1
|
Huang R, Yu J, Zhang B, Li X, Liu H, Wang Y. Emerging COX-2 inhibitors-based nanotherapeutics for cancer diagnosis and treatment. Biomaterials 2025; 315:122954. [PMID: 39549439 DOI: 10.1016/j.biomaterials.2024.122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Increasing evidence has showed that tumorigenesis is closely linked to inflammation, regulated by multiple signaling pathways. Among these, the cyclooxygenase-2/prostaglandin E2 (COX-2/PGE2) axis plays a crucial role in the progression of both inflammation and cancer. Inhibiting the activity of COX-2 can reduce PGE2 secretion, thereby suppressing tumor growth. Therefore, COX-2 inhibitors are considered potential therapeutic agents for cancers. However, their clinical applications are greatly hindered by poor physicochemical properties and serious adverse effects. Fortunately, the advent of nanotechnology offers solutions to these limitations, enhancing drug delivery efficiency and mitigating adverse effects. Given the considerable progress in this area, it is timely to review emerging COX-2 inhibitors-based nanotherapeutics for cancer diagnosis and therapy. In this review, we first outline the various antineoplastic mechanisms of COX-2 inhibitors, then comprehensively summarize COX-2 inhibitors-based nanotherapeutics for cancer monotherapy, combination therapy, and diagnosis. Finally, we highlight and discuss future perspectives and challenges in the development of COX-2 inhibitors-based nanomedicine.
Collapse
Affiliation(s)
- Ruiping Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jiang Yu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Baoyue Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Xin Li
- Department of Respiratory Medicine, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, PR China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
2
|
Jin Z, Jiang C, Cho EB, Bahraminejad S, Han J, Hao J, Liu J, Yu Y, Jiang J. Suppressing the Inflammatory Prostaglandin Signaling after Thrombotic Stroke Ameliorates Ischemic Brain Injury and Facilitates Poststroke Recovery. ACS Pharmacol Transl Sci 2024; 7:4056-4068. [PMID: 39698290 PMCID: PMC11650728 DOI: 10.1021/acsptsci.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Acute cerebral ischemia is a leading cause of death and disability, particularly among old adults. The narrow therapeutic window and risk of hemorrhagic transformation largely limit patient eligibility for the current treatment. The neuroinflammatory signaling pathway involving the prostaglandin E2 (PGE2) receptor subtype EP2 has now been clarified to contribute to the secondary neurotoxicity following ischemic stroke. We previously demonstrated the feasibility of pharmacologically targeting EP2 for ischemic stroke using an EP2 antagonist in a mouse model of transient middle cerebral artery occlusion. Herein, we evaluated the effects of a second-generation EP2 antagonist with improved potency and selectivity in a mouse model of thrombotic stroke, the most common type of stroke. We found that the EP2 antagonist, when administered hours after an ischemic stroke induced within motor and somatosensory cortices by photoactivation of a light-sensitive dye Rose Bengal, reduced cortical infarction in a dose-dependent manner. EP2 inhibition also improved the poststroke body weight recovery and reduced neurological impairments in locomotor and cognitive functions, revealed by a panel of behavioral tests. These broad benefits support the feasibility of targeting the PGE2/EP2 axis-mediated neuroinflammatory pathway as a novel strategy to alleviate the ischemic brain injury caused by thrombotic occlusion and accelerate poststroke recovery.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Chenyao Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Eun Bee Cho
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Sina Bahraminejad
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Juqian Han
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
3
|
Hou R, Yu Y, Jiang J. Prostaglandin E2 in neuroblastoma: Targeting synthesis or signaling? Biomed Pharmacother 2022; 156:113966. [DOI: 10.1016/j.biopha.2022.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
4
|
Hou R, Yu Y, Sluter MN, Li L, Hao J, Fang J, Yang J, Jiang J. Targeting EP2 receptor with multifaceted mechanisms for high-risk neuroblastoma. Cell Rep 2022; 39:111000. [PMID: 35732130 PMCID: PMC9282716 DOI: 10.1016/j.celrep.2022.111000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/02/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Prostaglandin E2 (PGE2) promotes tumor cell proliferation, migration, and invasion, fostering an inflammation-enriched microenvironment that facilitates angiogenesis and immune evasion. However, the PGE2 receptor subtype (EP1–EP4) involved in neuroblastoma (NB) growth remains elusive. Herein, we show that the EP2 receptor highly correlates with NB aggressiveness and acts as a predominant Gαs-coupled receptor mediating PGE2-initiated cyclic AMP (cAMP) signaling in NB cells with high-risk factors, including 11q deletion and MYCN amplification. Knockout of EP2 in NB cells blocks the development of xenografts, and its conditional knockdown prevents established tumors from progressing. Pharmacological inhibition of EP2 by our recently developed antagonist TG6-129 suppresses the growth of NB xenografts in nude mice and syngeneic allografts in immunocompetent hosts, accompanied by anti-inflammatory, antiangiogenic, and apoptotic effects. This proof-of-concept study suggests that the PGE2/EP2 signaling pathway contributes to NB malignancy and that EP2 inhibition by our drug-like compounds provides a promising strategy to treat this deadly pediatric cancer. Hou et al. discover that prostaglandin receptor EP2 highly correlates with the aggressiveness of neuroblastoma, where it acts as the primary PGE2 receptor mediating cAMP signaling. EP2 deficiency or inhibition suppresses neuroblastoma with high-risk factors including 11q deletion and MYCN amplification, demonstrating EP2 as a promising therapeutic target for neuroblastoma.
