1
|
Rosenthal MR, Ng CL. High-content imaging as a tool to quantify and characterize malaria parasites. CELL REPORTS METHODS 2023; 3:100516. [PMID: 37533635 PMCID: PMC10391350 DOI: 10.1016/j.crmeth.2023.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/18/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023]
Abstract
In 2021, Plasmodium falciparum was responsible for 619,000 reported malaria-related deaths. Resistance has been detected to every clinically used antimalarial, urging the development of novel antimalarials with uncompromised mechanisms of actions. High-content imaging allows researchers to collect and quantify numerous phenotypic properties at the single-cell level, and machine learning-based approaches enable automated classification and clustering of cell populations. By combining these technologies, we developed a method capable of robustly differentiating and quantifying P. falciparum asexual blood stages. These phenotypic properties also allow for the quantification of changes in parasite morphology. Here, we demonstrate that our analysis can be used to quantify schizont nuclei, a phenotype that previously had to be enumerated manually. By monitoring stage progression and quantifying parasite phenotypes, our method can discern stage specificity of new compounds, thus providing insight into the compound's mode of action.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Caroline L. Ng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biology, University of Omaha, Omaha, NE 68182, USA
| |
Collapse
|
2
|
Keroack CD, Elsworth B, Tennessen JA, Paul AS, Hua R, Ramirez-Ramirez L, Ye S, Moreira CM, Meyers MJ, Zarringhalam K, Duraisingh MT. Comparative chemical genomics in Babesia species identifies the alkaline phosphatase phoD as a novel determinant of resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544849. [PMID: 37398106 PMCID: PMC10312741 DOI: 10.1101/2023.06.13.544849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites, coupled with the lack of potent inhibitors necessitates the discovery of novel conserved druggable targets for the generation of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of novel and conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of evolutionarily-related Babesia spp. ( B. bovis and B. divergens ). We identified a potent antibabesial inhibitor from the Malaria Box, MMV019266. We were able to select for resistance to this compound in two species of Babesia, achieving 10-fold or greater resistance after ten weeks of intermittent selection. After sequencing of multiple independently derived lines in the two species, we identified mutations in a single conserved gene in both species: a membrane-bound metallodependent phosphatase (putatively named PhoD). In both species, the mutations were found in the phoD-like phosphatase domain, proximal to the predicted ligand binding site. Using reverse genetics, we validated that mutations in PhoD confer resistance to MMV019266. We have also demonstrated that PhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of PhoD alter the sensitivity to MMV019266 in the parasite: overexpression of PhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting PhoD is a resistance mechanism. Together, we have generated a robust pipeline for identification of resistance loci, and identified PhoD as a novel determinant of resistance in Babesia species. Highlights Use of two species for in vitro evolution identifies a high confidence locus associated with resistance Resistance mutation in phoD was validated using reverse genetics in B. divergens Perturbation of phoD using function genetics results in changes in the level of resistance to MMV019266Epitope tagging reveals localization to the ER/apicoplast, a conserved localization with a similar protein in diatoms Together, phoD is a novel resistance determinant in multiple Babesia spp .
Collapse
|
3
|
Pal K, Raza MK, Legac J, Rahman A, Manzoor S, Bhattacharjee S, Rosenthal PJ, Hoda N. Identification, in-vitro anti-plasmodial assessment and docking studies of series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide molecular hybrids as potential antimalarial agents. Eur J Med Chem 2023; 248:115055. [PMID: 36621136 DOI: 10.1016/j.ejmech.2022.115055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
Malaria is the most lethal parasitic infections in the world. To address the emergence of drug resistance to current antimalarials, here we report the design and synthesis of new series of tetrahydrobenzothieno[2,3-d]pyrimidine-acetamide hybrids by using multicomponent Petasis reaction as the key step and evaluated in vitro for their antimalarial effectiveness. The structure of all the compounds were confirmed by NMR Spectroscopy and mass spectrometry. Most of the compounds showed potent antimalarial activity against both CQ-sensitive (3D7) and CQ-resistant (W2) strains. A8, A5, and A4 are the most potent compounds that showed excellent anti-plasmodial activity against CQ-resistant strain in the nanomolar range with IC50 values 55.7 nM, 60.8 nM, and 68.0 nM respectively. To assess the parasite selectivity, the in vitro cytotoxicity of selected compounds (A3-A6, A8) was tested against HPL1D cells, demonstrating low cytotoxicity with high selectivity indices. Furthermore, these compounds were also evaluated on two additional human cancerous cell lines (A549 and MDA-MB-231), confirming their anticancer effectiveness. The in vitro hemolysis assay also showed the non-toxicity of these compounds on normal uninfected human RBCs. The interaction of these hybrids was also investigated by the molecular docking studies in the binding site of wild type Pf-DHFR-TS and quadruple mutant Pf-DHFR-TS. The in silico ADMET profiling also revealed promising physicochemical and pharmacokinetic parameters for the most active hybrids, which provide strong vision for further development of potential antimalarials.
