1
|
Jin J, Voth GA. Understanding dynamics in coarse-grained models. IV. Connection of fine-grained and coarse-grained dynamics with the Stokes-Einstein and Stokes-Einstein-Debye relations. J Chem Phys 2024; 161:034114. [PMID: 39012809 DOI: 10.1063/5.0212973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Applying an excess entropy scaling formalism to the coarse-grained (CG) dynamics of liquids, we discovered that missing rotational motions during the CG process are responsible for artificially accelerated CG dynamics. In the context of the dynamic representability between the fine-grained (FG) and CG dynamics, this work introduces the well-known Stokes-Einstein and Stokes-Einstein-Debye relations to unravel the rotational dynamics underlying FG trajectories, thereby allowing for an indirect evaluation of the effective rotations based only on the translational information at the reduced CG resolution. Since the representability issue in CG modeling limits a direct evaluation of the shear stress appearing in the Stokes-Einstein and Stokes-Einstein-Debye relations, we introduce a translational relaxation time as a proxy to employ these relations, and we demonstrate that these relations hold for the ambient conditions studied in our series of work. Additional theoretical links to our previous work are also established. First, we demonstrate that the effective hard sphere radius determined by the classical perturbation theory can approximate the complex hydrodynamic radius value reasonably well. Furthermore, we present a simple derivation of an excess entropy scaling relationship for viscosity by estimating the elliptical integral of molecules. In turn, since the translational and rotational motions at the FG level are correlated to each other, we conclude that the "entropy-free" CG diffusion only depends on the shape of the reference molecule. Our results and analyses impart an alternative way of recovering the FG diffusion from the CG description by coupling the translational and rotational motions at the hydrodynamic level.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Jin J, Reichman DR. Hierarchical Framework for Predicting Entropies in Bottom-Up Coarse-Grained Models. J Phys Chem B 2024; 128:3182-3199. [PMID: 38507575 DOI: 10.1021/acs.jpcb.3c07624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The thermodynamic entropy of coarse-grained (CG) models stands as one of the most important properties for quantifying the missing information during the CG process and for establishing transferable (or extendible) CG interactions. However, performing additional CG simulations on top of model construction often leads to significant additional computational overhead. In this work, we propose a simple hierarchical framework for predicting the thermodynamic entropies of various molecular CG systems. Our approach employs a decomposition of the CG interactions, enabling the estimation of the CG partition function and thermodynamic properties a priori. Starting from the ideal gas description, we leverage classical perturbation theory to systematically incorporate simple yet essential interactions, ranging from the hard sphere model to the generalized van der Waals model. Additionally, we propose an alternative approach based on multiparticle correlation functions, allowing for systematic improvements through higher-order correlations. Numerical applications to molecular liquids validate the high fidelity of our approach, and our computational protocols demonstrate that a reduced model with simple energetics can reasonably estimate the thermodynamic entropy of CG models without performing any CG simulations. Overall, our findings present a systematic framework for estimating not only the entropy but also other thermodynamic properties of CG models, relying solely on information from the reference system.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| |
Collapse
|
3
|
Jawed A, Khan MN, Khan NA, Hakeem MA, Khan P. Thermodynamic Insights into Variation in Thermomechanical and Physical Properties of Isotactic Polypropylene: Effect of Shear and Cooling Rates. ACS OMEGA 2023; 8:36775-36788. [PMID: 37841128 PMCID: PMC10569009 DOI: 10.1021/acsomega.3c03378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023]
Abstract
In order to elucidate the effect of shear and cooling process on structural, thermomechanical, and physical properties of polymer melt, excess entropy, a thermodynamic quantity is calculated from radial distribution function generated from equilibrated parts of the molecular simulation trajectories. The structural properties are calculated, which includes the density of polypropylene melt, end to end distance, radius of gyration of the polypropylene polymer chain, and monomer-monomer radial distribution function. Non-equilibrium molecular dynamics simulation was employed to investigate the role of the applied shear rate on the properties of polypropylene. Furthermore, a range of cooling rates were employed to cool the melt. Thermomechanical properties, such as Young's modulus, and physical properties, such as glass transition temperature, were determined for different cases. Results showed that slow cooling and high shear substantially improved the Young's modulus and glass transition temperature of the i-PP. Furthermore, a two-body contribution to the excess entropy was used to elucidate the structure-property relationships in the polymer melt as well as the glassy state and the dependence of shear and cooling rate on these properties. We have used the Rosenfeld excess entropy-viscosity relationship to calculate the viscous behavior of the polymer under a steady shear condition.
