1
|
Baroni D. Unraveling the Mechanism of Action, Binding Sites, and Therapeutic Advances of CFTR Modulators: A Narrative Review. Curr Issues Mol Biol 2025; 47:119. [PMID: 39996840 PMCID: PMC11854517 DOI: 10.3390/cimb47020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride and bicarbonate channel localized on the plasma membrane of epithelial cells. Over the last three decades, high-throughput screening assays have been extensively employed in identifying drugs that target specific defects arising from CFTR mutations. The two main categories of such compounds are potentiators, which enhance CFTR gating by increasing the channel's open probability, and correctors, which improve CFTR protein folding and trafficking to the plasma membrane. In addition to these, other investigational molecules include amplifiers and stabilizers, which enhance the levels and the stability of CFTR on the cell surface, and read-through agents that promote the insertion of correct amino acids at premature termination codons. Currently, four CFTR modulators are clinically approved: the potentiator ivacaftor (VX-770), either as monotherapy or in combination with the correctors lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Among these, the triple combination VX-445/VX-661/VX-770 (marketed as Trikafta® in the US and Kaftrio® in Europe) has emerged as the most effective CFTR modulator therapy to date, demonstrating significant clinical benefits in phase III trials for patients with at least one F508del CFTR allele. Despite these advancements, the mechanisms of action and binding sites of these modulators on CFTR have only recently begun to be elucidated. A deeper understanding of these mechanisms could provide essential insights for developing more potent and effective modulators, particularly in combination therapies. This narrative review delves into the mechanism of action, binding sites, and combinatorial effects of approved and investigational CFTR modulators, highlighting ongoing efforts to broaden therapeutic options for individuals with CF.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini, 6, 16149 Genova, Italy
| |
Collapse
|
2
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Zacarias S, Batista MSP, Ramalho SS, Victor BL, Farinha CM. Rescue of Rare CFTR Trafficking Mutants Highlights a Structural Location-Dependent Pattern for Correction. Int J Mol Sci 2023; 24:ijms24043211. [PMID: 36834620 PMCID: PMC9961391 DOI: 10.3390/ijms24043211] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Currently, more than 2100 variants have been identified in the gene, with a large number being very rare. The approval of modulators that act on mutant CFTR protein, correcting its molecular defect and thus alleviating the burden of the disease, revolutionized the field of CF. However, these drugs do not apply to all patients with CF, especially those with rare mutations-for which there is a lack of knowledge on the molecular mechanisms of the disease and the response to modulators. In this work, we evaluated the impact of several rare putative class II mutations on the expression, processing, and response of CFTR to modulators. Novel cell models consisting of bronchial epithelial cell lines expressing CFTR with 14 rare variants were created. The variants studied are localized at Transmembrane Domain 1 (TMD1) or very close to the signature motif of Nucleotide Binding Domain 1 (NBD1). Our data show that all mutations analyzed significantly decrease CFTR processing and while TMD1 mutations respond to modulators, those localized in NBD1 do not. Molecular modeling calculations confirm that the mutations in NBD1 induce greater destabilization of CFTR structure than those in TMD1. Furthermore, the structural proximity of TMD1 mutants to the reported binding site of CFTR modulators such as VX-809 and VX-661, make them more efficient in stabilizing the CFTR mutants analyzed. Overall, our data suggest a pattern for mutation location and impact in response to modulators that correlates with the global effect of the mutations on CFTR structure.
Collapse
|
4
|
Ensinck MM, Carlon MS. One Size Does Not Fit All: The Past, Present and Future of Cystic Fibrosis Causal Therapies. Cells 2022; 11:cells11121868. [PMID: 35740997 PMCID: PMC9220995 DOI: 10.3390/cells11121868] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cystic fibrosis (CF) is the most common monogenic disorder, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Over the last 30 years, tremendous progress has been made in understanding the molecular basis of CF and the development of treatments that target the underlying defects in CF. Currently, a highly effective CFTR modulator treatment (Kalydeco™/Trikafta™) is available for 90% of people with CF. In this review, we will give an extensive overview of past and ongoing efforts in the development of therapies targeting the molecular defects in CF. We will discuss strategies targeting the CFTR protein (i.e., CFTR modulators such as correctors and potentiators), its cellular environment (i.e., proteostasis modulation, stabilization at the plasma membrane), the CFTR mRNA (i.e., amplifiers, nonsense mediated mRNA decay suppressors, translational readthrough inducing drugs) or the CFTR gene (gene therapies). Finally, we will focus on how these efforts can be applied to the 15% of people with CF for whom no causal therapy is available yet.
Collapse
Affiliation(s)
- Marjolein M. Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Flanders, Belgium;
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Flanders, Belgium
- Correspondence:
| |
Collapse
|
5
|
Medically Important Alterations in Transport Function and Trafficking of ABCG2. Int J Mol Sci 2021; 22:ijms22062786. [PMID: 33801813 PMCID: PMC8001156 DOI: 10.3390/ijms22062786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Several polymorphisms and mutations in the human ABCG2 multidrug transporter result in reduced plasma membrane expression and/or diminished transport function. Since ABCG2 plays a pivotal role in uric acid clearance, its malfunction may lead to hyperuricemia and gout. On the other hand, ABCG2 residing in various barrier tissues is involved in the innate defense mechanisms of the body; thus, genetic alterations in ABCG2 may modify the absorption, distribution, excretion of potentially toxic endo- and exogenous substances. In turn, this can lead either to altered therapy responses or to drug-related toxic reactions. This paper reviews the various types of mutations and polymorphisms in ABCG2, as well as the ways how altered cellular processing, trafficking, and transport activity of the protein can contribute to phenotypic manifestations. In addition, the various methods used for the identification of the impairments in ABCG2 variants and the different approaches to correct these defects are overviewed.
Collapse
|
6
|
Amico G, Brandas C, Moran O, Baroni D. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors. Int J Mol Sci 2019; 20:ijms20215463. [PMID: 31683989 PMCID: PMC6862496 DOI: 10.3390/ijms20215463] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease associated with the defective function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that causes obstructive disease and chronic bacterial infections in airway epithelia. The most prevalent CF-causing mutation, the deletion of phenylalanine at position 508 (F508del), leads to CFTR misfolding, trafficking defects and premature degradation. A number of correctors that are able to partially rescue F508del-CFTR processing defects have been identified. Clinical trials have demonstrated that, unfortunately, mono-therapy with the best correctors identified to date does not ameliorate lung function or sweat chloride concentration in homozygous F508del patients. Understanding the mechanisms exerted by currently available correctors to increase mutant F508del-CFTR expression is essential for the development of new CF-therapeutics. We investigated the activity of correctors on the mutant F508del and wild type (WT) CFTR to identify the protein domains whose expression is mostly affected by the action of correctors, and we investigated their mechanisms of action. We found that the four correctors under study, lumacaftor (VX809), the quinazoline derivative VX325, the bithiazole compound corr4a, and the new molecule tezacaftor (VX661), do not influence either the total expression or the maturation of the WT-CFTR transiently expressed in human embryonic kidney 293 (HEK293) cells. Contrarily, they significantly enhance the expression and the maturation of the full length F508del molecule. Three out of four correctors, VX809, VX661 and VX325, seem to specifically improve the expression and the maturation of the mutant CFTR N-half (M1N1, residues 1–633). By contrast, the CFTR C-half (M2N2, residues 837–1480) appears to be the region mainly affected by corr4a. VX809 was shown to stabilize both the WT- and F508del-CFTR N-half isoforms, while VX661 and VX325 demonstrated the ability to enhance the stability only of the mutant F508del polypeptide.
Collapse
Affiliation(s)
- Giulia Amico
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Chiara Brandas
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Oscar Moran
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| | - Debora Baroni
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 16149 Genova, Italy.
| |
Collapse
|
7
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
8
|
Affiliation(s)
- George M. Burslem
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| | - Craig M. Crews
- Departments of Molecular,
Cellular, and Developmental Biology, Chemistry, and Pharmacology, Yale University, 219 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
9
|
Beerepoot P, Nazari R, Salahpour A. Pharmacological chaperone approaches for rescuing GPCR mutants: Current state, challenges, and screening strategies. Pharmacol Res 2017; 117:242-251. [DOI: 10.1016/j.phrs.2016.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
|
10
|
Yang H, Ma T. F508del-cystic fibrosis transmembrane regulator correctors for treatment of cystic fibrosis: a patent review. Expert Opin Ther Pat 2015; 25:991-1002. [PMID: 25971311 DOI: 10.1517/13543776.2015.1045878] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by malfunction of CF transmembrane regulator (CFTR). The deletion of a phenylalanine at residue 508 (F508del) is the most common mutation that causes cellular processing, chloride channel gating and protein stability defects in CFTR. Pharmacological modulators of F508del-CFTR, aimed at correcting the cellular processing defect (correctors) and the gating defect (potentiators) in CFTR protein, are regarded as promising therapeutic agents for CF disease. Endeavors in searching F508del-CFTR modulators have shown encouraging results, with several small-molecule compounds having entered clinical trials or even represented clinical options. AREAS COVERED This review covers the discovery of F508del-CFTR correctors described in both patents (2005 - present) and scientific literatures. EXPERT OPINION Cyclopropane carboxamide derivatives of CFTR correctors continue to dominate in this area, among which lumacaftor (a NBD1-MSD1/2 interface stabilizer) is the most promising compound and is now under the priority review by US FDA. However, the abrogation effect of ivacaftor (potentiator) on lumacaftor suggests the requirement of discovering new correctors and potentiators that can cooperate well. Integration screening for simultaneously identifying combinations of correctors (particularly NBD1 stabilizer) and potentiators should provide an alternative strategy. A recently reported natural product fraction library may be useful for the integration screening.