Collapse
Affiliation(s)
- Ruida Hou
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lexiao Li
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jiukuan Hao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Jie Fang
- Department of Surgery, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jun Yang
- Department of Surgery, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Pathology and Laboratory Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
5
|
Amaradhi R, Mohammed S, Banik A, Franklin R, Dingledine R, Ganesh T. Second-Generation Prostaglandin Receptor EP2 Antagonist, TG8-260, with High Potency, Selectivity, Oral Bioavailability, and Anti-Inflammatory Properties. ACS Pharmacol Transl Sci 2022; 5:118-133. [PMID: 35187419 PMCID: PMC8844972 DOI: 10.1021/acsptsci.1c00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 02/08/2023]
Abstract
EP2, a G-protein-coupled prostaglandin-E2 receptor, has emerged as a seminal biological target for drug discovery. EP2 receptor activation is typically proinflammatory; therefore, the development of EP2 antagonists to mitigate the severity and disease pathology in a variety of inflammation-driven central nervous system and peripheral disorders would be a novel strategy. We have recently developed a second-generation EP2 antagonist TG8-260 and shown that it reduces hippocampal neuroinflammation and gliosis after pilocarpine-induced status epilepticus in rats. Here, we present details of synthesis, lead optimization on earlier leads that resulted in TG8-260, potency and selectivity evaluations using cAMP-driven time-resolved fluorescence resonance energy-transfer (TR-FRET) assays and [H3]-PGE2-binding assays, absorption, distribution, metabolism, and excretion (ADME), and pharmacokinetics. TG8-260 (2f) showed Schild K B = 13.2 nM (3.6-fold more potent than the previous lead TG8-69 (1c)) and 500-fold selectivity to EP2 against other prostanoid receptors. Pharmacokinetic data indicated that TG8-260 has a plasma half-life of 2.14 h (PO) and excellent oral bioavailability (77.3%). Extensive ADME tests indicated that TG8-260 is a potent inhibitor of CYP450 enzymes. Further, we show that TG8-260 displays antagonistic activity on the induction of EP2 receptor-mediated inflammatory gene expression in microglia BV2-hEP2 cells; therefore, it can serve as a tool for investigating anti-inflammatory pathways in peripheral inflammatory disease animal models.
Collapse
Affiliation(s)
- Radhika Amaradhi
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Shabber Mohammed
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Avijit Banik
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Ronald Franklin
- Franklin
ADME Consult, LLC, Boulder, Colorado 80303, United States
| | - Raymond Dingledine
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States
| | - Thota Ganesh
- Department
of Pharmacology and Chemical Biology, Emory
University School of Medicine, 1510 Clifton Road NE, Atlanta, Georgia 30322, United States,. Tel.: 404-727-7393. Fax: 404-727-0365
| |
Collapse
|
6
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
7
|
Heeney A, Rogers AC, Mohan H, Mc Dermott F, Baird AW, Winter DC. Prostaglandin E 2 receptors and their role in gastrointestinal motility - Potential therapeutic targets. Prostaglandins Other Lipid Mediat 2021; 152:106499. [PMID: 33035691 DOI: 10.1016/j.prostaglandins.2020.106499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) is found throughout the gastrointestinal tract in a diverse variety of functions and roles. The recent discovery of four PGE2 receptor subtypes in intestinal muscle layers as well as in the enteric plexus has led to much interest in the study of their roles in gut motility. Gut dysmotility has been implicated in functional disease processes including irritable bowel syndrome (IBS) and slow transit constipation, and lubiprostone, a PGE2 derivative, has recently been licensed to treat both conditions. The diversity of actions of PGE2 in the intestinal tract is attributed to its differing effects on its downstream receptor types, as well as their varied distribution in the gut, in both health and disease. This review aims to identify the role and distribution of PGE2 receptors in the intestinal tract, and aims to elucidate their distinct role in gut motor function, with a specific focus on functional intestinal pathologies.