Collapse
Affiliation(s)
- Ahmad
S. Jawed
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Nasir Khan
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| | - Naseem A. Khan
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammed A. Hakeem
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| | - Parvez Khan
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Sorkin B, Diamant H, Ariel G. Universal Relation between Entropy and Kinetics. PHYSICAL REVIEW LETTERS 2023; 131:147101. [PMID: 37862659 DOI: 10.1103/physrevlett.131.147101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/25/2023] [Indexed: 10/22/2023]
Abstract
Relating thermodynamic and kinetic properties is a conceptual challenge with many practical benefits. Here, based on first principles, we derive a rigorous inequality relating the entropy and the dynamic propagator of particle configurations. It is universal and applicable to steady states arbitrarily far from thermodynamic equilibrium. Applying the general relation to diffusive dynamics yields a relation between the entropy and the (normal or anomalous) diffusion coefficient. The relation can be used to obtain useful bounds for the late-time diffusion coefficient from the calculated steady-state entropy or, conversely, to estimate the entropy based on measured diffusion coefficients. We demonstrate the validity and usefulness of the relation through several examples and discuss its broad range of applications, in particular, for systems far from equilibrium.
Collapse
Affiliation(s)
- Benjamin Sorkin
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Haim Diamant
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel
| |
Collapse
|
5
|
Jin J, Schweizer KS, Voth GA. Understanding dynamics in coarse-grained models. I. Universal excess entropy scaling relationship. J Chem Phys 2023; 158:034103. [PMID: 36681649 DOI: 10.1063/5.0116299] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coarse-grained (CG) models facilitate an efficient exploration of complex systems by reducing the unnecessary degrees of freedom of the fine-grained (FG) system while recapitulating major structural correlations. Unlike structural properties, assessing dynamic properties in CG modeling is often unfeasible due to the accelerated dynamics of the CG models, which allows for more efficient structural sampling. Therefore, the ultimate goal of the present series of articles is to establish a better correspondence between the FG and CG dynamics. To assess and compare dynamical properties in the FG and the corresponding CG models, we utilize the excess entropy scaling relationship. For Paper I of this series, we provide evidence that the FG and the corresponding CG counterpart follow the same universal scaling relationship. By carefully reviewing and examining the literature, we develop a new theory to calculate excess entropies for the FG and CG systems while accounting for entropy representability. We demonstrate that the excess entropy scaling idea can be readily applied to liquid water and methanol systems at both the FG and CG resolutions. For both liquids, we reveal that the scaling exponents remain unchanged from the coarse-graining process, indicating that the scaling behavior is universal for the same underlying molecular systems. Combining this finding with the concept of mapping entropy in CG models, we show that the missing entropy plays an important role in accelerating the CG dynamics.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kenneth S Schweizer
- Department of Material Science, Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
Jin J, Pak AJ, Durumeric AEP, Loose TD, Voth GA. Bottom-up Coarse-Graining: Principles and Perspectives. J Chem Theory Comput 2022; 18:5759-5791. [PMID: 36070494 PMCID: PMC9558379 DOI: 10.1021/acs.jctc.2c00643] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/14/2023]
Abstract
Large-scale computational molecular models provide scientists a means to investigate the effect of microscopic details on emergent mesoscopic behavior. Elucidating the relationship between variations on the molecular scale and macroscopic observable properties facilitates an understanding of the molecular interactions driving the properties of real world materials and complex systems (e.g., those found in biology, chemistry, and materials science). As a result, discovering an explicit, systematic connection between microscopic nature and emergent mesoscopic behavior is a fundamental goal for this type of investigation. The molecular forces critical to driving the behavior of complex heterogeneous systems are often unclear. More problematically, simulations of representative model systems are often prohibitively expensive from both spatial and temporal perspectives, impeding straightforward investigations over possible hypotheses characterizing molecular behavior. While the reduction in resolution of a study, such as moving from an atomistic simulation to that of the resolution of large coarse-grained (CG) groups of atoms, can partially ameliorate the cost of individual simulations, the relationship between the proposed microscopic details and this intermediate resolution is nontrivial and presents new obstacles to study. Small portions of these complex systems can be realistically simulated. Alone, these smaller simulations likely do not provide insight into collectively emergent behavior. However, by proposing that the driving forces in both smaller and larger systems (containing many related copies of the smaller system) have an explicit connection, systematic bottom-up CG techniques can be used to transfer CG hypotheses discovered using a smaller scale system to a larger system of primary interest. The proposed connection between different CG systems is prescribed by (i) the CG representation (mapping) and (ii) the functional form and parameters used to represent the CG energetics, which approximate potentials of mean force (PMFs). As a result, the design of CG methods that facilitate a variety of physically relevant representations, approximations, and force fields is critical to moving the frontier of systematic CG forward. Crucially, the proposed connection between the system used for parametrization and the system of interest is orthogonal to the optimization used to approximate the potential of mean force present in all systematic CG methods. The empirical efficacy of machine learning techniques on a variety of tasks provides strong motivation to consider these approaches for approximating the PMF and analyzing these approximations.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander J. Pak