Collapse
Affiliation(s)
- Hong Yang
- a 1 School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University , Dalian 116029, P.R. China +86 411 85827085 ; +86 411 85827068 ;
| | | |
Collapse
|
11
|
Viel M, Hubert D, Burgel PR, Génin E, Honoré I, Martinez B, Gaitch N, Chapron J, Kanaan R, Dusser D, Girodon E, Bienvenu T. DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. CLINICAL RESPIRATORY JOURNAL 2015; 10:777-783. [PMID: 25763772 DOI: 10.1111/crj.12288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/28/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Pseudomonas aeruginosa (Pa) infection in cystic fibrosis (CF) patients is associated with worse long-term pulmonary disease and shorter survival, and chronic Pa infection (CPA) is associated with reduced lung function, faster rate of lung decline, increased rates of exacerbations and shorter survival. By using exome sequencing and extreme phenotype design, it was recently shown that isoforms of dynactin 4 (DCTN4) may influence Pa infection in CF, leading to worse respiratory disease. The purpose of this study was to investigate the role of DCTN4 missense variants on Pa infection incidence, age at first Pa infection and chronic Pa infection incidence in a cohort of adult CF patients from a single centre. METHODS Polymerase chain reaction and direct sequencing were used to screen DNA samples for DCTN4 variants. RESULTS A total of 121 adult CF patients from the Cochin Hospital CF centre have been included, all of them carrying two CFTR defects: 103 developed at least 1 pulmonary infection with Pa, and 68 patients of them had CPA. DCTN4 variants were identified in 24% (29/121) CF patients with Pa infection and in only 17% (3/18) CF patients with no Pa infection. Of the patients with CPA, 29% (20/68) had DCTN4 missense variants vs 23% (8/35) in patients without CPA. Interestingly, p.Tyr263Cys tend to be more frequently observed in CF patients with CPA than in patients without CPA (4/68 vs 0/35), and DCTN4 missense variants tend to be more frequent in male CF patients with CPA bearing two class II mutations than in male CF patients without CPA bearing two class II mutations (P = 0.06). CONCLUSIONS Our observations reinforce that DCTN4 missense variants, especially p.Tyr263Cys, may be involved in the pathogenesis of CPA in male CF.
Collapse
Affiliation(s)
- Marion Viel
- AP-HP, Laboratoire de Biochimie et Génétique Moléculaire, Groupe Universitaire Paris Centre, Paris, France
| | - Dominique Hubert
- Service de Pneumologie, GH Cochin-Broca-Hôtel Dieu, Université Paris Descartes, Paris, France
| | - Pierre-Regis Burgel
- Service de Pneumologie, GH Cochin-Broca-Hôtel Dieu, Université Paris Descartes, Paris, France
| | - Emmanuelle Génin
- Inserm U1078, Génétique, Génomique fonctionnelle et Biotechnologies, Brest, France
| | - Isabelle Honoré
- Service de Pneumologie, GH Cochin-Broca-Hôtel Dieu, Université Paris Descartes, Paris, France
| | - Brigitte Martinez
- AP-HP, Laboratoire de Biochimie et Génétique Moléculaire, Groupe Universitaire Paris Centre, Paris, France
| | - Natacha Gaitch
- AP-HP, Laboratoire de Biochimie et Génétique Moléculaire, Groupe Universitaire Paris Centre, Paris, France
| | - Jeanne Chapron
- Service de Pneumologie, GH Cochin-Broca-Hôtel Dieu, Université Paris Descartes, Paris, France
| | - Reem Kanaan
- Service de Pneumologie, GH Cochin-Broca-Hôtel Dieu, Université Paris Descartes, Paris, France
| | - Daniel Dusser
- Service de Pneumologie, GH Cochin-Broca-Hôtel Dieu, Université Paris Descartes, Paris, France
| | - Emmanuelle Girodon
- AP-HP, Laboratoire de Biochimie et Génétique Moléculaire, Groupe Universitaire Paris Centre, Paris, France
| | - Thierry Bienvenu
- AP-HP, Laboratoire de Biochimie et Génétique Moléculaire, Groupe Universitaire Paris Centre, Paris, France. .,Institut Cochin, INSERM U1016, Université Paris Descartes, Paris, France.
| |
Collapse
|
12
|
Trzcińska-Daneluti AM, Chen A, Nguyen L, Murchie R, Jiang C, Moffat J, Pelletier L, Rotin D. RNA Interference Screen to Identify Kinases That Suppress Rescue of ΔF508-CFTR. Mol Cell Proteomics 2015; 14:1569-83. [PMID: 25825526 DOI: 10.1074/mcp.m114.046375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 01/08/2023] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF.
Collapse
Affiliation(s)
- Agata M Trzcińska-Daneluti
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Anthony Chen
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Leo Nguyen
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Ryan Murchie
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | - Chong Jiang
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| | | | | | - Daniela Rotin
- From the ‡Program in Cell Biology, The Hospital for Sick Children, Toronto, and Biochemistry Department, University of Toronto; PGCRL, 19-9715, 686 Bay St., Toronto, Ont., Canada, M5G 0A4
| |
Collapse
|
13
|
Shah K, Cheng Y, Hahn B, Bridges R, Bradbury NA, Mueller DM. Synonymous codon usage affects the expression of wild type and F508del CFTR. J Mol Biol 2015; 427:1464-1479. [PMID: 25676312 DOI: 10.1016/j.jmb.2015.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel composed of 1480 amino acids. The major mutation responsible for cystic fibrosis results in loss of amino acid residue, F508 (F508del). Loss of F508 in CFTR alters the folding pathway resulting in endoplasmic-reticulum-associated degradation. This study investigates the role of synonymous codon in the expression of CFTR and CFTR F508del in human HEK293 cells. DNA encoding the open reading frame (ORF) for CFTR containing synonymous codon replacements was expressed using a heterologous vector integrated into the genome. The results indicate that the codon usage greatly affects the expression of CFTR. While the promoter strength driving expression of the ORFs was largely unchanged and the mRNA half-lives were unchanged, the steady-state levels of the mRNA varied by as much as 30-fold. Experiments support that this apparent inconsistency is attributed to nonsense mediated decay independent of exon junction complex. The ratio of CFTR/mRNA indicates that mRNA containing native codons was more efficient in expressing mature CFTR as compared to mRNA containing synonymous high-expression codons. However, when F508del CFTR was expressed after codon optimization, a greater percentage of the protein escaped endoplasmic-reticulum-associated degradation resulting in considerable levels of mature F508del CFTR on the plasma membrane, which showed channel activity. These results indicate that codon usage has an effect on mRNA levels and protein expression, for CFTR, and likely on chaperone-assisted folding pathway, for F508del CFTR.
Collapse
Affiliation(s)
- Kalpit Shah
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA; Department of Physiology and Biophysics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Yi Cheng
- Department of Physiology and Biophysics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Brian Hahn
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Robert Bridges
- Department of Physiology and Biophysics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University, The Chicago Medical School, North Chicago, IL 60064, USA.
| |
Collapse
|
14
|
Loo TW, Clarke DM. Cysteines introduced into extracellular loops 1 and 4 of human P-glycoprotein that are close only in the open conformation spontaneously form a disulfide bond that inhibits drug efflux and ATPase activity. J Biol Chem 2014; 289:24749-58. [PMID: 25053414 DOI: 10.1074/jbc.m114.583021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette drug pump that protects us from toxic compounds and confers multidrug resistance. The protein is organized into two halves. The halves contain a transmembrane domain (TMD) with six transmembrane segments and a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the TMD1/TMD2 and NBD1/NBD2 interfaces, respectively. ATP-dependent drug efflux involves changes between the open inward-facing (NBDs apart, extracellular loops (ECLs) close together) and the closed outward-facing (NBDs close together, ECLs apart) conformations. It is controversial, however, whether the open conformation only exists transiently in intact cells because of the presence of high levels of ATP. To test for the presence of an open conformation in intact cells, reporter cysteines were placed in extracellular loops 1 (A80C, N half) and 4 (R741C, C half). The rationale was that cysteines A80C/R741C would only come close enough to form a disulfide bond in an open conformation (6.9 Å apart) because they are separated widely (30.4 Å apart) in the closed conformation. It was observed that the mutant A80C/R741C cross-linked spontaneously (>90%) when expressed in cells. In contrast to previous reports showing that trapping P-gp in a closed conformation highly activated ATPase activity, here we show that A80C/R741C cross-linking inhibited ATPase activity and drug efflux. Both activities were restored when the cross-linked mutant was treated with a thiol-reducing agent. The results show that an open conformation can be readily detected in cells and that cross-linking of cysteines placed in ECLs 1 and 4 inhibits activity.