Collapse
Affiliation(s)
- A Heeney
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - A C Rogers
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - H Mohan
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - F Mc Dermott
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - A W Baird
- Department of Physiology, College of Life Sciences, University College Dublin, Dublin, Ireland
| | - D C Winter
- Institute for Clinical Outcomes, Research and Education (ICORE), St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
8
|
Hou R, Yu Y, Jiang J. PGE2 receptors in detrusor muscle: Drugging the undruggable for urgency. Biochem Pharmacol 2020; 184:114363. [PMID: 33309520 DOI: 10.1016/j.bcp.2020.114363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
Overactive bladder (OAB) syndrome is a prevalent condition of the lower urinary tract that causes symptoms, such as urinary frequency, urinary urgency, urge incontinence, and nocturia, and disproportionately affects women and the elderly. Current medications for OAB merely provide symptomatic relief with considerable limitations, as they are no more than moderately effective, not to mention that they may cause substantial adverse effects. Identifying novel molecular targets to facilitate the development of new medical therapies with higher efficacy and safety for OAB is in an urgent unmet need. Although the molecular mechanisms underlying the pathophysiology of OAB largely remain elusive and are likely multifactorial, mounting evidence from preclinical studies over the past decade reveals that the pro-inflammatory pathways engaging cyclooxygenases and their prostanoid products, particularly the prostaglandin E2 (PGE2), may play essential roles in the progression of OAB. The goals of this review are to summarize recent progresses in our knowledge on the pathogenic roles of PGE2 in the OAB and to provide new mechanistic insights into the signaling pathways transduced by its four G-protein-coupled receptors (GPCRs), i.e., EP1-EP4, in the overactive detrusor smooth muscle. We also discuss the feasibility of targeting these GPCRs as an emerging strategy to treat OAB with better therapeutic specificity than the current medications.
Collapse
Affiliation(s)
- Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
9
|
Li L, Yu Y, Hou R, Hao J, Jiang J. Inhibiting the PGE 2 Receptor EP2 Mitigates Excitotoxicity and Ischemic Injury. ACS Pharmacol Transl Sci 2020; 3:635-643. [PMID: 32832866 PMCID: PMC7432651 DOI: 10.1021/acsptsci.0c00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 02/08/2023]
Abstract
Prostaglandin E2 (PGE2) is elevated in the brain by excitotoxic insults and, in turn, aggravates the neurotoxicity mainly through acting on its Gαs-coupled receptor EP2, inspiring a therapeutic strategy of targeting this key proinflammatory pathway. Herein, we investigated the effects of several highly potent and selective small-molecule antagonists of the EP2 receptor on neuronal excitotoxicity both in vitro and in vivo. EP2 inhibition by these novel compounds largely decreased the neuronal injury in rat primary hippocampal cultures containing both neurons and glia that were treated with N-methyl-d-aspartate and glycine. Using a bioavailable and brain-permeant analogue TG6-10-1 that we recently developed to target the central EP2 receptor, we found that the poststroke EP2 inhibition in mice decreased the neurological deficits and infarct volumes as well as downregulated the prototypic inflammatory cytokines in the brain after a transient ischemia. Our preclinical findings together reinforced the notion that targeting the EP2 receptor represents an emerging therapeutic strategy to prevent the neuronal injury and inflammation following ischemic stroke.
Collapse
Affiliation(s)
- Lexiao Li
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiukuan Hao
- Department
of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jianxiong Jiang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
10
|
Jiang C, Amaradhi R, Ganesh T, Dingledine R. An Agonist Dependent Allosteric Antagonist of Prostaglandin EP2 Receptors. ACS Chem Neurosci 2020; 11:1436-1446. [PMID: 32324375 DOI: 10.1021/acschemneuro.0c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
All reported prostaglandin EP2 receptor antagonists have a purely orthosteric, competitive mode of action. Herein, we report the characterization of compound 1 (pubchem CID 664888) as the first EP2 antagonist that features a reversible, agonist dependent allosteric mode of action. Compound 1 displayed an unsurmountable inhibition of cAMP accumulation stimulated by different EP2 agonists in C6 glioma cells overexpressing human EP2 (C6G-hEP2). The degree of reduction of agonist potency and efficacy depended on the agonist employed. Negative allosteric modulation was not observed in C6G cells overexpressing human EP4, IP, or DP1 receptors. Moreover, in the murine microglial cell line that stably expresses human EP2 receptors (BV2-hEP2), compound 1 reduced the EP2 agonist-induced elevation of interleukin 6 (IL-6), IL-1β, and hEP2 mRNA levels and increased that of tumor necrosis factor (TNF)-α. Compound 1 was docked into a homology model of hEP2. The predicted binding site on the cytoplasmic receptor surface was similar to that of allosteric inhibitors of the β2-adrenergic, CC chemokine receptor 9 (CCR9), and CC chemokine receptor 2 (CCR2) receptors, which supports the notion of a conserved G-protein-coupled receptor (GPCR) binding pocket for allosteric inhibitors. As the first agonist dependent negative allosteric modulator of EP2 receptor, the structure of this compound may provide a basis for developing improved allosteric modulators of EP2 receptors.