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander E. P. Durumeric
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy D. Loose
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, Institute for Biophysical
Dynamics, and James Franck Institute, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Rondina GG, Böhm MC, Müller-Plathe F. Predicting the Mobility Increase of Coarse-Grained Polymer Models from Excess Entropy Differences. J Chem Theory Comput 2020; 16:1431-1447. [DOI: 10.1021/acs.jctc.9b01088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gustavo G. Rondina
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Michael C. Böhm
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
8
|
Abstract
This article gives an overview of excess-entropy scaling, the 1977 discovery by Rosenfeld that entropy determines properties of liquids like viscosity, diffusion constant, and heat conductivity. We give examples from computer simulations confirming this intriguing connection between dynamics and thermodynamics, counterexamples, and experimental validations. Recent uses in application-related contexts are reviewed, and theories proposed for the origin of excess-entropy scaling are briefly summarized. It is shown that if two thermodynamic state points of a liquid have the same microscopic dynamics, they must have the same excess entropy. In this case, the potential-energy function exhibits a symmetry termed hidden scale invariance, stating that the ordering of the potential energies of configurations is maintained if these are scaled uniformly to a different density. This property leads to the isomorph theory, which provides a general framework for excess-entropy scaling and illuminates, in particular, why this does not apply rigorously and universally. It remains an open question whether all aspects of excess-entropy scaling and related regularities reflect hidden scale invariance in one form or other.
Collapse
Affiliation(s)
- Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
9
|
Shrivastav G, Agarwal M, Chakravarty C, Kashyap HK. Thermodynamic regimes over which homologous alkane fluids can be treated as simple liquids. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.01.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Concentration-dependent structure and dynamics of aqueous LiCl solutions: A molecular dynamics study. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Olsen AE, Dyre JC, Schrøder TB. Communication: Pseudoisomorphs in liquids with intramolecular degrees of freedom. J Chem Phys 2016; 145:241103. [DOI: 10.1063/1.4972860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andreas Elmerdahl Olsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C. Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B. Schrøder
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
12
|
Pasturel A, Jakse N. Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:485101. [PMID: 27690250 DOI: 10.1088/0953-8984/28/48/485101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is becoming common practice to consider that the Stokes-Einstein relation D/T~ η -1 usually works for liquids above their melting temperatures although there is also experimental evidence for its failure. Here we investigate numerically this commonly-invoked assumption for simple liquid metals as well as for their liquid alloys. Using ab initio molecular dynamics simulations we show how entropy scaling relationships developed by Rosenfeld can be used to predict the conditions for the validity of the Stokes-Einstein relation in the liquid phase. Specifically, we demonstrate the Stokes-Einstein relation may break down in the liquid phase of some liquid alloys mainly due to the presence of local structural ordering as evidenced in their partial two-body excess entropies. Our findings shed new light on the understanding of transport properties of liquid materials and will trigger more experimental and theoretical studies since excess entropy and its two-body approximation are readily obtainable from standard experiments and simulations.
Collapse
Affiliation(s)
- A Pasturel
- Sciences et Ingénierie des Matériaux et Procédés (SIMAP), UMR CNRS 5266, Grenoble Université Alpes, BP 75, 38402 Saint-Martin d'Hères Cedex, France
| | | |
Collapse
|
13
|
Yadav HOS, Shrivastav G, Agarwal M, Chakravarty C. Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly. J Chem Phys 2016; 144:244901. [DOI: 10.1063/1.4954325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
14
|
Prasad S, Chakravarty C. Tuning the tetrahedrality of the hydrogen-bonded network of water: Comparison of the effects of pressure and added salts. J Chem Phys 2016; 144:234509. [DOI: 10.1063/1.4953796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Veldhorst AA, Dyre JC, Schrøder TB. Scaling of the dynamics of flexible Lennard-Jones chains: Effects of harmonic bonds. J Chem Phys 2016; 143:194503. [PMID: 26590538 DOI: 10.1063/1.4934973] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The previous paper [A. A. Veldhorst et al., J. Chem. Phys. 141, 054904 (2014)] demonstrated that the isomorph theory explains the scaling properties of a liquid of flexible chains consisting of ten Lennard-Jones particles connected by rigid bonds. We here investigate the same model with harmonic bonds. The introduction of harmonic bonds almost completely destroys the correlations in the equilibrium fluctuations of the potential energy and the virial. According to the isomorph theory, if these correlations are strong a system has isomorphs, curves in the phase diagram along which structure, dynamics, and the excess entropy are invariant. The Lennard-Jones chain liquid with harmonic bonds does have curves in the phase diagram along which the structure and dynamics are invariant. The excess entropy is not invariant on these curves, which we refer to as "pseudoisomorphs." In particular, this means that Rosenfeld's excess-entropy scaling (the dynamics being a function of excess entropy only) does not apply for the Lennard-Jones chain with harmonic bonds.
