1
|
Zhao B, Zhang X, Bickle MS, Fu S, Li Q, Zhang F. Development of polypeptide-based materials toward messenger RNA delivery. NANOSCALE 2024; 16:2250-2264. [PMID: 38213302 DOI: 10.1039/d3nr05635j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Messenger RNA (mRNA)-based therapeutic agents have demonstrated significant potential in recent times, particularly in the context of the COVID-19 pandemic outbreak. As a promising prophylactic and therapeutic strategy, polypeptide-based mRNA delivery systems attract significant interest because of their low cost, simple preparation, tuneable sizes and morphology, convenient large-scale production, biocompatibility, and biodegradability. In this review, we begin with a brief discussion of the synthesis of polypeptides, followed by a review of commonly used polypeptides in mRNA delivery, including classical polypeptides and cell-penetrating peptides. Then, the challenges against mRNA delivery, including extracellular, intracellular, and clinical barriers, are discussed in detail. Finally, we highlight a range of strategies for polypeptide-based mRNA delivery, offering valuable insights into the advancement of polypeptide-based mRNA carrier development.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Xiao Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Molly S Bickle
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Shiwei Fu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Qingchun Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
| | - Fuwu Zhang
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, USA.
- The Dr John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
2
|
Wang J, Wang C, Ge Y, Sun Y, Wang D, Xu H. Self‐assembly
of hairpin peptides mediated by Cu(
II
) ion: Effect of amino acid sequence. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Chengdong Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences Qingdao China
| | - Yanqing Ge
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Centre for Bioengineering and Biotechnology China University of Petroleum (East China) Qingdao China
| |
Collapse
|
3
|
Blocher McTigue WC, Voke E, Chang LW, Perry SL. The benefit of poor mixing: kinetics of coacervation. Phys Chem Chem Phys 2020; 22:20643-20657. [PMID: 32895678 DOI: 10.1039/d0cp03224g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Complex coacervation has become a prominent area of research in the fields of food science, personal care, drug stabilization, and more. However, little has been reported on the kinetics of assembly of coacervation itself. Here, we describe a simple, low-cost way of looking at the kinetics of coacervation by creating poorly mixed samples. In particular, we examine how polymer chain length, the patterning and symmetry of charges on the oppositely charged polyelectrolytes, and the presence of salt and a zwitterionic buffer affect the kinetics of complex coacervation. Our results suggest an interesting relationship between the time for equilibration and the order of addition of polymers with asymmetric patterns of charge. Furthermore, we demonstrated that increasing polymer chain length resulted in a non-monotonic trend in the sample equilibration times as a result of opposing factors such as excluded volume and diffusion. We also observed differences in the rate of sample equilibration based on the presence of a neutral, zwitterionic buffer, as well as the presence and identity of added salt, consistent with previous reports of salt-specific effects on the rheology of complex coacervates. While not a replacement for more advanced characterization strategies, this turbidity-based method could serve as a screening tool to identify interesting and unique phenomena for further study.
Collapse
Affiliation(s)
| | - Elizabeth Voke
- Department of Chemical Engineering, University of Massachusetts Amherst, USA.
| | - Li-Wei Chang
- Department of Chemical Engineering, University of Massachusetts Amherst, USA.
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, USA.
| |
Collapse
|
4
|
Yin D, Wen H, Wu G, Li S, Liu C, Lu H, Liang D. PEGylated gene carriers in serum under shear flow. SOFT MATTER 2020; 16:2301-2310. [PMID: 32052004 DOI: 10.1039/c9sm02397f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The behaviour of drug/gene carriers in the blood stream under shear is still a puzzle. In this work, using the complexes formed by 21 bp DNA and poly(ethylene glycol)-b-poly(l-lysine) (PEG-PLL) of varying PEG lengths, we studied the dynamic behaviour of the complexes in the presence of fetal bovine serum (FBS) and under flow at different shear rates, a condition mimicking the internal physical environment of blood vessels. The PEG5k-PLL/DNA complex possesses a dense DNA/PLL core and a loose PEG5k protecting layer. The PEGylated DNA complexes exhibit multiple responses to external shear in the presence of FBS. The loose PEG5k layer is firstly disturbed at a shear rate below 30 s-1. The exposure of the charged core to the environment results in a secondary aggregation of the complex with FBS. The size of the aggregate is limited to a certain range as the shear rate increases to 50 s-1. The dense DNA/PLL core starts to withstand the shear force as the shear rate reaches 500 s-1. The reorganization of the core to accommodate more serum molecules leads to tertiary aggregation of the complexes. If PEG cannot form a valid layer around the complex, as in PEG2k-PLL/DNA, the complex forms an aggregate even without shear, and the first shear dependent region is missing. If the PEG layer is too stable around the complex, as in PEG10k-PLL/DNA, no tertiary aggregation occurs. The mechanism of shear on the behaviour of delivery particles in serum helps to design gene carriers with high efficacy.