Collapse
Affiliation(s)
- Tip W Loo
- From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M Clarke
- From the Departments of Medicine and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
15
|
Farinha CM, King-Underwood J, Sousa M, Correia AR, Henriques BJ, Roxo-Rosa M, Da Paula AC, Williams J, Hirst S, Gomes CM, Amaral MD. Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction. ACTA ACUST UNITED AC 2014; 20:943-55. [PMID: 23890012 DOI: 10.1016/j.chembiol.2013.06.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 05/10/2013] [Accepted: 06/09/2013] [Indexed: 11/30/2022]
Abstract
Cystic fibrosis is mostly caused by the F508del mutation, which impairs CFTR protein from exiting the endoplasmic reticulum due to misfolding. VX-809 is a small molecule that rescues F508del-CFTR localization, which recently went into clinical trial but with unknown mechanism of action (MoA). Herein, we assessed if VX-809 is additive or synergistic with genetic revertants of F508del-CFTR, other correctors, and low temperature to determine its MoA. We explored and integrated those various agents in combined treatments, showing how they add to each other to identify their complementary MoA upon correction of F508del-CFTR. Our experimental and modeling data, while compatible with putative binding of VX-809 to NBD1:ICL4 interface, also indicate scope for further synergistic F508del-CFTR correction by other compounds at distinct conformational sites/cellular checkpoints, thus suggesting requirement of combined therapies to fully rescue F508del-CFTR.
Collapse
Affiliation(s)
- Carlos M Farinha
- Faculty of Sciences, Center for Biodiversity, Functional, and Integrative Genomics, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Conn PM, Smithson DC, Hodder PS, Stewart MD, Behringer RR, Smith E, Ulloa-Aguirre A, Janovick JA. Transitioning pharmacoperones to therapeutic use: in vivo proof-of-principle and design of high throughput screens. Pharmacol Res 2013; 83:38-51. [PMID: 24373832 DOI: 10.1016/j.phrs.2013.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 12/26/2022]
Abstract
A pharmacoperone (from "pharmacological chaperone") is a small molecule that enters cells and serves as molecular scaffolding in order to cause otherwise-misfolded mutant proteins to fold and route correctly within the cell. Pharmacoperones have broad therapeutic applicability since a large number of diseases have their genesis in the misfolding of proteins and resultant misrouting within the cell. Misrouting may result in loss-of-function and, potentially, the accumulation of defective mutants in cellular compartments. Most known pharmacoperones were initially derived from receptor antagonist screens and, for this reason, present a complex pharmacology, although these are highly target specific. In this summary, we describe efforts to produce high throughput screens that identify these molecules from chemical libraries as well as a mouse model which provides proof-of-principle for in vivo protein rescue using existing pharmacoperones.
Collapse
Affiliation(s)
- P Michael Conn
- Department of Internal Medicine, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, United States; Department of Cell Biology, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, United States.
| | - David C Smithson
- Oregon Translational Research and Drug Development Institute (OTRADI), Portland, OR 97201, United States
| | - Peter S Hodder
- Translational Research Institute, Scripps Research Institute, Jupiter, FL 33458, United States
| | - M David Stewart
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States; Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Richard R Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, United States
| | - Emery Smith
- Translational Research Institute, Scripps Research Institute, Jupiter, FL 33458, United States
| | - Alfredo Ulloa-Aguirre
- Research Support Network, Instituto Nacional de Ciencias Medicas y Nutricion, S-Z Universidad Autonoma de Mexico, Mexico, D.F., Mexico
| | - Jo Ann Janovick
- Department of Internal Medicine, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, United States; Department of Cell Biology, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, United States
| |
Collapse
|
17
|
Maitra R, Sivashanmugam P, Warner K. A rapid membrane potential assay to monitor CFTR function and inhibition. JOURNAL OF BIOMOLECULAR SCREENING 2013; 18:1132-7. [PMID: 23653393 DOI: 10.1177/1087057113488420] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is an important regulator of ion transport and fluid secretion in humans. Mutations to CFTR cause cystic fibrosis, which is a common recessive genetic disorder in Caucasians. Involvement of CFTR has been noted in other important diseases, such as secretory diarrhea and polycystic kidney disease. The assays to monitor CFTR function that have been described to date either are complicated or require specialized instrumentation and training for execution. In this report, we describe a rapid FlexStation-based membrane potential assay to monitor CFTR function. In this assay, agonist-mediated activation of CFTR results in membrane depolarization that can be monitored using a fluorescent membrane potential probe. Availability of a simple mix-and-read assay to monitor the function of this important protein might accelerate the discovery of CFTR ligands to study a variety of conditions.
Collapse
|
18
|
Loo TW, Bartlett MC, Clarke DM. Corrector VX-809 stabilizes the first transmembrane domain of CFTR. Biochem Pharmacol 2013; 86:612-9. [DOI: 10.1016/j.bcp.2013.06.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
|
19
|
Odolczyk N, Fritsch J, Norez C, Servel N, da Cunha MF, Bitam S, Kupniewska A, Wiszniewski L, Colas J, Tarnowski K, Tondelier D, Roldan A, Saussereau EL, Melin-Heschel P, Wieczorek G, Lukacs GL, Dadlez M, Faure G, Herrmann H, Ollero M, Becq F, Zielenkiewicz P, Edelman A. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain. EMBO Mol Med 2013; 5:1484-501. [PMID: 23982976 PMCID: PMC3799575 DOI: 10.1002/emmm.201302699] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 12/16/2022] Open
Abstract
The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane. Based on this assumption we applied structure-based virtual screening to identify new low-molecular-weight compounds that should bind to ΔF508-NBD1 and act as protein–protein interaction inhibitors. Using different functional assays for CFTR activity, we demonstrated that in silico-selected compounds induced functional expression of ΔF508-CFTR in transfected HeLa cells, human bronchial CF cells in primary culture, and in the nasal epithelium of homozygous ΔF508-CFTR mice. The proposed compounds disrupt keratin8-ΔF508-CFTR interaction in ΔF508-CFTR HeLa cells. Structural analysis of ΔF508-NBD1 in the presence of these compounds suggests their binding to NBD1. We conclude that our strategy leads to the discovery of new compounds that are among the most potent correctors of ΔF508-CFTR trafficking defect known to date.
Collapse
Affiliation(s)
- Norbert Odolczyk
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Loo TW, Bartlett MC, Clarke DM. Bithiazole correctors rescue CFTR mutants by two different mechanisms. Biochemistry 2013; 52:5161-3. [PMID: 23865422 PMCID: PMC3737597 DOI: 10.1021/bi4008758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Better correctors are needed to repair cystic fibrosis transmembrane conductance regulator (CFTR) processing mutants that cause cystic fibrosis. Determining where the correctors bind to CFTR would aid in the development of new correctors. A recent study reported that the second nucleotide-binding domain (NBD2) was involved in binding of bithiazole correctors. Here, we show that bithiazole correctors could also rescue CFTR mutants that lacked NBD2. These results suggest that bithiazoles rescue CFTR mutants by two different mechanisms.
Collapse
Affiliation(s)
- Tip W Loo
- Departments of Medicine and Biochemistry, University of Toronto , Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
21
|
Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, Brandsma AM, de Jong NWM, Bijvelds MJC, Scholte BJ, Nieuwenhuis EES, van den Brink S, Clevers H, van der Ent CK, Middendorp S, Beekman JM. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 2013; 19:939-45. [PMID: 23727931 DOI: 10.1038/nm.3201] [Citation(s) in RCA: 747] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023]
Abstract
We recently established conditions allowing for long-term expansion of epithelial organoids from intestine, recapitulating essential features of the in vivo tissue architecture. Here we apply this technology to study primary intestinal organoids of people suffering from cystic fibrosis, a disease caused by mutations in CFTR, encoding cystic fibrosis transmembrane conductance regulator. Forskolin induces rapid swelling of organoids derived from healthy controls or wild-type mice, but this effect is strongly reduced in organoids of subjects with cystic fibrosis or in mice carrying the Cftr F508del mutation and is absent in Cftr-deficient organoids. This pattern is phenocopied by CFTR-specific inhibitors. Forskolin-induced swelling of in vitro-expanded human control and cystic fibrosis organoids corresponds quantitatively with forskolin-induced anion currents in freshly excised ex vivo rectal biopsies. Function of the CFTR F508del mutant protein is restored by incubation at low temperature, as well as by CFTR-restoring compounds. This relatively simple and robust assay will facilitate diagnosis, functional studies, drug development and personalized medicine approaches in cystic fibrosis.