Collapse
Affiliation(s)
- Chunxiang Jiang
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011 Hunan, China
| | - Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Ray Dingledine
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Targeting prostaglandin receptor EP2 for adjunctive treatment of status epilepticus. Pharmacol Ther 2020; 209:107504. [PMID: 32088247 DOI: 10.1016/j.pharmthera.2020.107504] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/27/2020] [Indexed: 02/08/2023]
Abstract
Status epilepticus (SE) is an emergency condition that can cause permanent brain damage or even death when generalized convulsive seizures last longer than 30 min. Controlling the escalation and propagation of seizures quickly and properly is crucial to the prevention of irreversible neuronal death and the associated morbidity. However, SE often becomes refractory to current anticonvulsant medications, which primarily act on ion channels and commonly impose undesired effects. Identifying new molecular targets for SE might lead to adjunctive treatments that can be delivered even when SE is well established. Recent preclinical studies suggest that prostaglandin E2 (PGE2) is an essential inflammatory mediator for the brain injury and morbidity following prolonged seizures via activating four G protein-coupled receptors, namely, EP1-EP4. Given that EP2 receptor activation has been identified as a common culprit in several inflammation-associated neurological conditions, such as strokes and neurodegenerative diseases, selective small-molecule antagonists targeting EP2 have been recently developed and utilized to suppress PGE2-mediated neuroinflammation. Transient inhibition of the EP2 receptor by these bioavailable and brain-permeable antagonists consistently showed marked anti-inflammatory and neuroprotective effects in several rodent models of SE yet had no noticeable effect on seizures per se. This review provides overviews and perspectives of the EP2 receptor as an emerging target for adjunctive treatment, together with the current first-line anti-seizure drugs, to prevent acute brain inflammation and damage following SE.
Collapse
|
12
|
Amaradhi R, Banik A, Mohammed S, Patro V, Rojas A, Wang W, Motati DR, Dingledine R, Ganesh T. Potent, Selective, Water Soluble, Brain-Permeable EP2 Receptor Antagonist for Use in Central Nervous System Disease Models. J Med Chem 2020; 63:1032-1050. [PMID: 31904232 PMCID: PMC7394479 DOI: 10.1021/acs.jmedchem.9b01218] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of prostanoid EP2 receptor exacerbates neuroinflammatory and neurodegenerative pathology in central nervous system diseases such as epilepsy, Alzheimer's disease, and cerebral aneurysms. A selective and brain-permeable EP2 antagonist will be useful to attenuate the inflammatory consequences of EP2 activation and to reduce the severity of these chronic diseases. We recently developed a brain-permeable EP2 antagonist 1 (TG6-10-1), which displayed anti-inflammatory and neuroprotective actions in rodent models of status epilepticus. However, this compound exhibited moderate selectivity to EP2, a short plasma half-life in rodents (1.7 h) and low aqueous solubility (27 μM), limiting its use in animal models of chronic disease. With lead-optimization studies, we have developed several novel EP2 antagonists with improved water solubility, brain penetration, high EP2 potency, and selectivity. These novel inhibitors suppress inflammatory gene expression induced by EP2 receptor activation in a microglial cell line, reinforcing the use of EP2 antagonists as anti-inflammatory agents.
Collapse
Affiliation(s)
- Radhika Amaradhi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd; Atlanta, GA, 30322, United States of America
| | - Avijit Banik
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd; Atlanta, GA, 30322, United States of America
| | - Shabber Mohammed
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd; Atlanta, GA, 30322, United States of America
| | - Vidyavathi Patro
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd; Atlanta, GA, 30322, United States of America
| | - Asheebo Rojas
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd; Atlanta, GA, 30322, United States of America
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd; Atlanta, GA, 30322, United States of America
| | - Damoder Reddy Motati
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd; Atlanta, GA, 30322, United States of America
| | - Ray Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd; Atlanta, GA, 30322, United States of America
| | - Thota Ganesh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd; Atlanta, GA, 30322, United States of America
| |
Collapse
|
13
|
Yu Y, Nguyen DT, Jiang J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog Neurobiol 2019; 183:101682. [PMID: 31454545 DOI: 10.1016/j.pneurobio.2019.101682] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
As the largest family of membrane proteins in the human genome, G protein-coupled receptors (GPCRs) constitute the targets of more than one-third of all modern medicinal drugs. In the central nervous system (CNS), widely distributed GPCRs in neuronal and nonneuronal cells mediate numerous essential physiological functions via regulating neurotransmission at the synapses. Whereas their abnormalities in expression and activity are involved in various neuropathological processes. CNS conditions thus remain highly represented among the indications of GPCR-targeted agents. Mounting evidence from a large number of animal studies suggests that GPCRs play important roles in the regulation of neuronal excitability associated with epilepsy, a common CNS disease afflicting approximately 1-2% of the population. Surprisingly, none of the US Food and Drug Administration (FDA)-approved (>30) antiepileptic drugs (AEDs) suppresses seizures through acting on GPCRs. This disparity raises concerns about the translatability of these preclinical findings and the druggability of GPCRs for seizure disorders. The currently available AEDs intervene seizures predominantly through targeting ion channels and have considerable limitations, as they often cause unbearable adverse effects, fail to control seizures in over 30% of patients, and merely provide symptomatic relief. Thus, identifying novel molecular targets for epilepsy is highly desired. Herein, we focus on recent progresses in understanding the comprehensive roles of several GPCR families in seizure generation and development of acquired epilepsy. We also dissect current hurdles hindering translational efforts in developing GPCRs as antiepileptic and/or antiepileptogenic targets and discuss the counteracting strategies that might lead to a potential cure for this debilitating CNS condition.