Collapse
Affiliation(s)
- Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jenny Legac
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Abdur Rahman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Computer-Aided and AILDE Approaches to Design Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. Int J Mol Sci 2022; 23:ijms23147822. [PMID: 35887168 PMCID: PMC9320391 DOI: 10.3390/ijms23147822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/19/2023] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a pivotal enzyme in tocopherol and plastoquinone synthesis and a potential target for novel herbicides. Thirty-five pyridine derivatives were selected to establish a Topomer comparative molecular field analysis (Topomer CoMFA) model to obtain correlation information between HPPD inhibitory activity and the molecular structure. A credible and predictive Topomer CoMFA model was established by "split in two R-groups" cutting methods and fragment combinations (q2 = 0.703, r2 = 0.957, ONC = 6). The established model was used to screen out more active compounds and was optimized through the auto in silico ligand directing evolution (AILDE) platform to obtain potential HPPD inhibitors. Twenty-two new compounds with theoretically good HPPD inhibition were obtained by combining the high-activity contribution substituents in the existing molecules with the R-group search via Topomer search. Molecular docking results revealed that most of the 22 fresh compounds could form stable π-π interactions. The absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction and drug-like properties made 9 compounds potential HPPD inhibitors. Molecular dynamics simulation indicated that Compounds Y12 and Y14 showed good root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values and stability. According to the AILDE online verification, 5 new compounds with potential HPPD inhibition were discovered as HPPD inhibitor candidates. This study provides beneficial insights for subsequent HPPD inhibitor design.
Collapse
|
5
|
Lagardère P, Fersing C, Masurier N, Lisowski V. Thienopyrimidine: A Promising Scaffold to Access Anti-Infective Agents. Pharmaceuticals (Basel) 2021; 15:35. [PMID: 35056092 PMCID: PMC8780093 DOI: 10.3390/ph15010035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Thienopyrimidines are widely represented in the literature, mainly due to their structural relationship with purine base such as adenine and guanine. This current review presents three isomers-thieno[2,3-d]pyrimidines, thieno[3,2-d]pyrimidines and thieno[3,4-d]pyrimidines-and their anti-infective properties. Broad-spectrum thienopyrimidines with biological properties such as antibacterial, antifungal, antiparasitic and antiviral inspired us to analyze and compile their structure-activity relationship (SAR) and classify their synthetic pathways. This review explains the main access route to synthesize thienopyrimidines from thiophene derivatives or from pyrimidine analogs. In addition, SAR study and promising anti-infective activity of these scaffolds are summarized in figures and explanatory diagrams. Ligand-receptor interactions were modeled when the biological target was identified and the crystal structure was solved.
Collapse
Affiliation(s)
- Prisca Lagardère
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
| | - Cyril Fersing
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
- Nuclear Medicine Department, Montpellier Cancer Institute (ICM), University of Montpellier, 208 Avenue des Apothicaires, CEDEX 5, 34298 Montpellier, France
| | - Nicolas Masurier
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
| | - Vincent Lisowski
- IBMM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; (P.L.); (C.F.); (V.L.)