Collapse
Affiliation(s)
- Johanna F Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Insulin-like growth factor 1 (IGF-1) enhances the protein expression of CFTR. PLoS One 2013; 8:e59992. [PMID: 23555857 PMCID: PMC3610909 DOI: 10.1371/journal.pone.0059992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 02/25/2013] [Indexed: 11/19/2022] Open
Abstract
Low levels of insulin-like growth factor 1 (IGF-1) have been observed in the serum of cystic fibrosis (CF) patients. However, the effects of low serum IGF-1 on the cystic fibrosis transmembrane conductance regulator (CFTR), whose defective function is the primary cause of cystic fibrosis, have not been studied. Here, we show in human cells that IGF-1 increases the steady-state levels of mature wildtype CFTR in a CFTR-associated ligand (CAL)- and TC10-dependent manner; moreover, IGF-1 increases CFTR-mediated chloride transport. Using an acceptor photobleaching fluorescence resonance energy transfer (FRET) assay, we have confirmed the binding of CAL and CFTR in the Golgi. We also show that CAL overexpression inhibits forskolin-induced increases in the cell-surface expression of CFTR. We found that IGF-1 activates TC10, and active TC10 alters the functional association between CAL and CFTR. Furthermore, IGF-1 and active TC10 can reverse the CAL-mediated reduction in the cell-surface expression of CFTR. IGF-1 does not increase the expression of ΔF508 CFTR, whose processing is arrested in the ER. This finding is consistent with our observation that IGF-1 alters the functional interaction of CAL and CFTR in the Golgi. However, when ΔF508 CFTR is rescued with low temperature or the corrector VRT-325 and proceeds to the Golgi, IGF-1 can increase the expression of the rescued ΔF508 CFTR. Our data support a model indicating that CAL-CFTR binding in the Golgi inhibits CFTR trafficking to the cell surface, leading CFTR to the degradation pathway instead. IGF-1-activated TC10 changes the interaction of CFTR and CAL, allowing CFTR to progress to the plasma membrane. These findings offer a potential strategy using a combinational treatment of IGF-1 and correctors to increase the post-Golgi expression of CFTR in cystic fibrosis patients bearing the ΔF508 mutation.
Collapse
|
23
|
Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci U S A 2013; 110:5223-8. [PMID: 23493553 DOI: 10.1073/pnas.1214530110] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The multidrug ATP-binding cassette, subfamily G, 2 (ABCG2) transporter was recently identified as an important human urate transporter, and a common mutation, a Gln to Lys substitution at position 141 (Q141K), was shown to cause hyperuricemia and gout. The nature of the Q141K defect, however, remains undefined. Here we explore the Q141K ABCG2 mutation using a comparative approach, contrasting it with another disease-causing mutation in an ABC transporter, the deletion of Phe-508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR). We found, much like in ΔF508 CFTR, that the Q141K mutation leads to instability in the nucleotide-binding domain (NBD), a defect that translates to significantly decreased protein expression. However, unlike the CFTR mutant, the Q141K mutation does not interfere with the nucleotide-binding domain/intracellular loop interactions. This investigation has also led to the identification of critical residues involved in the protein-protein interactions necessary for the dimerization of ABCG2: Lys-473 (K473) and Phe-142 (F142). Finally, we have demonstrated the utility of using small molecules to correct the Q141K defect in expression and function as a possible therapeutic approach for hyperuricemia and gout.
Collapse
|
24
|
Sampson HM, Lam H, Chen PC, Zhang D, Mottillo C, Mirza M, Qasim K, Shrier A, Shyng SL, Hanrahan JW, Thomas DY. Compounds that correct F508del-CFTR trafficking can also correct other protein trafficking diseases: an in vitro study using cell lines. Orphanet J Rare Dis 2013; 8:11. [PMID: 23316740 PMCID: PMC3558398 DOI: 10.1186/1750-1172-8-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/01/2013] [Indexed: 11/12/2022] Open
Abstract
Background Many genetic diseases are due to defects in protein trafficking where the mutant protein is recognized by the quality control systems, retained in the endoplasmic reticulum (ER), and degraded by the proteasome. In many cases, the mutant protein retains function if it can be trafficked to its proper cellular location. We have identified structurally diverse correctors that restore the trafficking and function of the most common mutation causing cystic fibrosis, F508del-CFTR. Most of these correctors do not act directly as ligands of CFTR, but indirectly on other pathways to promote folding and correction. We hypothesize that these proteostasis regulators may also correct other protein trafficking diseases. Methods To test our hypothesis, we used stable cell lines or transient transfection to express 2 well-studied trafficking disease mutations in each of 3 different proteins: the arginine-vasopressin receptor 2 (AVPR2, also known as V2R), the human ether-a-go-go-related gene (KCNH2, also known as hERG), and finally the sulfonylurea receptor 1 (ABCC8, also known as SUR1). We treated cells expressing these mutant proteins with 9 structurally diverse F508del-CFTR correctors that function through different cellular mechanisms and assessed whether correction occurred via immunoblotting and functional assays. Results were deemed significantly different from controls by a one-way ANOVA (p < 0.05). Results Here we show that F508del-CFTR correctors RDR1, KM60 and KM57 also correct some mutant alleles of other protein trafficking diseases. We also show that one corrector, the cardiac glycoside ouabain, was found to alter the glycosylation of all mutant alleles tested. Conclusions Correctors of F508del-CFTR trafficking might have broader applications to other protein trafficking diseases.
Collapse
Affiliation(s)
- Heidi M Sampson
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, McIntyre Medical Building, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Carlile G, Keyzers R, Teske K, Robert R, Williams D, Linington R, Gray C, Centko R, Yan L, Anjos S, Sampson H, Zhang D, Liao J, Hanrahan J, Andersen R, Thomas D. Correction of F508del-CFTR Trafficking by the Sponge Alkaloid Latonduine Is Modulated by Interaction with PARP. ACTA ACUST UNITED AC 2012; 19:1288-99. [DOI: 10.1016/j.chembiol.2012.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/04/2012] [Accepted: 08/16/2012] [Indexed: 12/31/2022]
|
26
|
Molinski S, Eckford PDW, Pasyk S, Ahmadi S, Chin S, Bear CE. Functional Rescue of F508del-CFTR Using Small Molecule Correctors. Front Pharmacol 2012; 3:160. [PMID: 23055971 PMCID: PMC3458236 DOI: 10.3389/fphar.2012.00160] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/17/2012] [Indexed: 01/21/2023] Open
Abstract
High-throughput screens for small molecules that are effective in “correcting” the functional expression of F508del-CFTR have yielded several promising hits. Two such compounds are currently in clinical trial. Despite this success, it is clear that further advances will be required in order to restore 50% or greater of wild-type CFTR function to the airways of patients harboring the F508del-CFTR protein. Progress will be enhanced by our better understanding of the molecular and cellular defects caused by the F508del mutation, present in 90% of CF patients. The goal of this chapter is to review the current understanding of defects caused by F508del in the CFTR protein and in CFTR-mediated interactions important for its biosynthesis, trafficking, channel function, and stability at the cell surface. Finally, we will discuss the gaps in our knowledge regarding the mechanism of action of existing correctors, the unmet need to discover compounds which restore proper CFTR structure and function in CF affected tissues and new strategies for therapy development.
Collapse
Affiliation(s)
- Steven Molinski
- Programme in Molecular Structure and Function, Research Institute, Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, University of Toronto Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Anjos SM, Robert R, Waller D, Zhang DL, Balghi H, Sampson HM, Ciciriello F, Lesimple P, Carlile GW, Goepp J, Liao J, Ferraro P, Phillipe R, Dantzer F, Hanrahan JW, Thomas DY. Decreasing Poly(ADP-Ribose) Polymerase Activity Restores ΔF508 CFTR Trafficking. Front Pharmacol 2012; 3:165. [PMID: 22988441 PMCID: PMC3439826 DOI: 10.3389/fphar.2012.00165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/21/2012] [Indexed: 12/04/2022] Open
Abstract
Most cystic fibrosis is caused by mutations in CFTR that prevent its trafficking from the ER to the plasma membrane and is associated with exaggerated inflammation, altered metabolism, and diminished responses to oxidative stress. PARP-1 is activated by oxidative stress and causes energy depletion and cell dysfunction. Inhibition of this enzyme protects against excessive inflammation and recent studies have also implicated it in intracellular protein trafficking. We hypothesized that PARP-1 activity is altered in CF and affects trafficking and function of the most common CF mutant ΔF508 CFTR. Indeed, PARP-1 activity was 2.9-fold higher in CF (ΔF508/ΔF508) human bronchial epithelial primary cells than in non-CF cells, and similar results were obtained by comparing CF vs. non-CF bronchial epithelial cell lines (2.5-fold higher in CFBE41o− vs. 16HBE14o−, P < 0.002). A PARP-1 inhibitor (ABT-888, Veliparib) partially restored CFTR channel activity in CFBE41o− cells overexpressing ΔF508 CFTR. Similarly, reducing PARP-1 activity by 85% in ileum from transgenic CF mice (Cftrtm1Eur) partially rescued ΔF508 CFTR activity to 7% of wild type mouse levels, and similar correction (7.8%) was observed in vivo by measuring salivary secretion. Inhibiting PARP-1 with ABT-888 or siRNA partially restored ΔF508 CFTR trafficking in cell lines, and most ΔF508 CFTR was complex glycosylated when heterologously expressed in PARP-1−/− mouse embryonic fibroblasts. Finally, levels of the mature glycoform of CFTR were reduced by peroxynitrite, a strong activator of PARP-1. These results demonstrate that PARP-1 activity is increased in CF, and identify a novel pathway that could be targeted by proteostatic correctors of CFTR trafficking.