Collapse
Affiliation(s)
- Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Davis T Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Drug Discovery Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
14
|
Qiu J, Li Q, Bell KA, Yao X, Du Y, Zhang E, Yu JJ, Yu Y, Shi Z, Jiang J. Small-molecule inhibition of prostaglandin E receptor 2 impairs cyclooxygenase-associated malignant glioma growth. Br J Pharmacol 2019; 176:1680-1699. [PMID: 30761522 DOI: 10.1111/bph.14622] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/18/2018] [Accepted: 01/27/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE An up-regulation of COX-2 in malignant gliomas causes excessive synthesis of PGE2 , which is thought to facilitate brain tumour growth and invasion. However, which downstream PGE2 receptor subtype (i.e., EP1 -EP4 ) directly contributes to COX activity-promoted glioma growth remains largely unknown. EXPERIMENTAL APPROACH Using a publicly available database from The Cancer Genome Atlas research network, we compared the expression of PGE2 signalling-associated genes in human lower grade glioma and glioblastoma multiforme (GBM) samples. The Kaplan-Meier analysis was performed to determine the relationship between their expression and survival probability. A time-resolved FRET method was used to identify the EP subtype that mediates COX-2/PGE2 -initiated cAMP signalling in human GBM cells. Taking advantage of a recently identified novel selective bioavailable brain-permeable small-molecule antagonist, we studied the effect of pharmacological inhibition of the EP2 receptor on glioma cell growth in vitro and in vivo. KEY RESULTS The EP2 receptor is a key Gαs -coupled receptor that mediates COX-2/PGE2 -initiated cAMP signalling pathways in human malignant glioma cells. Inhibition of EP2 receptors reduced COX-2 activity-driven GBM cell proliferation, invasion, and migration and caused cell cycle arrest at G0-G1 and apoptosis of GBM cells. Glioma cell growth in vivo was also substantially decreased by post-treatment with an EP2 antagonist in both subcutaneous and intracranial tumour models. CONCLUSION AND IMPLICATIONS Taken together, our results suggest that PGE2 signalling via the EP2 receptor increases the malignant potential of human glioma cells and might represent a novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,Cell Signal Transduction and Proteomics Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Qianqian Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Katherine A Bell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Xue Yao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Erik Zhang
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jane J Yu
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
15
|
Jiang J, Yu Y, Kinjo ER, Du Y, Nguyen HP, Dingledine R. Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury. Neuropharmacology 2019; 149:149-160. [PMID: 30763657 DOI: 10.1016/j.neuropharm.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Glutamate receptor-mediated excitotoxicity is a common pathogenic process in many neurological conditions including epilepsy. Prolonged seizures induce elevations in extracellular glutamate that contribute to excitotoxic damage, which in turn can trigger chronic neuroinflammatory reactions, leading to secondary damage to the brain. Blocking key inflammatory pathways could prevent such secondary brain injury following the initial excitotoxic insults. Prostaglandin E2 (PGE2) has emerged as an important mediator of neuroinflammation-associated injury, in large part via activating its EP2 receptor subtype. Herein, we investigated the effects of EP2 receptor inhibition on excitotoxicity-associated neuronal inflammation and injury in vivo. Utilizing a bioavailable and brain-permeant compound, TG6-10-1, we found that pharmacological inhibition of EP2 receptor after a one-hour episode of kainate-induced status epilepticus (SE) in mice reduced seizure-promoted functional deficits, cytokine induction, reactive gliosis, blood-brain barrier impairment, and hippocampal damage. Our preclinical findings endorse the feasibility of blocking PGE2/EP2 signaling as an adjunctive strategy to treat prolonged seizures. The promising benefits from EP2 receptor inhibition should also be relevant to other neurological conditions in which excitotoxicity-associated secondary damage to the brain represents a pathogenic event.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA; Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA.