- Department of Pharmacy, Lapeyronie Hospital, CHU Montpellier, 191 Av. du Doyen Gaston Giraud, 34295 Montpellier, France
| |
Collapse
|
6
|
Guo W, Mei W, Liu G, Deng L, Zou X, Zhong Y, Zhuo X, Fan X, Zheng L. Base‐Promoted Three‐Component Cyclization and Coupling Strategy for the Synthesis of Substituted 3‐Aryl‐5‐thio‐1,3,4‐thiadiazole‐2‐thiones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Guo
- Gannan Normal University Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province Economic & Technological Development Zone 341000 Ganzhou CHINA
| | - Weijie Mei
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Gongping Liu
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Ling Deng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoying Zou
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Yumei Zhong
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaoya Zhuo
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Xiaolin Fan
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| | - Lvyin Zheng
- Gannan Normal University Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province CHINA
| |
Collapse
|
7
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Pal K, Raza MK, Legac J, Ataur Rahman M, Manzoor S, Rosenthal PJ, Hoda N. Design, synthesis, crystal structure and anti-plasmodial evaluation of tetrahydrobenzo[4,5]thieno[2,3- d]pyrimidine derivatives. RSC Med Chem 2021; 12:970-981. [PMID: 34223162 DOI: 10.1039/d1md00038a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Effective chemotherapy is essential for controlling malaria. However, resistance of Plasmodium falciparum to existing antimalarial drugs has undermined attempts to control and eventually eradicate the disease. In this study, a series of 2-((substituted)(4-(5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-yl)piperazin-1-yl)methyl)-6-substitutedphenol derivatives were prepared using Petasis reaction with a view to evaluate their activities against P. falciparum. The development of synthesized compounds (F1-F16) was justified through the study of H1 NMR, C13 NMR, mass spectra. Compound F1 and F2 were also structurally validated by single crystal X-ray diffraction analysis. All the compounds were evaluated for their in vitro antiplasmodial assessment against the W2 strain (chloroquine-resistant) of P. falciparum IC50 values ranging from 0.74-6.4 μM. Two compounds, F4 and F16 exhibited significant activity against W2 strain of P. falciparum with 0.75 and 0.74 μM. The compounds (F3-F6 and F16) were also evaluated for in vitro cytotoxicity against two cancer cell lines, human lung (A549) and cervical (HeLa) cells, which demonstrated non-cytotoxicity with significant selectivity indices. In addition, in silico ADME profiling and physiochemical properties predicts drug-like properties with a very low toxic effect. Thus, all these results indicate that tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine scaffolds may serve as models for the development of antimalarial agents.
Collapse
Affiliation(s)
- Kavita Pal
- Drug Design and Synthesis Laboratory, Department of chemistry, Jamia Millia Islamia New Delhi 110025 India +91 11 26985507 +91 9910200655
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012 India
| | - Jenny Legac
- Department of Medicine, University of California San Francisco CA USA
| | - Md Ataur Rahman
- Department of Chemistry and Chemical Biology, Harvard University Cambridge Massachusetts 02138 USA
| | - Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of chemistry, Jamia Millia Islamia New Delhi 110025 India +91 11 26985507 +91 9910200655
| | | | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of chemistry, Jamia Millia Islamia New Delhi 110025 India +91 11 26985507 +91 9910200655
| |
Collapse
|
9
|
Evaluation of 1,1-cyclopropylidene as a thioether isostere in the 4-thio-thienopyrimidine (TTP) series of antimalarials. Bioorg Med Chem 2020; 28:115758. [PMID: 33007559 DOI: 10.1016/j.bmc.2020.115758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/19/2023]
Abstract
The 4-(heteroarylthio)thieno[2,3-d]pyrimidine (TTP) series of antimalarials, represented by 1 and 17, potently inhibit proliferation of the 3D7 strain of P. falciparum (EC50 70-100 nM), but suffer from oxidative metabolism. The 1,1-cyclopropylidene isosteres 6 and 16 were designed to obviate this drawback. They were prepared by a short route that features a combined Peterson methylenation / cyclopropanation transformation of, e. g., ketone 7. Isosteres 6 and 16 possess significantly attenuated antimalarial potency relative to parents 1 and 17. This outcome can be rationalized based on the increased out-of-plane steric demands of the latter two. In support of this hypothesis, the relatively flat ketone 7 retains some of the potency of 1, even though it appears to be a comparatively inferior mimic with respect to electronics and bond lengths and angles. We also demonstrate crystallographically and computationally an apparent increase in the strength of the intramolecular sulfur hole interaction of 1 upon protonation.