Collapse
Affiliation(s)
- Suzana M Anjos
- Cystic Fibrosis Translational Research Center, Department of Biochemistry, McGill University Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Orchard A, Schamerhorn GA, Calitree BD, Sawada GA, Loo TW, Bartlett MC, Clarke DM, Dettya MR. Thiorhodamines containing amide and thioamide functionality as inhibitors of the ATP-binding cassette drug transporter P-glycoprotein (ABCB1). Bioorg Med Chem 2012; 20:4290-302. [PMID: 22727780 PMCID: PMC3400123 DOI: 10.1016/j.bmc.2012.05.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/15/2012] [Accepted: 05/24/2012] [Indexed: 11/29/2022]
Abstract
Twelve thiorhodamine derivatives have been examined for their ability to stimulate the ATPase activity of purified human P-glycoprotein (P-gp)-His(10), to promote uptake of calcein AM and vinblastine into multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells. The thiorhodamine derivatives have structural diversity from amide and thioamide functionality (N,N-diethyl and N-piperidyl) at the 5-position of a 2-thienyl substituent on the thiorhodamine core and from diversity at the 3-amino substituent with N,N-dimethylamino, fused azadecalin (julolidyl), and fused N-methylcyclohexylamine (half-julolidyl) substituents. The julolidyl and half-julolidyl derivatives were more effective inhibitors of P-gp than the dimethylamino analogues. Amide-containing derivatives were transported much more rapidly than thioamide-containing derivatives.
Collapse
Affiliation(s)
- Alexandra Orchard
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Gregory A. Schamerhorn
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Brandon D. Calitree
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Geri A. Sawada
- Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Tip W. Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - M. Claire Bartlett
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - David M. Clarke
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
29
|
Trzcinska-Daneluti AM, Nguyen L, Jiang C, Fladd C, Uehling D, Prakesch M, Al-awar R, Rotin D. Use of kinase inhibitors to correct ΔF508-CFTR function. Mol Cell Proteomics 2012; 11:745-57. [PMID: 22700489 DOI: 10.1074/mcp.m111.016626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most common mutation in cystic fibrosis (CF) is a deletion of Phe at position 508 (ΔF508-CFTR). ΔF508-CFTR is a trafficking mutant that is retained in the ER, unable to reach the plasma membrane. To identify compounds and drugs that rescue this trafficking defect, we screened a kinase inhibitor library enriched for small molecules already in the clinic or in clinical trials for the treatment of cancer and inflammation, using our recently developed high-content screen technology (Trzcinska-Daneluti et al. Mol. Cell. Proteomics 8:780, 2009). The top hits of the screen were further validated by (1) biochemical analysis to demonstrate the presence of mature (Band C) ΔF508-CFTR, (2) flow cytometry to reveal the presence of ΔF508-CFTR at the cell surface, (3) short-circuit current (Isc) analysis in Ussing chambers to show restoration of function of the rescued ΔF508-CFTR in epithelial MDCK cells stably expressing this mutant (including EC(50) determinations), and importantly (4) Isc analysis of Human Bronchial Epithelial (HBE) cells harvested from homozygote ΔF508-CFTR transplant patients. Interestingly, several inhibitors of receptor Tyr kinases (RTKs), such as SU5402 and SU6668 (which target FGFRs, VEGFR, and PDGFR) exhibited strong rescue of ΔF508-CFTR, as did several inhibitors of the Ras/Raf/MEK/ERK or p38 pathways (e.g. (5Z)-7-oxozeaenol). Prominent rescue was also observed by inhibitors of GSK-3β (e.g. GSK-3β Inhibitor II and Kenpaullone). These results identify several kinase inhibitors that can rescue ΔF508-CFTR to various degrees, and suggest that use of compounds or drugs already in the clinic or in clinical trials for other diseases can expedite delivery of treatment for CF patients.
Collapse
|
30
|
Cystic fibrosis: insight into CFTR pathophysiology and pharmacotherapy. Clin Biochem 2012; 45:1132-44. [PMID: 22698459 DOI: 10.1016/j.clinbiochem.2012.05.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/15/2012] [Accepted: 05/28/2012] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis is the most common life-threatening recessively inherited disease in Caucasians. Due to early provision of care in specialized reference centers and more comprehensive care, survival has improved over time. Despite great advances in supportive care and in our understanding of its pathophysiology, there is still no cure for the disease. Therapeutic strategies aimed at rescuing the abnormal protein are either being sought after or under investigation. This review highlights salient insights into pathophysiology and candidate molecules suitable for CFTR pharmacotherapy. Clinical trials using Ataluren, VX-809 and ivacaftor have provided encouraging data. Preclinical data with inhibitors of phosphodiesterase type 5, such as sildenafil and analogs, have highlighted their potential for CFTR pharmacotherapy. Because sildenafil and analogs are in clinical use for other clinical applications, research on this class of drugs might speed up the development of new therapies for CF.
Collapse
|
31
|
Ebert SP, Wetzel B, Myette RL, Conseil G, Cole SPC, Sawada GA, Loo TW, Bartlett MC, Clarke DM, Detty MR. Chalcogenopyrylium Compounds as Modulators of the ATP-Binding Cassette Transporters P-Glycoprotein (P-gp/ABCB1) and Multidrug Resistance Protein 1 (MRP1/ABCC1). J Med Chem 2012; 55:4683-99. [DOI: 10.1021/jm3004398] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean P. Ebert
- Department
of Chemistry, University at Buffalo, The State University of New York,
Buffalo, New York 14260-3000, United States
| | - Bryan Wetzel
- Department
of Chemistry, University at Buffalo, The State University of New York,
Buffalo, New York 14260-3000, United States
| | - Robert L. Myette
- Department of Pathology & Molecular Medicine, Division of Cancer Biology & Genetics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Gwenaëlle Conseil
- Department of Pathology & Molecular Medicine, Division of Cancer Biology & Genetics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Susan P. C. Cole
- Department of Pathology & Molecular Medicine, Division of Cancer Biology & Genetics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Geri A. Sawada
- Drug Disposition, Eli Lilly and Company, Indianapolis, Indiana 46285,
United States
| | - Tip W. Loo
- Department
of Medicine and Department of Biochemistry, University of Toronto,
Toronto, Ontario M5S 1A8, Canada
| | - M. Claire Bartlett
- Department
of Medicine and Department of Biochemistry, University of Toronto,
Toronto, Ontario M5S 1A8, Canada
| | - David M. Clarke
- Department
of Medicine and Department of Biochemistry, University of Toronto,
Toronto, Ontario M5S 1A8, Canada
| | - Michael R. Detty
- Department
of Chemistry, University at Buffalo, The State University of New York,
Buffalo, New York 14260-3000, United States
| |
Collapse
|
32
|
Corrector-mediated rescue of misprocessed CFTR mutants can be reduced by the P-glycoprotein drug pump. Biochem Pharmacol 2012; 83:345-54. [DOI: 10.1016/j.bcp.2011.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 11/18/2022]
|
33
|
Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 2011; 108:18843-8. [PMID: 21976485 DOI: 10.1073/pnas.1105787108] [Citation(s) in RCA: 850] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that impair the function of CFTR, an epithelial chloride channel required for proper function of the lung, pancreas, and other organs. Most patients with CF carry the F508del CFTR mutation, which causes defective CFTR protein folding and processing in the endoplasmic reticulum, resulting in minimal amounts of CFTR at the cell surface. One strategy to treat these patients is to correct the processing of F508del-CFTR with small molecules. Here we describe the in vitro pharmacology of VX-809, a CFTR corrector that was advanced into clinical development for the treatment of CF. In cultured human bronchial epithelial cells isolated from patients with CF homozygous for F508del, VX-809 improved F508del-CFTR processing in the endoplasmic reticulum and enhanced chloride secretion to approximately 14% of non-CF human bronchial epithelial cells (EC(50), 81 ± 19 nM), a level associated with mild CF in patients with less disruptive CFTR mutations. F508del-CFTR corrected by VX-809 exhibited biochemical and functional characteristics similar to normal CFTR, including biochemical susceptibility to proteolysis, residence time in the plasma membrane, and single-channel open probability. VX-809 was more efficacious and selective for CFTR than previously reported CFTR correctors. VX-809 represents a class of CFTR corrector that specifically addresses the underlying processing defect in F508del-CFTR.