| | - Ying Yu
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erika Reime Kinjo
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Hoang Phuong Nguyen
- Department of Pharmaceutical Sciences and Drug Discovery Center, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ray Dingledine
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
16
|
Selectively targeting prostanoid E (EP) receptor-mediated cell signalling pathways: Implications for lung health and disease. Pulm Pharmacol Ther 2018; 49:75-87. [DOI: 10.1016/j.pupt.2018.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/05/2018] [Accepted: 01/25/2018] [Indexed: 12/18/2022]
|
17
|
Kang X, Qiu J, Li Q, Bell KA, Du Y, Jung DW, Lee JY, Hao J, Jiang J. Cyclooxygenase-2 contributes to oxidopamine-mediated neuronal inflammation and injury via the prostaglandin E2 receptor EP2 subtype. Sci Rep 2017; 7:9459. [PMID: 28842681 PMCID: PMC5573328 DOI: 10.1038/s41598-017-09528-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) triggers pro-inflammatory processes that can aggravate neuronal degeneration and functional impairments in many neurological conditions, mainly via producing prostaglandin E2 (PGE2) that activates four membrane receptors, EP1-EP4. However, which EP receptor is the culprit of COX-2/PGE2-mediated neuronal inflammation and degeneration remains largely unclear and presumably depends on the insult types and responding components. Herein, we demonstrated that COX-2 was induced and showed nuclear translocation in two neuronal cell lines – mouse Neuro-2a and human SH-SY5Y – after treatment with neurotoxin 6-hydroxydopamine (6-OHDA), leading to the biosynthesis of PGE2 and upregulation of pro-inflammatory cytokine interleukin-1β. Inhibiting COX-2 or microsomal prostaglandin E synthase-1 suppressed the 6-OHDA-triggered PGE2 production in these cells. Treatment with PGE2 or EP2 selective agonist butaprost, but not EP4 agonist CAY10598, increased cAMP response in both cell lines. PGE2-initiated cAMP production in these cells was blocked by our recently developed novel selective EP2 antagonists – TG4-155 and TG6-10-1, but not by EP4 selective antagonist GW627368X. The 6-OHDA-promoted cytotoxicity was largely blocked by TG4-155, TG6-10-1 or COX-2 selective inhibitor celecoxib, but not by GW627368X. Our results suggest that PGE2 receptor EP2 is a key mediator of COX-2 activity-initiated cAMP signaling in Neuro-2a and SH-SY5Y cells following 6-OHDA treatment, and contributes to oxidopamine-mediated neurotoxicity.
Collapse
Affiliation(s)
- Xu Kang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Jiange Qiu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA.,Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qianqian Li
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Katherine A Bell
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Da Woon Jung
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jiukuan Hao
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio, 45267-0514, USA.
| |
Collapse
|
18
|
Qiu J, Shi Z, Jiang J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today 2016; 22:148-156. [PMID: 27693715 DOI: 10.1016/j.drudis.2016.09.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/25/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) represents the most prevalent brain primary tumor, yet there is a lack of effective treatment. With current therapies, fewer than 5% of patients with GBM survive more than 5 years after diagnosis. Mounting evidence from epidemiological studies reveals that the regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) is correlated with reduced incidence of GBM, suggesting that cyclooxygenase-2 (COX-2) and its major product within the brain, prostaglandin E2 (PGE2), are involved in the development and progression of GBM. Here, we highlight our current understanding of COX-2 in GBM proliferation, apoptosis, invasion, angiogenesis, and immunosuppression by focusing on recent in vitro and in vivo experimental data. We also discuss the feasibility of COX-2 as a therapeutic target for GBM in light of the latest human studies.
Collapse
Affiliation(s)
- Jiange Qiu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
19
|
Dey A, Kang X, Qiu J, Du Y, Jiang J. Anti-Inflammatory Small Molecules To Treat Seizures and Epilepsy: From Bench to Bedside. Trends Pharmacol Sci 2016; 37:463-484. [PMID: 27062228 DOI: 10.1016/j.tips.2016.03.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
As a crucial component of brain innate immunity, neuroinflammation initially contributes to neuronal tissue repair and maintenance. However, chronic inflammatory processes within the brain and associated blood-brain barrier (BBB) impairment often cause neurotoxicity and hyperexcitability. Mounting evidence points to a mutual facilitation between inflammation and epilepsy, suggesting that blocking the undesired inflammatory signaling within the brain might provide novel strategies to treat seizures and epilepsy. Neuroinflammation is primarily characterized by the upregulation of proinflammatory mediators in epileptogenic foci, among which cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2), interleukin-1β (IL-1β), transforming growth factor-β (TGF-β), toll-like receptor 4 (TLR4), high-mobility group box 1 (HMGB1), and tumor necrosis factor-α (TNF-α) have been extensively studied. Small molecules that specifically target these key proinflammatory perpetrators have been evaluated for antiepileptic and antiepileptogenic effects in animal models. These important preclinical studies provide new insights into the regulation of inflammation in epileptic brains and guide drug discovery efforts aimed at developing novel anti-inflammatory therapies for seizures and epilepsy.