Collapse
|
10
|
Triloknadh S, Venkata Rao C, Nagaraju K, Hari Krishna N, Venkata Ramaiah C, Rajendra W, Trinath D, Suneetha Y. Design, synthesis, neuroprotective, antibacterial activities and docking studies of novel thieno[2,3-d]pyrimidine-alkyne Mannich base and oxadiazole hybrids. Bioorg Med Chem Lett 2018; 28:1663-1669. [PMID: 29602681 DOI: 10.1016/j.bmcl.2018.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
Abstract
A series of thieno[2,3-d]pyrimidine alkyne Mannich base derivatives (7a-e, 8a-e) and thieno[2,3-d]pyrimidine 1,3,4-oxadiazole derivatives (9a-e, 10a-e) have been synthesized and evaluated for their neuroprotective and neurotoxicity activities where 9a, 10d displayed good neuroprotection 10.6 and 11.88 µg/mL respectively against the H2O2 induced cell death at the EC50 values and 9b, 9d showed respective toxic effects on PC12 cells at CC50 86.12 and 94.16 µg/mL. Compounds 9a, 9e, 10a and 10b showed strong antibacterial activity against two gram positive (S. aureus, B. subtilis) and two gram-negative strains (E. coli, P. aeruginosa) and showed good binding affinities with C(30) carotenoid dehydrosqualene synthase, Gyrase A and LpxC. This is the first report for the demonstration of thieno[2,3-d] pyrimidine derivatives as promising neuroprotective agents against H2O2 induced neurotoxicity on PC12 cells.
Collapse
Affiliation(s)
- Settypalli Triloknadh
- Department of Chemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Chunduri Venkata Rao
- Department of Chemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India.
| | - Kerru Nagaraju
- Department of Chemistry, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | | | | | - Wudayagiri Rajendra
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Daggupati Trinath
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| | - Yeguvapalli Suneetha
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, Andhra Pradesh, India
| |
Collapse
|
11
|
Barrows RD, Blacklock KM, Rablen PR, Khare SD, Knapp S. Computational assessment of thioether isosteres. J Mol Graph Model 2018; 80:282-292. [PMID: 29414047 DOI: 10.1016/j.jmgm.2018.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
Replacement of the sulfur atom in biologically active diaryl and heteroaryl thioethers (Ar-S-Ar', HAr-S-Ar, and HAr-S-HAr') with any of several one-atom or two-atom linkers can be expected to reduce the susceptibility of the analogue to metabolic oxidation, a well-documented problem for thioethers intended for medicinal chemistry applications. Ab initio calculations indicate how well various proposed thioether isosteric groups, including some new and unusual ones, may perform structurally and electronically in replacing the bridging sulfur atom. Four of these are calculationally evaluated as proposed substructures in Axitinib analogues. The predicted binding behavior of the latter within two different previously crystallographically characterized protein-Axitinib binding sites (VEGFR2 kinase and ABL1 T315I gatekeeper mutant kinase), and an assessment of their suitability and anticipated shortcomings, are presented.
Collapse
Affiliation(s)
- Robert D Barrows
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA
| | - Kristin M Blacklock
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA
| | - Paul R Rablen
- Department of Chemistry & Biochemistry, Swarthmore College, 500 College Ave., Swarthmore, PA 19081 USA
| | - Sagar D Khare
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA
| | - Spencer Knapp
- Department of Chemistry & Chemical Biology, Rutgers The State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854 USA.
| |
Collapse
|
12
|
Yang DS, Wang J, Gao P, Bai ZJ, Duan DZ, Fan MJ. KI-catalyzed oxidative cyclization of α-keto acids and 2-hydrazinopyridines: efficient one-pot synthesis of 1,2,4-triazolo[4,3-a]pyridines. RSC Adv 2018; 8:32597-32600. [PMID: 35547701 PMCID: PMC9086216 DOI: 10.1039/c8ra06215c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
A one-pot approach to 1,2,4-triazolo[4,3-a]pyridines via KI-catalyzed oxidative cyclization was developed with good economical and environmental advantages.
Collapse
Affiliation(s)
- De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Juan Wang
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Peng Gao
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Zi-Jing Bai
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Dong-Zhu Duan
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Ming-Jin Fan
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| |
Collapse
|
13
|
Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother 2017; 61:AAC.00379-17. [PMID: 28674055 PMCID: PMC5571359 DOI: 10.1128/aac.00379-17] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/19/2017] [Indexed: 01/19/2023] Open
Abstract
Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research.