Collapse
|
34
|
Rogan MP, Stoltz DA, Hornick DB. Cystic fibrosis transmembrane conductance regulator intracellular processing, trafficking, and opportunities for mutation-specific treatment. Chest 2011; 139:1480-1490. [PMID: 21652558 DOI: 10.1378/chest.10-2077] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent advances in basic science have greatly expanded our understanding of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the chloride and bicarbonate channel that is encoded by the gene, which is mutated in patients with CF. We review the structure, function, biosynthetic processing, and intracellular trafficking of CFTR and discuss the five classes of mutations and their impact on the CF phenotype. The therapeutic discussion is focused on the significant progress toward CFTR mutation-specific therapies. We review the results of encouraging clinical trials examining orally administered therapeutics, including agents that promote read-through of class I mutations (premature termination codons); correctors, which overcome the CFTR misfolding that characterizes the common class II mutation F508del; and potentiators, which enhance the function of class III or IV mutated CFTR at the plasma membrane. Long-term outcomes from successful mutation-specific treatments could finally answer the question that has been lingering since and even before the CFTR gene discovery: Will therapies that specifically restore CFTR-mediated chloride secretion slow or arrest the deleterious cascade of events leading to chronic infection, bronchiectasis, and end-stage lung disease?
Collapse
Affiliation(s)
- Mark P Rogan
- Department of Respiratory Medicine, Waterford Regional Hospital, Waterford, Ireland
| | - David A Stoltz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA
| | - Douglas B Hornick
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Occupational Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA.
| |
Collapse
|
35
|
Abstract
Cystic fibrosis (CF) is a lethal, recessive, genetic disease affecting approximately 1 in 2500 live births among Caucasians. The CF gene codes for a cAMP/PKA-dependent, ATP-requiring, membrane chloride ion channel, generally found in the apical membranes of many secreting epithelia and known as CFTR (cystic fibrosis transmembrane conductance regulator). There are currently over 1700 known mutations affecting CFTR, many of which give rise to a disease phenotype. Around 75% of CF alleles contain the ΔF508 mutation in which a triplet codon has been lost, leading to a missing phenylalanine at position 508 in the protein. This altered protein fails to be trafficked to the correct location in the cell and is generally destroyed by the proteasome. The small amount that does reach the correct location functions poorly. Clearly the cohort of patients with at least one ΔF508 allele are a major target for therapeutic intervention. It is now over two decades since the CF gene was discovered and during this time the properties of CFTR have been intensely investigated. At long last there appears to be progress with the pharmaco-therapeutic approach. Ongoing clinical trials have produced fascinating results in which clinical benefit appears to have been achieved. To arrive at this point ingenious ways have been devised to screen very large chemical libraries for one of two properties: (i) agents promoting trafficking of mutant CFTR to, and insertion into the membrane, and known as correctors or (ii) agents which activate appropriately located mutant CFTR, known as potentiators. The best compounds emerging from these programmes are then used as chemical scaffolds to synthesize other compounds with appropriate pharmaceutical properties, hopefully with their pharmacological activity maintained or even enhanced. In summary, this approach attempts to make the mutant CFTR function in place of the real CFTR. A major function of CFTR in healthy airways is to maintain an adequate airway surface liquid (ASL) layer. In CF the position is further confounded since epithelial sodium channels (ENaC) are no longer regulated and transport salt and water out of the airways to exacerbate the lack of ASL. Thus an additional possibility for treatment of CF is to use agents that inhibit ENaC either alone or as adjuncts to CFTR correctors and/or potentiators. Yet a further way in which a pharmacological approach to CF can be considered is to recruit alternative chloride channels, such as calcium-activated chloride channel (CaCC), to act as surrogates for CFTR. A number of P2Y(2) receptor agonists have been investigated that operate by increasing Ca(2+)(i) which in turn activates CaCC. Some of these compounds are currently in clinical trials. The knowledge base surrounding the structure and function of CFTR that has accumulated in the last 20 years is impressive. Translational research feeding from this is now yielding compounds that provide real prospects for a pharmacotherapy for this disease.
Collapse
Affiliation(s)
- A W Cuthbert
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, UK.
| |
Collapse
|
36
|
Hutt DM, Olsen CA, Vickers CJ, Herman D, Chalfant MA, Montero A, Leman LJ, Burkle R, Maryanoff BE, Balch WE, Ghadiri MR. Potential Agents for Treating Cystic Fibrosis: Cyclic Tetrapeptides that Restore Trafficking and Activity of ΔF508-CFTR. ACS Med Chem Lett 2011; 2:703-707. [PMID: 21984958 DOI: 10.1021/ml200136e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cystic fibrosis (CF) is a loss-of-function disease caused by mutations in the CF transmembrane conductance regulator (CFTR) protein, a chloride ion channel that localizes to the apical plasma membrane of epithelial cells. The most common form of the disease results from the deletion of phenylalanine-508 (ΔF508), leading to the accumulation of CFTR in the endoplasmic reticulum with a concomitant loss of chloride flux. We discovered that cyclic tetrapeptides, such as 11, 14, and 15, are able to correct the trafficking defect and restore cell surface activity of ΔF508-CFTR. Although this class of cyclic tetrapeptides is known to contain inhibitors of certain histone deacetylase (HDAC) isoforms, their HDAC inhibitory potencies did not directly correlate with their ability to rescue ΔF508-CFTR. In full HDAC profiling, 15 strongly inhibited HDACs 1, 2, 3, 10 and 11, but not HDACs 4-9. Although 15 had less potent IC(50) values than reference agent vorinostat (2) in HDAC profiling, it was markedly more potent than 2 in rescuing ΔF508-CFTR. We suggest that specific HDACs can have a differential influence on correcting ΔF508-CFTR, which may reflect both deacetylase and protein scaffolding actions.
Collapse
Affiliation(s)
- Darren M. Hutt
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Christian A. Olsen
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chris J. Vickers
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - David Herman
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Monica A. Chalfant
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ana Montero
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Luke J. Leman
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Renner Burkle
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Bruce E. Maryanoff
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - William E. Balch
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - M. Reza Ghadiri
- Departments of †Cell Biology, ‡Chemical Physiology, and §Chemistry, and ∥The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
37
|
Yu W, Kim Chiaw P, Bear CE. Probing conformational rescue induced by a chemical corrector of F508del-cystic fibrosis transmembrane conductance regulator (CFTR) mutant. J Biol Chem 2011; 286:24714-25. [PMID: 21602569 DOI: 10.1074/jbc.m111.239699] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that cause loss of function of the CFTR channel on the apical surface of epithelial cells. The major CF-causing mutation, F508del-CFTR, is misfolded, retained in the endoplasmic reticulum, and degraded. Small molecule corrector compounds have been identified using high throughput screens, which partially rescue the trafficking defect of F508del-CFTR, allowing a fraction of the mutant protein to escape endoplasmic reticulum retention and traffic to the plasma membrane, where it exhibits partial function as a cAMP-regulated chloride channel. A subset of such corrector compounds binds directly to the mutant protein, prompting the hypothesis that they rescue the biosynthetic defect by inducing improved protein conformation. We tested this hypothesis directly by evaluating the consequences of a corrector compound on the conformation of each nucleotide binding domain (NBD) in the context of the full-length mutant protein in limited proteolytic digest studies. Interestingly, we found that VRT-325 was capable of partially restoring compactness in NBD1. However, VRT-325 had no detectable effect on the conformation of the second half of the molecule. In comparison, ablation of the di-arginine sequence, R(553)XR(555) (F508del-KXK-CFTR), modified protease susceptibility of NBD1, NBD2, and the full-length protein. Singly, each intervention led to a partial correction of the processing defect. Together, these interventions restored processing of F508del-CFTR to near wild type. Importantly, however, a defect in NBD1 conformation persisted, as did a defect in channel activation after the combined interventions. Importantly, this defect in channel activation can be fully corrected by the addition of the potentiator, VX-770.
Collapse
Affiliation(s)
- Wilson Yu
- Programme in Molecular Structure and Function in the Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
38
|
Loo TW, Bartlett MC, Clarke DM. The W232R suppressor mutation promotes maturation of a truncation mutant lacking both nucleotide-binding domains and restores interdomain assembly and activity of P-glycoprotein processing mutants. Biochemistry 2011; 50:672-85. [PMID: 21182301 DOI: 10.1021/bi1016809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ATP-binding cassette (ABC) proteins contain two nucleotide-binding domains (NBDs) and two transmembrane (TM) domains (TMDs). Interdomain interactions and packing of the TM segments are critical for function, and disruption by genetic mutations contributes to disease. P-glycoprotein (P-gp) is a useful model to identify mechanisms that repair processing defects because numerous arginine suppressor mutations have been identified in the TM segments. Here, we tested the prediction that a mechanism of arginine rescue was to promote intradomain interactions between TM segments and restore interdomain assembly. We found that suppressor W232R(TM4/TMD1) rescued mutants with processing mutations in any domain and restored defective NBD1-NBD2, NBD1-TMD2, and TMD1-TMD2 interactions. W232R also promoted packing of the TM segments because it rescued a truncation mutant lacking both NBDs. The mechanism of W232R rescue likely involved intradomain hydrogen bond interactions with Asn296(TM5) since only N296A abolished rescue by W232R and rescue was only observed when Trp232 was replaced with hydrogen-bonding residues. In TMD2, suppressor T945R(TM11) also promoted packing of the TM segments because it rescued the truncation mutant lacking the NBDs and suppressed formation of alternative topologies. We propose that T945R rescue was mediated by interactions with Glu875(TM10) since T945E/E875R promoted maturation while T945R/E875A did not.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
39
|
Abstract
Inherited arrhythmia syndromes comprise an increasingly complex group of diseases involving mutations in multiple genes encoding ion channels, ion channel accessory subunits and channel interacting proteins, and various regulatory elements. These mutations serve to disrupt normal electrophysiology in the heart, leading to increased arrhythmogenic risk and death. These diseases have added impact as they often affect young people, sometimes without warning. Although originally thought to alter ion channel function, it is now increasingly recognized that mutations may alter ion channel protein and messenger RNA processing, to reduce the number of channels reaching the surface membrane. For many of these mutations, it is also known that several interventions may restore protein processing of mutant channels to increase their surface membrane expression toward normal. In this article, we reviewed inherited arrhythmia syndromes, focusing on long QT syndrome type 2, and discuss the complex biology of ion channel trafficking and pharmacological rescue of disease-causing mutant channels. Pharmacological rescue of misprocessed mutant channel proteins, or their transcripts providing appropriate small molecule drugs can be developed, has the potential for novel clinical therapies in some patients with inherited arrhythmia syndromes.
