
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, United States
| |
Collapse
|
41
|
Akkaoui K, Yang M, Digby ZA, Schlenoff JB. Ultraviscosity in Entangled Polyelectrolyte Complexes and Coacervates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00133] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Khalil Akkaoui
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Zachary A. Digby
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United States
| |
Collapse
|
42
|
Sing CE, Perry SL. Recent progress in the science of complex coacervation. SOFT MATTER 2020; 16:2885-2914. [PMID: 32134099 DOI: 10.1039/d0sm00001a] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Complex coacervation is an associative, liquid-liquid phase separation that can occur in solutions of oppositely-charged macromolecular species, such as proteins, polymers, and colloids. This process results in a coacervate phase, which is a dense mix of the oppositely-charged components, and a supernatant phase, which is primarily devoid of these same species. First observed almost a century ago, coacervates have since found relevance in a wide range of applications; they are used in personal care and food products, cutting edge biotechnology, and as a motif for materials design and self-assembly. There has recently been a renaissance in our understanding of this important class of material phenomena, bringing the science of coacervation to the forefront of polymer and colloid science, biophysics, and industrial materials design. In this review, we describe the emergence of a number of these new research directions, specifically in the context of polymer-polymer complex coacervates, which are inspired by a number of key physical and chemical insights and driven by a diverse range of experimental, theoretical, and computational approaches.
Collapse
Affiliation(s)
- Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews, Urbana, IL, USA.
| | | |
Collapse
|
43
|
Calabrese V, Califano D, da Silva MA, Schmitt J, Bryant SJ, Hossain KMZ, Percebom AM, Pérez Gramatges A, Scott JL, Edler KJ. Core-Shell Spheroidal Hydrogels Produced via Charge-Driven Interfacial Complexation. ACS APPLIED POLYMER MATERIALS 2020; 2:1213-1221. [PMID: 32296779 PMCID: PMC7147256 DOI: 10.1021/acsapm.9b01086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 06/11/2023]
Abstract
Through charge-driven interfacial complexation, we produced millimeter-sized spheroidal hydrogels (SH) with a core-shell structure allowing long-term stability in aqueous media. The SH were fabricated by extruding, dropwise, a cationic cellulose nanofibril (CCNF) dispersion into an oppositely charged poly(acrylic acid) (PAA) bath. The SH have a solid-like CCNF-PAA shell, acting as a semipermeable membrane, and a liquid-like CCNF suspension in the core. Swelling behavior of the SH was dependent on the osmotic pressure of the aging media. Swelling could be suppressed by increasing the ionic strength of the media as this enhanced interfibrillar interactions and thus strengthened the outer gel membrane. We further validated a potential application of SH as reusable matrixes for glucose oxidase (GOx) entrapment, where the SH work as microreactors from which substrate and product are freely able to migrate through the SH shell while avoiding enzyme leakage.
Collapse
Affiliation(s)
- Vincenzo Calabrese
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Davide Califano
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Marcelo A da Silva
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Julien Schmitt
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Saffron J Bryant
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Kazi M Zakir Hossain
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Ana M Percebom
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 22451-900 Rio de Janeiro, RJ, Brazil
| | - Aurora Pérez Gramatges
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), 22451-900 Rio de Janeiro, RJ, Brazil
| | - Janet L Scott
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
44
|
Lin Y, Fichou Y, Zeng Z, Hu NY, Han S. Electrostatically Driven Complex Coacervation and Amyloid Aggregation of Tau Are Independent Processes with Overlapping Conditions. ACS Chem Neurosci 2020; 11:615-627. [PMID: 31971365 DOI: 10.1021/acschemneuro.9b00627] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid aggregation of the microtubule binding protein tau is a hallmark of many neurodegenerative diseases. Recently, tau has been found to undergo liquid-liquid phase separation (LLPS) by an electrostatically driven complex coacervation (CC) mechanism near physiological conditions. Although LLPS and aggregation have been shown to simultaneously occur under certain common conditions, it is unclear whether LLPS promotes aggregation of tau, or whether they are two independent processes. In this study, we address this question by combining multiple biochemical and biophysical assays in vitro. We investigate the impacts of LLPS-CC on cofactor-induced tau aggregation by evaluating the conformation of tau, kinetics of aggregation, and fibril quantity. We showed that none of these properties are influenced directly by LLPS-CC and that LLPS-CC and cofactor-induced aggregation of tau merely occur under overlapping conditions of enhanced intermolecular interactions and localization but are two independent processes. We furthermore showed that tau LLPS can be driven by nonelectrostatic interaction using high-salt concentrations. Under these conditions, LLPS strongly correlated with increased aggregation propensity. Whether LLPS of tau formed under different conditions or of different constituents may actively promote aggregation of tau remains an open question, but this study shows that the readily accessible electrostatically driven condensation of tau into LLPS in and of itself is not sufficient to promote aggregation.