Collapse
|
14
|
Weidner T, Lucantoni L, Nasereddin A, Preu L, Jones PG, Dzikowski R, Avery VM, Kunick C. Antiplasmodial dihetarylthioethers target the coenzyme A synthesis pathway in Plasmodium falciparum erythrocytic stages. Malar J 2017; 16:192. [PMID: 28502250 PMCID: PMC5430599 DOI: 10.1186/s12936-017-1839-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/26/2017] [Indexed: 03/28/2023] Open
Abstract
Background Malaria is a widespread infectious disease that threatens a large proportion of the population in tropical and subtropical areas. Given the emerging resistance against the current standard anti-malaria chemotherapeutics, the development of alternative drugs is urgently needed. New anti-malarials representing chemotypes unrelated to currently used drugs have an increased potential for displaying novel mechanisms of action and thus exhibit low risk of cross-resistance against established drugs. Results Phenotypic screening of a small library (32 kinase-inhibitor analogs) against Plasmodium falciparum NF54-luc asexual erythrocytic stage parasites identified a diarylthioether structurally unrelated to registered drugs. Hit expansion led to a series in which the most potent congener displayed nanomolar antiparasitic activity (IC50 = 39 nM, 3D7 strain). Structure–activity relationship analysis revealed a thieno[2,3-d]pyrimidine on one side of the thioether linkage as a prerequisite for antiplasmodial activity. Within the series, the oxazole derivative KuWei173 showed high potency (IC50 = 75 nM; 3D7 strain), good solubility in aqueous solvents (1.33 mM), and >100-fold selectivity toward human cell lines. Rescue experiments identified inhibition of the plasmodial coenzyme A synthesis as a possible mode of action for this compound class. Conclusions The class of antiplasmodial bishetarylthioethers reported here has been shown to interfere with plasmodial coenzyme A synthesis, a mechanism of action not yet exploited for registered anti-malarial drugs. The oxazole congener KuWei173 displays double-digit nanomolar antiplasmodial activity, selectivity against human cell lines, high drug likeness, and thus represents a promising chemical starting point for further drug development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1839-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Weidner
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, QLD, Australia
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Peter G Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, QLD, Australia
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany. .,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106, Braunschweig, Germany.
| |
Collapse
|
15
|
Weidner T, Nasereddin A, Preu L, Grünefeld J, Dzikowski R, Kunick C. Novel 2-Phenoxyanilide Congeners Derived from a Hit Structure of the TCAMS: Synthesis and Evaluation of Their in Vitro Activity against Plasmodium falciparum. Molecules 2016; 21:molecules21020223. [PMID: 26901174 PMCID: PMC6272959 DOI: 10.3390/molecules21020223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 01/19/2023] Open
Abstract
The Tres Cantos Antimalarial Compound Set (TCAMS) is a publicly available compound library which contains 13533 hit structures with confirmed activity against Plasmodium falciparum, the infective agent responsible for malaria tropica. The TCAMS provides a variety of starting points for the investigation of new antiplasmodial drug leads. One of the promising compounds is TCMDC-137332, which seemed to be a good starting point due to its antiplasmodial potency and its predicted physicochemical properties. Several new analogues based on a 2-phenoxyanilide scaffold were synthesized by standard amide coupling reactions and were fully characterized regarding their identity and purity by spectroscopic and chromatographic methods. Furthermore, the results of the biological evaluation of all congeners against Plasmodium falciparum NF54 strains are presented. The findings of our in vitro screening could not confirm the presumed nanomolar antiplasmodial activity of TCMDC-137332 and its derivatives.