Collapse
Affiliation(s)
- Avijit Dey
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Xu Kang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Jiange Qiu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Yifeng Du
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
20
|
Du Y, Kemper T, Qiu J, Jiang J. Defining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticus. Expert Rev Neurother 2016; 16:123-30. [PMID: 26689339 DOI: 10.1586/14737175.2016.1134322] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is a common feature in nearly all neurological and some psychiatric disorders. Resembling its extraneural counterpart, neuroinflammation can be both beneficial and detrimental depending on the responding molecules. The overall effect of inflammation on disease progression is highly dependent on the extent of inflammatory mediator production and the duration of inflammatory induction. The time-dependent aspect of inflammatory responses suggests that the therapeutic time window for quelling neuroinflammation might vary with molecular targets and injury types. Therefore, it is important to define the therapeutic time window for anti-inflammatory therapeutics, as contradicting or negative results might arise when different treatment regimens are utilized even in similar animal models. Herein, we discuss a few critical factors that can help define the therapeutic time window and optimize treatment paradigm for suppressing the cyclooxygenase-2/prostaglandin-mediated inflammation after status epilepticus. These determinants should also be relevant to other anti-inflammatory therapeutic strategies for the CNS diseases.
Collapse
Affiliation(s)
- Yifeng Du
- a Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , United States
| | - Timothy Kemper
- a Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , United States
| | - Jiange Qiu
- a Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , United States
| | - Jianxiong Jiang
- a Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , United States
| |
Collapse
|
21
|
Fu Y, Yang MS, Jiang J, Ganesh T, Joe E, Dingledine R. EP2 Receptor Signaling Regulates Microglia Death. Mol Pharmacol 2015; 88:161-70. [PMID: 25715797 PMCID: PMC4468645 DOI: 10.1124/mol.115.098202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/20/2015] [Indexed: 11/22/2022] Open
Abstract
The timely resolution of inflammation prevents continued tissue damage after an initial insult. In the brain, the death of activated microglia by apoptosis has been proposed as one mechanism to resolve brain inflammation. How microglial death is regulated after activation is still unclear. We reported that exposure to lipopolysaccharide (LPS) and interleukin (IL)-13 together initially activates and then kills rat microglia in culture by a mechanism dependent on cyclooxygenase-2 (COX-2). We show here that activation of the E prostanoid receptor 2 (EP2, PTGER2) for prostaglandin E2 mediates microglial death induced by LPS/IL-13, and that EP2 activation by agonist alone kills microglia. Both EP2 antagonists and reactive oxygen scavengers block microglial death induced by either LPS/IL-13 or EP2 activation. By contrast, the homeostatic induction of heme oxygenase 1 (Hmox1) by LPS/IL-13 or EP2 activation protects microglia. Both the Hmox1 inducer cobalt protoporphyrin and a compound that releases the Hmox1 product carbon monoxide (CO) attenuated microglial death produced by LPS/IL-13. Whereas CO reduced COX-2 protein expression, EP2 activation increased Hmox1 and COX-2 expression at both the mRNA and protein level. Interestingly, caspase-1 inhibition prevented microglial death induced by either LPS/IL-13 or low (but not high) concentrations of butaprost, suggestive of a predominantly pyroptotic mode of death. Butaprost also caused the expression of activated caspase-3 in microglia, pointing to apoptosis. These results indicate that EP2 activation, which initially promotes microglial activation, later causes delayed death of activated microglia, potentially contributing to the resolution phase of neuroinflammation.
Collapse
Affiliation(s)
- Yujiao Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (Y.F., M.-S.Y., J.J., T.G., R.D.); Neurology Department, Xiangya Hospital, Hunan, China (Y.F.); and Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea (M.-S.Y., E.J.)
| | - Myung-Soon Yang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (Y.F., M.-S.Y., J.J., T.G., R.D.); Neurology Department, Xiangya Hospital, Hunan, China (Y.F.); and Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea (M.-S.Y., E.J.)
| | - Jianxiong Jiang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (Y.F., M.-S.Y., J.J., T.G., R.D.); Neurology Department, Xiangya Hospital, Hunan, China (Y.F.); and Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea (M.-S.Y., E.J.)
| | - Thota Ganesh
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (Y.F., M.-S.Y., J.J., T.G., R.D.); Neurology Department, Xiangya Hospital, Hunan, China (Y.F.); and Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea (M.-S.Y., E.J.)
| | - Eunhye Joe
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (Y.F., M.-S.Y., J.J., T.G., R.D.); Neurology Department, Xiangya Hospital, Hunan, China (Y.F.); and Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea (M.-S.Y., E.J.)
| | - Raymond Dingledine
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (Y.F., M.-S.Y., J.J., T.G., R.D.); Neurology Department, Xiangya Hospital, Hunan, China (Y.F.); and Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea (M.-S.Y., E.J.)