Collapse
Affiliation(s)
- Dongxiao Yin
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Hao Wen
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Shaolu Li
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Chenyang Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Pan W, Yin DX, Jing HR, Chang HJ, Wen H, Liang DH. Core-Corona Structure Formed by Hyaluronic Acid and Poly(L-lysine) via Kinetic Path. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2166-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Marciel AB, Chung EJ, Brettmann BK, Leon L. Bulk and nanoscale polypeptide based polyelectrolyte complexes. Adv Colloid Interface Sci 2017; 239:187-198. [PMID: 27418294 PMCID: PMC5205580 DOI: 10.1016/j.cis.2016.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 11/26/2022]
Abstract
Polyelectrolyte complexes (PECs) formed using polypeptides have great potential for developing new self-assembled materials, in particular for the development of drug and gene delivery vehicles. This review discusses the latest advancements in PECs formed using polypeptides as the polyanion and/or the polycation in both polyelectrolyte complexes that form bulk materials and block copolymer complexes that form nanoscale assemblies such as PEC micelles and other self-assembled structures. We highlight the importance of secondary structure formation between homogeneous polypeptide complexes, which, unlike PECs formed using other polymers, introduces additional intermolecular interactions in the form of hydrogen bonding, which may influence precipitation over coacervation. However, we still include heterogeneous complexes consisting of polypeptides and other polymers such as nucleic acids, sugars, and other synthetic polyelectrolytes. Special attention is given to complexes formed using nucleic acids as polyanions and polypeptides as polycations and their potential for delivery applications.
Collapse
Affiliation(s)
- Amanda B Marciel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Blair K Brettmann
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Lorraine Leon
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
7
|
Pan W, Wen H, Liang D. Enzymatic activity inside a DNA/peptide complex. Phys Chem Chem Phys 2017; 19:22487-22493. [DOI: 10.1039/c7cp04066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dissociation of the DNA/peptide complex is controlled by the enzyme, while only 1/3 of the enzyme is active inside the complex.
Collapse
Affiliation(s)
- Wei Pan
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Bejing 100871
- China
| | - Hao Wen
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Bejing 100871
- China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Bejing 100871
- China
| |
Collapse
|
8
|
Affiliation(s)
| | - Matthew V. Tirrell
- Institute for Molecular Engineering; The University of Chicago; Chicago IL USA
| |
Collapse
|
9
|
Wen H, Zhou J, Pan W, Li Z, Liang D. Assembly and Reassembly of Polyelectrolyte Complex Formed by Poly(ethylene glycol)-block-poly(glutamate sodium) and S5R4 Peptide. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Wen
- Beijing National
Laboratory for Molecular Sciences and the Key Laboratory of Polymer
Chemistry and Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China 100871
| | - Jihan Zhou
- Beijing National
Laboratory for Molecular Sciences and the Key Laboratory of Polymer
Chemistry and Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China 100871
| | - Wei Pan
- Beijing National
Laboratory for Molecular Sciences and the Key Laboratory of Polymer
Chemistry and Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China 100871
| | - Zhibo Li
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China 266061
| | - Dehai Liang
- Beijing National
Laboratory for Molecular Sciences and the Key Laboratory of Polymer
Chemistry and Physics of Ministry of Education, College of Chemistry
and Molecular Engineering, Peking University, Beijing, China 100871
| |
Collapse
|
10
|
Zhou J, Li D, Wen H, Zheng S, Su C, Yi F, Wang J, Liang Z, Tang T, Zhou D, Zhang LH, Liang D, Du Q. Inter-molecular β-sheet structure facilitates lung-targeting siRNA delivery. Sci Rep 2016; 6:22731. [PMID: 26955887 PMCID: PMC4783658 DOI: 10.1038/srep22731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
Size-dependent passive targeting based on the characteristics of tissues is a basic mechanism of drug delivery. While the nanometer-sized particles are efficiently captured by the liver and spleen, the micron-sized particles are most likely entrapped within the lung owing to its unique capillary structure and physiological features. To exploit this property in lung-targeting siRNA delivery, we designed and studied a multi-domain peptide named K-β, which was able to form inter-molecular β-sheet structures. Results showed that K-β peptides and siRNAs formed stable complex particles of 60 nm when mixed together. A critical property of such particles was that, after being intravenously injected into mice, they further associated into loose and micron-sized aggregates, and thus effectively entrapped within the capillaries of the lung, leading to a passive accumulation and gene-silencing. The large size aggregates can dissociate or break down by the shear stress generated by blood flow, alleviating the pulmonary embolism. Besides the lung, siRNA enrichment and targeted gene silencing were also observed in the liver. This drug delivery strategy, together with the low toxicity, biodegradability, and programmability of peptide carriers, show great potentials in vivo applications.
Collapse
Affiliation(s)
- Jihan Zhou
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Dong Li
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Hao Wen
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Shuquan Zheng
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Cuicui Su
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Fan Yi
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Jue Wang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zicai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Tao Tang
- Department of Obstetrics & Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Demin Zhou
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Li-He Zhang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Quan Du
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences; Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|