Collapse
Affiliation(s)
- Thomas Weidner
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
| | - Abed Nasereddin
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
| | - Johann Grünefeld
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, IMRIC, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
| |
Collapse
|
16
|
Selective inhibitors of Plasmodium falciparum glycogen synthase-3 (PfGSK-3): New antimalarial agents? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1644-9. [PMID: 25861860 DOI: 10.1016/j.bbapap.2015.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/25/2015] [Indexed: 01/19/2023]
Abstract
Plasmodium falciparum glycogen synthase kinase-3 (PfGSK-3) is one of the eukaryotic protein kinases that were identified as essential for the parasite causing malaria tropica. Although the physiological functions of PfGSK-3 are still unknown, it had been suggested as a putative target for novel antimalarial drugs. The high structural similarity of PfGSK-3 and its human orthologue HsGSK-3 makes the development of selective PfGSK-3 inhibitors a challenging task. Actually, established GSK-3 inhibitors are either unselective or are more potent for inhibition of the mammalian GSK-3. A high throughput screening campaign identified thieno[2,3-b]pyridines as a new class of PfGSK-3 inhibitors. Systematic variation of the substitution pattern at the parent scaffold led to compounds which selectively inhibited the plasmodial enzyme. These compounds also exhibited activity against erythrocyte stages of the parasites. A hypothetical explanation for the selectivity of the new antimalarial compounds was enunciated based on the results of docking a selective inhibitor into a PfGSK-3 homology model and by comparison of the results with an X-ray structure of HsGSK-3 co-crystallized with a similar but unselective compound. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
|
17
|
Winkler M, Maynadier M, Wein S, Lespinasse MA, Boumis G, Miele AE, Vial H, Wong YS. Uncovering new structural insights for antimalarial activity from cost-effective aculeatin-like derivatives. Org Biomol Chem 2015; 13:2064-77. [DOI: 10.1039/c4ob02459a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An expedient synthesis of aculeatin-like analogues results in finding PfTrxR as putative cellular target and a promising new antimalarial chemotype.
Collapse
Affiliation(s)
- Matthias Winkler
- Département de Pharmacochimie Moléculaire
- Univ. Grenoble-Alpes
- CNRS UMR 5063
- CNRS ICMG FR 2607
- F-38041 Grenoble Cedex 9
| | - Marjorie Maynadier
- Laboratory Dynamique des Interactions Membranaires Normales et Pathologiques
- UMR5235
- CNRS
- University Montpellier 2
- 34095 Montpellier
| | - Sharon Wein
- Laboratory Dynamique des Interactions Membranaires Normales et Pathologiques
- UMR5235
- CNRS
- University Montpellier 2
- 34095 Montpellier
| | - Marie-Ange Lespinasse
- Département de Pharmacochimie Moléculaire
- Univ. Grenoble-Alpes
- CNRS UMR 5063
- CNRS ICMG FR 2607
- F-38041 Grenoble Cedex 9
| | - Giovanna Boumis
- Department of Biochemical Sciences
- “Sapienza” University of Rome
- 00185 Rome
- Italy
| | - Adriana E. Miele
- Department of Biochemical Sciences
- “Sapienza” University of Rome
- 00185 Rome
- Italy
| | - Henri Vial
- Laboratory Dynamique des Interactions Membranaires Normales et Pathologiques
- UMR5235
- CNRS
- University Montpellier 2
- 34095 Montpellier
| | - Yung-Sing Wong
- Département de Pharmacochimie Moléculaire
- Univ. Grenoble-Alpes
- CNRS UMR 5063
- CNRS ICMG FR 2607
- F-38041 Grenoble Cedex 9
| |
Collapse
|
18
|
Biamonte MA, Wanner J, Le Roch KG. Recent advances in malaria drug discovery. Bioorg Med Chem Lett 2013; 23:2829-43. [PMID: 23587422 PMCID: PMC3762334 DOI: 10.1016/j.bmcl.2013.03.067] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 01/18/2023]
Abstract
This digest covers some of the most relevant progress in malaria drug discovery published between 2010 and 2012. There is an urgent need to develop new antimalarial drugs. Such drugs can target the blood stage of the disease to alleviate the symptoms, the liver stage to prevent relapses, and the transmission stage to protect other humans. The pipeline for the blood stage is becoming robust, but this should not be a source of complacency, as the current therapies set a high standard. Drug discovery efforts directed towards the liver and transmission stages are in their infancy but are receiving increasing attention as targeting these stages could be instrumental in eradicating malaria.
Collapse
Affiliation(s)
- Marco A Biamonte
- Drug Discovery for Tropical Diseases, Suite 230, San Diego, CA 92121, USA.
| | | | | |
Collapse
|