Collapse
|
40
|
Mendre C, Mouillac B. [Pharmacological chaperones: a potential therapeutic treatment for conformational diseases]. Med Sci (Paris) 2010; 26:627-35. [PMID: 20619166 DOI: 10.1051/medsci/2010266-7627] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many genetic and neurodegenerative diseases in humans result from protein misfolding and/or aggregation. These diseases are named conformational diseases. As a result, the misfolded non functional proteins are rejected and misrouted by the cellular quality control system, and cannot play their endogenous physiological roles. Specific compounds (ligands, substrates or inhibitors) known as pharmacological chaperones are able to bind and stabilize these misfolded proteins. Their interaction allows the target proteins to escape the quality control system and to be functionally rescued. These pharmacochaperones may possess different intrinsic activity: they can be antagonists (inhibitors), agonists (activators) or allosteric modulators of the target receptors, ionic channels or enzymes. Pharmacological chaperones have obviously a therapeutic potential to treat rare diseases like cystic fibrosis, retinitis pigmentosa, nephrogenic diabetes insipidus, Fabry disease, Gaucher disease, but also for cancers and more frequent and highly invalidant neurodegenerative disorders such as Alzheimer's disease or Parkinson's disease.
Collapse
Affiliation(s)
- Christiane Mendre
- Universités Montpellier 1 et 2, 141, 34094 Montpellier Cedex 05, France.
| | | |
Collapse
|
41
|
Patterson ST, Reithmeier RAF. Cell surface rescue of kidney anion exchanger 1 mutants by disruption of chaperone interactions. J Biol Chem 2010; 285:33423-33434. [PMID: 20628050 DOI: 10.1074/jbc.m110.144261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the human kidney anion exchanger 1 (kAE1) membrane glycoprotein cause impaired urine acidification resulting in distal renal tubular acidosis (dRTA). Dominant and recessive dRTA kAE1 mutants exhibit distinct trafficking defects with retention in the endoplasmic reticulum (ER), Golgi, or mislocalization to the apical membrane in polarized epithelial cells. We examined the interaction of kAE1 with the quality control system responsible for the folding of membrane glycoproteins and the retention and degradation of misfolded mutants. Using small molecule inhibitors to disrupt chaperone interactions, two functional, dominant kAE1 mutants (R589H and R901stop), retained in the ER and targeted to the proteasome for degradation by ubiquitination, were rescued to the basolateral membrane of Madin-Darby canine kidney cells. In contrast, the Golgi-localized, recessive G701D and the severely misfolded, ER-retained dominant Southeast Asian ovalocytosis (SAO) mutants were not rescued. These results show that functional dRTA mutants are retained in the ER due to their interaction with molecular chaperones, particularly calnexin, and that disruption of these interactions can promote their escape from the ER and cell surface rescue.
Collapse
Affiliation(s)
- Sian T Patterson
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Reinhart A F Reithmeier
- From the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
42
|
Kang N, Jun AH, Bhutia YD, Kannan N, Unadkat JD, Govindarajan R. Human equilibrative nucleoside transporter-3 (hENT3) spectrum disorder mutations impair nucleoside transport, protein localization, and stability. J Biol Chem 2010; 285:28343-52. [PMID: 20595384 DOI: 10.1074/jbc.m110.109199] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence reveals that sole mutations in hENT3 cause a spectrum of human genetic disorders. Among these include H syndrome, characterized by scleroderma, hyperpigmentation, hypertrichosis, hepatomegaly, cardiac abnormalities and musculoskeletal deformities, pigmented hypertrichotic dermatosis with insulin-dependent diabetes syndrome, characterized by autoantibody-negative diabetes mellitus and skin deformities, familial Rosai-Dorfman disease, characterized by short stature, familial histiocytosis and sinus histiocytosis with massive lymphadenopathy (SHML), characterized by severe tissue infiltration of immune cells and swollen lymph nodes. hENT3 spectrum disorders share a common mutation and share overlapping clinical manifestations that display many intriguing resemblances to mitochondrial and lysosomal disorders. Although earlier studies identify hENT3 as a mitochondrial and a lysosomal nucleoside transporter, the precise connections between hENT3 and the pathophysiology of these disorders remain unresolved. In this study, we performed functional and biochemical characterization of these mutations in hENT3. We report severe reductions/losses of hENT3 nucleoside transport functions of hENT3 syndrome mutants. In addition to transport alterations, we provide evidence for possible loss of hENT3 functions in all H and pigmented hypertrichotic dermatosis with insulin-dependent diabetes syndromes due to either mistrafficking or altered stability of mutant hENT3 proteins.
Collapse
Affiliation(s)
- Nayoung Kang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
43
|
Robert R, Carlile GW, Liao J, Balghi H, Lesimple P, Liu N, Kus B, Rotin D, Wilke M, de Jonge HR, Scholte BJ, Thomas DY, Hanrahan JW. Correction of the Delta phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine. Mol Pharmacol 2010; 77:922-30. [PMID: 20200141 DOI: 10.1124/mol.109.062679] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated anion channel expressed in epithelial cells. The most common mutation Delta Phe508 leads to protein misfolding, retention by the endoplasmic reticulum, and degradation. One promising therapeutic approach is to identify drugs that have been developed for other indications but that also correct the CFTR trafficking defect, thereby exploiting their known safety and bioavailability in humans and reducing the time required for clinical development. We have screened approved, marketed, and off-patent drugs with known safety and bioavailability using a Delta Phe508-CFTR trafficking assay. Among the confirmed hits was glafenine, an anthranilic acid derivative with analgesic properties. Its ability to correct the misprocessing of CFTR was confirmed by in vitro and in vivo studies using a concentration that is achieved clinically in plasma (10 microM). Glafenine increased the surface expression of Delta Phe508-CFTR in baby hamster kidney (BHK) cells to approximately 40% of that observed for wild-type CFTR, comparable with the known CFTR corrector 4-cyclohexyloxy-2-{1-[4-(4-methoxybenzensulfonyl)-piperazin-1-yl]-ethyl}-quinazoline (VRT-325). Partial correction was confirmed by the appearance of mature CFTR in Western blots and by two assays of halide permeability in unpolarized BHK and human embryonic kidney cells. Incubating polarized CFBE41o(-) monolayers and intestines isolated from Delta Phe508-CFTR mice (treated ex vivo) with glafenine increased the short-circuit current (I(sc)) response to forskolin + genistein, and this effect was abolished by 10 microM CFTR(inh)172. In vivo treatment with glafenine also partially restored total salivary secretion. We conclude that the discovery of glafenine as a CFTR corrector validates the approach of investigating existing drugs for the treatment of CF, although localized delivery or further medicinal chemistry may be needed to reduce side effects.
Collapse
Affiliation(s)
- Renaud Robert
- Physiology Department, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cholon DM, O'Neal WK, Randell SH, Riordan JR, Gentzsch M. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures. Am J Physiol Lung Cell Mol Physiol 2009; 298:L304-14. [PMID: 20008117 DOI: 10.1152/ajplung.00016.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, DeltaF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in DeltaF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of DeltaF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of DeltaF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking.