| |
Collapse
|
22
|
Fox BM, Beck HP, Roveto PM, Kayser F, Cheng Q, Dou H, Williamson T, Treanor J, Liu H, Jin L, Xu G, Ma J, Wang S, Olson SH. A Selective Prostaglandin E2 Receptor Subtype 2 (EP2) Antagonist Increases the Macrophage-Mediated Clearance of Amyloid-Beta Plaques. J Med Chem 2015; 58:5256-73. [DOI: 10.1021/acs.jmedchem.5b00567] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Brian M. Fox
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Hilary P. Beck
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Philip M. Roveto
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Frank Kayser
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Qingwen Cheng
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Hannah Dou
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Toni Williamson
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - James Treanor
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Hantao Liu
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Lixia Jin
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Guifen Xu
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Ji Ma
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Songli Wang
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| | - Steven H. Olson
- Amgen South San Francisco, Amgen Inc., 1120 Veterans
Boulevard, South San Francisco, California 94080, United States
| |
Collapse
|
23
|
Ganesh T. Evaluation of WO 2012/177618 A1 and US-2014/0179750 A1: novel small molecule antagonists of prostaglandin-E2 receptor EP2. Expert Opin Ther Pat 2015; 25:837-44. [PMID: 25772215 DOI: 10.1517/13543776.2015.1025752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent studies underscore that prostaglandin-E2 exerts mostly proinflammatory effects in chronic CNS and peripheral disease models, mainly through a specific prostanoid receptor EP2. However, very few highly characterized EP2 receptor antagonists have been reported until recently, when Pfizer and Emory University published two distinct classes of EP2 antagonists with good potency, selectivity and pharmacokinetics. The purpose of this article is to evaluate recently published patents WO 2012/177618 A1 and US-2014/0179750 A1 from Emory, which describe a number of cinnamic amide- and amide-derivatives as a potent antagonists of EP2 receptor, and their neuroprotective effects in in vitro and in an in vivo model. A selected compound from this patent(s) also attenuates prostate cancer cell growth and invasion in vitro, suggesting these compounds should be developed for therapeutic use.
Collapse
Affiliation(s)
- Thota Ganesh
- Emory University School of Medicine, Department of Pharmacology , 1510 Clifton Rd, Atlanta, GA 30322 , USA +1 404 727 7393 ; +1 404 727 0365 ;
| |
Collapse
|
24
|
Jiang J, Yang MS, Quan Y, Gueorguieva P, Ganesh T, Dingledine R. Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus. Neurobiol Dis 2015; 76:126-136. [PMID: 25600211 DOI: 10.1016/j.nbd.2014.12.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/12/2014] [Accepted: 01/09/2015] [Indexed: 11/17/2022] Open
Abstract
As a prominent inflammatory effector of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) mediates brain inflammation and injury in many chronic central nervous system (CNS) conditions including seizures and epilepsy, largely through its receptor subtype EP2. However, EP2 receptor activation might also be neuroprotective in models of excitotoxicity and ischemia. These seemingly incongruent observations expose the delicacy of immune and inflammatory signaling in the brain; thus the therapeutic window for quelling neuroinflammation might vary with injury type and target molecule. Here, we identify a therapeutic window for EP2 antagonism to reduce delayed mortality and functional morbidity after status epilepticus (SE) in mice. Importantly, treatment must be delayed relative to SE onset to be effective, a finding that could be explained by the time-course of COX-2 induction after SE and compound pharmacokinetics. A large number of inflammatory mediators were upregulated in hippocampus after SE with COX-2 and IL-1β temporally leading many others. Thus, EP2 antagonism represents a novel anti-inflammatory strategy to treat SE with a tightly-regulated therapeutic window.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States; Division of Pharmaceutical sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States.
| | - Myung-Soon Yang
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Yi Quan
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Paoula Gueorguieva
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Thota Ganesh
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Raymond Dingledine
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
25
|
Abstract
Cycoloxygenase-2 (COX-2) induction is prevalent in a variety of (brain and peripheral) injury models where COX-2 levels correlate with disease progression. Thus, COX-2 has been widely explored for anti-inflammatory therapy with COX-2 inhibitors, which proved to be effective in reducing the pain and inflammation in patients with arthritis and menstrual cramps, but they have not provided any benefit to patients with chronic inflammatory neurodegenerative disease. Recently, two COX-2 drugs, rofecoxib and valdecoxib, were withdrawn from the United States market due to cardiovascular side effects. Thus, future anti-inflammatory therapy could be targeted through a specific prostanoid receptor downstream of COX-2. The PGE2 receptor EP2 is emerging as a pro-inflammatory target in a variety of CNS and peripheral diseases. Here we highlight the latest developments on the role of EP2 in diseases, mechanism of activation, and small molecule discovery targeted either to enhance or to block the function of this receptor.
Collapse
Affiliation(s)
- Thota Ganesh
- Department of Pharmacology, Emory University School of Medicine , 1510 Clifton Road, Atlanta, Georgia, 30322, United States
| |
Collapse
|