Collapse
Affiliation(s)
- Arno A Veldhorst
- Department of Sciences, DNRF Center "Glass and Time," IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Department of Sciences, DNRF Center "Glass and Time," IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B Schrøder
- Department of Sciences, DNRF Center "Glass and Time," IMFUFA, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
16
|
Voyiatzis E, Böhm MC. How does the entropy of ternary polymer–solvent–cosolvent mixtures depend on the molar solvent fraction? RSC Adv 2016. [DOI: 10.1039/c6ra23340f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A decomposition of the entropy of dilute ternary polymer–solvent–cosolvent systems into pair terms is proposed.
Collapse
Affiliation(s)
- Evangelos Voyiatzis
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
- Faculty of Physics
| | - Michael C. Böhm
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- 64287 Darmstadt
- Germany
| |
Collapse
|
17
|
Veldhorst AA, Dyre JC, Schrøder TB. Scaling of the dynamics of flexible Lennard-Jones chains. J Chem Phys 2015; 141:054904. [PMID: 25106610 DOI: 10.1063/1.4888564] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The isomorph theory provides an explanation for the so-called power law density scaling which has been observed in many molecular and polymeric glass formers, both experimentally and in simulations. Power law density scaling (relaxation times and transport coefficients being functions of ρ(γ(S)), where ρ is density, T is temperature, and γ(S) is a material specific scaling exponent) is an approximation to a more general scaling predicted by the isomorph theory. Furthermore, the isomorph theory provides an explanation for Rosenfeld scaling (relaxation times and transport coefficients being functions of excess entropy) which has been observed in simulations of both molecular and polymeric systems. Doing molecular dynamics simulations of flexible Lennard-Jones chains (LJC) with rigid bonds, we here provide the first detailed test of the isomorph theory applied to flexible chain molecules. We confirm the existence of isomorphs, which are curves in the phase diagram along which the dynamics is invariant in the appropriate reduced units. This holds not only for the relaxation times but also for the full time dependence of the dynamics, including chain specific dynamics such as the end-to-end vector autocorrelation function and the relaxation of the Rouse modes. As predicted by the isomorph theory, jumps between different state points on the same isomorph happen instantaneously without any slow relaxation. Since the LJC is a simple coarse-grained model for alkanes and polymers, our results provide a possible explanation for why power-law density scaling is observed experimentally in alkanes and many polymeric systems. The theory provides an independent method of determining the scaling exponent, which is usually treated as an empirical scaling parameter.
Collapse
Affiliation(s)
- Arno A Veldhorst
- DNRF Centre "Glass and Time", IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- DNRF Centre "Glass and Time", IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Thomas B Schrøder
- DNRF Centre "Glass and Time", IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
18
|
Abstract
Recent developments show that many liquids and solids have an approximate "hidden" scale invariance that implies the existence of lines in the thermodynamic phase diagram, so-called isomorphs, along which structure and dynamics in properly reduced units are invariant to a good approximation. This means that the phase diagram becomes effectively one-dimensional with regard to several physical properties. Liquids and solids with isomorphs include most or all van der Waals bonded systems and metals, as well as weakly ionic or dipolar systems. On the other hand, systems with directional bonding (hydrogen bonds or covalent bonds) or strong Coulomb forces generally do not exhibit hidden scale invariance. The article reviews the theory behind this picture of condensed matter and the evidence for it coming from computer simulations and experiments.
Collapse
Affiliation(s)
- Jeppe C Dyre
- DNRF Center "Glass and Time", IMFUFA, Department of Sciences, Roskilde University , P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
19
|
Prasad S, Chakravarty C. Onset of simple liquid behaviour in modified water models. J Chem Phys 2014; 140:164501. [DOI: 10.1063/1.4870823] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Voyiatzis E, Müller-Plathe F, Böhm MC. Excess entropy scaling for the segmental and global dynamics of polyethylene melts. Phys Chem Chem Phys 2014; 16:24301-11. [DOI: 10.1039/c4cp03559c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains.
Collapse
Affiliation(s)
- Evangelos Voyiatzis
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- D-64287 Darmstadt, Germany
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- D-64287 Darmstadt, Germany
| | - Michael C. Böhm
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces
- Technische Universität Darmstadt
- D-64287 Darmstadt, Germany
| |
Collapse
|