Collapse
Affiliation(s)
- Yanxian Lin
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, United States
| | - Yann Fichou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Zhikai Zeng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Nicole Y. Hu
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
45
|
Shakya A, Girard M, King JT, Olvera de la Cruz M. Role of Chain Flexibility in Asymmetric Polyelectrolyte Complexation in Salt Solutions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anisha Shakya
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, S. Korea
| | - Martin Girard
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
| | - John T. King
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, S. Korea
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Applied Physics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
46
|
Carl N, Müller W, Schweins R, Huber K. Controlling Self-Assembly with Light and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:223-231. [PMID: 31820995 DOI: 10.1021/acs.langmuir.9b03040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complexes between the anionic polyelectrolyte sodium polyacrylate (PA) and an oppositely charged divalent azobenzene dye are prepared in aqueous solution. Depending on the ratio between dye and polyelectrolyte stable aggregates with a well-defined spherical shape are observed. Upon exposure of these complexes to UV light, the trans → cis transition of the azobenzene is excited resulting in a better solubility of the dye and a dissolution of the complexes. The PA chains reassemble into well-defined aggregates when the dye is allowed to relax back into the trans isomer. Varying the temperature during this reformation step has a direct influence on the final size of the aggregates rendering temperature in an efficient way to easily change the size of the self-assemblies. Application of time-resolved small-angle neutron scattering (SANS) to study the structure formation reveals that the cis → trans isomerization is the rate-limiting step followed by a nucleation and growth process.
Collapse
Affiliation(s)
- Nico Carl
- Large Scale Structures Group, DS , Institut Laue-Langevin , 71 Avenue des Martyrs , CS 20 156, 38042 Grenoble , France
- Chemistry Department , University of Padeborn , Warburger Str. 100 , 33098 Paderborn , Germany
| | | | - Ralf Schweins
- Large Scale Structures Group, DS , Institut Laue-Langevin , 71 Avenue des Martyrs , CS 20 156, 38042 Grenoble , France
| | - Klaus Huber
- Chemistry Department , University of Padeborn , Warburger Str. 100 , 33098 Paderborn , Germany
| |
Collapse
|
47
|
Mintis DG, Dompé M, Kamperman M, Mavrantzas VG. Effect of Polymer Concentration on the Structure and Dynamics of Short Poly(N,N-dimethylaminoethyl methacrylate) in Aqueous Solution: A Combined Experimental and Molecular Dynamics Study. J Phys Chem B 2019; 124:240-252. [DOI: 10.1021/acs.jpcb.9b08966] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dimitris G. Mintis
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, GR 26504 Patras, Greece
| | - Marco Dompé
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marleen Kamperman
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH-ICE/HT, GR 26504 Patras, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
48
|
Glagoleva AA, Vasilevskaya VV. On Conditions of Formation of Hollow Particles by an Interpolylectrolyte Complex. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19060038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Martin P, Vasilyev G, Chu G, Boas M, Arinstein A, Zussman E. pH‐Controlled network formation in a mixture of oppositely charged cellulose nanocrystals and poly(allylamine). ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patrick Martin
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Gleb Vasilyev
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Guang Chu
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Mor Boas
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Arkadii Arinstein
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| | - Eyal Zussman
- Nano Engineering Group, Department of Mechanical Engineering, Technion, Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
50
|
Ali S, Prabhu VM. Characterization of the Ultralow Interfacial Tension in Liquid-Liquid Phase Separated Polyelectrolyte Complex Coacervates by the Deformed Drop Retraction Method. Macromolecules 2019; 52:7495-7502. [PMID: 32636534 PMCID: PMC7340275 DOI: 10.1021/acs.macromol.9b01491] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dilute droplets form upon changing the temperature of a phase separated polyelectrolyte complex coacervate. This provides an in situ approach to measure the interfacial tension between supernatant (dilute droplet) and dense coacervate by the deformed drop retraction (DDR) method. The aqueous coacervate, formed via a model 1:1 by charge stoichiometric polyelectrolyte blend, exhibits ultralow interfacial tension with the coexisting phase. DDR finds the interfacial tension scales as γ = γ 0(1 - C s/C s,c) μ , with μ = 1.5 ± 0.1, γ 0 = 204 ± 36 μN/m, and C s,c = 1.977 mol/L. The value of μ independently validates the classical exponent of 3/2. The scaling holds between C s/C s,c of 0.75 to 0.94, the closest measurements to date near the critical salt concentration (C s,c). The temperature dependence of the interfacial tension is consistent with observed lower critical solution phase behavior and classical scaling. A detailed account of the DDR method and validation of assumptions are demonstrated.
Collapse
Affiliation(s)
- Samim Ali
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|