Collapse
Affiliation(s)
- Deborah M Cholon
- Cystic Fibrosis Research Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | | | | | | | | |
Collapse
|
45
|
Loo TW, Bartlett MC, Clarke DM. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule. Biochemistry 2009; 48:9882-90. [PMID: 19761259 DOI: 10.1021/bi9004842] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deletion of Phe508 in cystic fibrosis transmembrane conductance regulator (DeltaF508 CFTR) causes cystic fibrosis. CFTR consists of two homologous halves with each containing a nucleotide-binding domain (NBD) and a transmembrane domain (TMD). DeltaF508 CFTR appears to be trapped in an incompletely folded state. Small molecules (correctors) promote folding of DeltaF508 CFTR with relatively low efficiency. Understanding the mechanism of repair may lead to the development of more effective correctors. Here we tested the effect of correctors and the DeltaF508 mutation on interactions between the halves of CFTR when expressed as separate polypeptides. Glycosylation of C-half CFTR was defective when expressed alone as a mixture of core and unglycosylated proteins was detected. Coexpression of C-half CFTR with either wild-type N-half or DeltaF508/N-half CFTR, however, increased the amount of core-glycosylated protein, but only coexpression with wild-type N-half promoted maturation of C-half CFTR (Endo H resistant). This suggested that the DeltaF508 mutation inhibited some interactions between N-half and C-half CFTRs. Interaction of A52-tagged wild-type N-half or DeltaF508/N-half CFTR with histidine-tagged C-half CFTR was then followed by nickel-chelate chromatography. Coexpression of A52-tagged wild-type N-half or DeltaF508/N-half CFTR with histidine-tagged C-half CFTR resulted in the wild-type N-half CFTR but not DeltaF508/N-half CFTR protein being retained on the column. Coexpression of DeltaF508/N-half and C-half CFTR in the presence correctors VX-325 and corr-4a, however, restored interactions between the two halves. An interaction that was restored was that between NBD1 and TMD2 as the correctors restored cross-linking of mutant DeltaF508/NBD1(V510C)/TMD2(A1067C). Therefore, correctors promote proper interactions between the two halves of CFTR.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
46
|
Gannon MK, Holt JJ, Bennett SM, Wetzel BR, Loo TW, Bartlett MC, Clarke DM, Sawada GA, Higgins JW, Tombline G, Raub TJ, Detty MR. Rhodamine inhibitors of P-glycoprotein: an amide/thioamide "switch" for ATPase activity. J Med Chem 2009; 52:3328-41. [PMID: 19402665 DOI: 10.1021/jm900253g] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have examined 46 tetramethylrosamine/rhodamine derivatives with structural diversity in the heteroatom of the xanthylium core, the amino substituents of the 3- and 6-positions, and the alkyl, aryl, or heteroaryl group at the 9-substituent. These compounds were examined for affinity and ATPase stimulation in isolated MDR3 CL P-gp and human P-gp-His(10), for their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant MDCKII-MDR1 cells, and for transport in monolayers of MDCKII-MDR1 cells. Thioamide 31-S gave K(M) of 0.087 microM in human P-gp. Small changes in structure among this set of compounds affected affinity as well as transport rate (or flux) even though all derivatives examined were substrates for P-gp. With isolated protein, tertiary amide groups dictate high affinity and high stimulation while tertiary thioamide groups give high affinity and inhibition of ATPase activity. In MDCKII-MDR1 cells, the tertiary thioamide-containing derivatives promote uptake of calcein AM and have very slow passive, absorptive, and secretory rates of transport relative to transport rates for tertiary amide-containing derivatives. Thioamide 31-S promoted uptake of calcein AM and inhibited efflux of vinblastine with IC(50)'s of approximately 2 microM in MDCKII-MDR1 cells.
Collapse
Affiliation(s)
- Michael K Gannon
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Müllenbach R, Lammert F. The transporter "variome": the missing link between gene variants and bile salt transporter function. Hepatology 2009; 49:352-4. [PMID: 19177487 DOI: 10.1002/hep.22818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Trzcinska-Daneluti AM, Ly D, Huynh L, Jiang C, Fladd C, Rotin D. High-content functional screen to identify proteins that correct F508del-CFTR function. Mol Cell Proteomics 2008; 8:780-90. [PMID: 19088066 DOI: 10.1074/mcp.m800268-mcp200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cystic Fibrosis is caused by mutations in CFTR, with a deletion of a phenylalanine at position 508 (F508del-CFTR) representing the most common mutation. The F508del-CFTR protein exhibits a trafficking defect and is retained in the endoplasmic reticulum. Here we describe the development of a high-content screen based on a functional assay to identify proteins that correct the F508del-CFTR defect. Using a HEK293 MSR GripTite cell line that stably expresses F508del-CFTR, we individually co-expressed approximately 450 unique proteins fused to the Cl(-)-sensitive YFP(H148Q/I152L) mutant. We then tested correction of F508del-CFTR function by the CI(-)/l(-) exchange method following stimulation with forskolin/IBMX/genistein, using quantitative recordings in multiple individual cells with a high-content (high-throughput) Cellomics KSR imaging system. Using this approach, we identified several known and novel proteins that corrected F508del-CFTR function, including STAT1, Endothelin 1, HspA4, SAPK substrate protein 1, AP2M1, LGALS3/galectin-3, Trk-fused gene, Caveolin 2, PAP/REG3alpha, and others. The ability of these correctors to rescue F508del-CFTR trafficking was then validated by demonstrating their enhancement of maturation (appearance of band C) and by cell surface expression of F508del-CFTR bearing HA tag at the ectodomain using confocal microscopy and flow cytometry. These data demonstrate the utility of high-content analyses for identifying proteins that correct mutant CFTR and discover new proteins that stimulate this correction. This assay can also be utilized for RNAi screens to identify inhibitory proteins that block correction of F508del-CFTR, small molecule, and peptide screens.
Collapse
Affiliation(s)
- Agata M Trzcinska-Daneluti
- Program in Cell Biology, The Hospital for Sick Children, and Biochemistry Department, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Wang X, Koulov AV, Kellner WA, Riordan JR, Balch WE. Chemical and biological folding contribute to temperature-sensitive DeltaF508 CFTR trafficking. Traffic 2008; 9:1878-93. [PMID: 18764821 PMCID: PMC2683680 DOI: 10.1111/j.1600-0854.2008.00806.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Proteostasis (Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 2008;319:916-919) refers to the biology that maintains the proteome in health and disease. Proteostasis is challenged by the most common mutant in cystic fibrosis, DeltaF508, a chloride channel [the cystic fibrosis transmembrane conductance regulator (CFTR)] that exhibits a temperature-sensitive phenotype for coupling to the coatomer complex II (COPII) transport machine for exit from the endoplasmic reticulum. Whether rescue of export of DeltaF508 CFTR at reduced temperature simply reflects energetic stabilization of the chemical fold defined by its primary sequence or requires a unique proteostasis environment is unknown. We now show that reduced temperature (30 degrees C) export of DeltaF508 does not occur in some cell types, despite efficient export of wild-type CFTR. We find that DeltaF508 export requires a local biological folding environment that is sensitive to heat/stress-inducible factors found in some cell types, suggesting that the energetic stabilization by reduced temperature is necessary, but not sufficient, for export of DeltaF508. Thus, the cell may require a proteostasis environment that is in part distinct from the wild-type pathway to restore DeltaF508 coupling to COPII. These results are discussed in the context of the energetics of the protein fold and the potential application of small molecules to achieve a proteostasis environment favoring export of a functional form of DeltaF508.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
50
|
Proesmans M, Vermeulen F, De Boeck K. What's new in cystic fibrosis? From treating symptoms to correction of the basic defect. Eur J Pediatr 2008; 167:839-49. [PMID: 18389279 DOI: 10.1007/s00431-008-0693-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 02/11/2008] [Indexed: 01/18/2023]
Abstract
Chronic relentless lung infection and pancreatic insufficiency are the cardinal features of cystic fibrosis (CF), a life-shortening autosomal recessive disease. Mutations in the 'cystic fibrosis transmembrane conductance regulator' (CFTR) are currently classified into five groups according to their repercussion on CFTR protein synthesis and its chloride channel function. Stop codon mutations (class I) result in a truncated nonfunctional CFTR, class II mutations consist of aberrantly folded CFTR protein that is degraded by the cell quality control system, while class III mutations lead to defective regulation of the CFTR protein and, consequently, the absence of CFTR function. These three classes usually lead to a classic CF phenotype with pancreatic insufficiency. CFTR mutations that lead to defective chloride conductance are grouped together in class IV. Class V mutations interfere with normal transcription, thereby reducing the amount of otherwise normal CFTR. These latter two classes are mostly associated with a milder expression of the disease. In the absence of CFTR function, unrestrained Na+ absorption and the failure of active Cl- secretion lead to a decreased airway surface liquid (ASL) volume and subsequent failure of normal mucociliary clearance. This review highlights recent therapeutic strategies that either target the underlying defect or the early steps in CF pathophysiology. To date, gene therapy has failed to demonstrate a clinical benefit after repeated administration. Mutation-specific chloride channel correction pharmacotherapy is currently being developed, an example of which is PTC124, a new chemical compound that selectively induces read-through of premature stop codons. However, clinical efficacy for most of the compounds still has to be proven in large clinical trials. The positive effect of nebulised hypertonic saline on mucociliary clearance is based on the restoration of ASL height. Recent advances in the current treatment of lung infection and inflammation are highlighted in this review. Lung transplantation should be considered in terminally ill patients, but the timing of the transplantation is crucial: transplanting too early shortens survival, while transplanting too late results in patients dying on the waiting list.
Collapse
Affiliation(s)
- Marijke Proesmans
- Department of Pediatrics, University Hospital of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | | | | |
Collapse
|