1
|
Jeon I, Moon SJ, Park SI, Choi Y, Jung J, Yu KS, Chung JY. Pharmacokinetics of a Fixed-Dose Combination of Amlodipine/Losartan and Chlorthalidone Compared to Concurrent Administration of the Separate Components. Clin Pharmacol Drug Dev 2021; 11:91-99. [PMID: 34159751 DOI: 10.1002/cpdd.963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
Hypertension is more effectively treated with coadministration of 2 or more antihypertensive drugs than with high-dose monotherapy. Therefore, calcium channel blockers, angiotensin II receptor blockers, and thiazides are coadministered to treat hypertension. The objective of this study was to compare the pharmacokinetic (PK) profiles of HCP1401, a fixed-dose combination of amlodipine 5 mg, losartan 100 mg, and chlorthalidone 25 mg, with the separate components (loose combination) of amlodipine/losartan 5/100 mg and chlorthalidone 25 mg. A randomized, open-label, single-dose, 2-way crossover study was conducted. Blood samples for amlodipine and chlorthalidone were collected for up to 144 hours after dosing, whereas those for losartan were collected up to 48 hours after dosing. The PK parameters of these drugs were calculated using a noncompartmental method. Sixty subjects completed the study. The geometric mean ratios and 90% confidence intervals of maximum plasma concentration and area under the concentration-time curve to the last measurable point for amlodipine, losartan, and chlorthalidone were within the conventional bioequivalence range of 0.80 to 1.25. There were no clinically significant changes in safety assessments, and the treatments were well tolerated. The PK characteristics and tolerability profiles of a single oral FDC of amlodipine, losartan, and chlorthalidone were equivalent to those of individual tablets in a loose combination.
Collapse
Affiliation(s)
- Inseung Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Seol Ju Moon
- Center for Clinical Pharmacology and Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Sang-In Park
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Yewon Choi
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jina Jung
- Hanmi Pharmaceutical Company, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
2
|
Poudel S, Kim DW. Developing pH-Modulated Spray Dried Amorphous Solid Dispersion of Candesartan Cilexetil with Enhanced In Vitro and In Vivo Performance. Pharmaceutics 2021; 13:497. [PMID: 33917403 PMCID: PMC8067465 DOI: 10.3390/pharmaceutics13040497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/24/2022] Open
Abstract
Candesartan cilexetil (CC), a prodrug and highly effective antihypertensive agent, is a poorly soluble (BCS Class II) drug with limited bioavailability. Here, we attempted to improve CC's bioavailability by formulating several CC-loaded amorphous solid dispersions with a hydrophilic carrier (PVPK30) and pH modifier (sodium carbonate) using the spray drying technique. Solubility, in vitro dissolution, and moisture content tests were used for screening the optimized formulation. We identified an optimized formulation of CC/PVPK30/SC, which at the ratio of 1:0.5:1 (w/w/w) exhibited a 30,000-fold increase in solubility and a more than 9-fold enhancement in dissolution compared to pure CC. Solid-state characterization revealed that in pH-modulated CC amorphous solid dispersion (CCSDpM), CC's crystallinity was altered to an amorphous state with the absence of undesirable interactions. Stability studies also showed that the optimized formulation was stable with good drug content and drug release under accelerated conditions of up to 4 weeks and real-time stability conditions of up to 12 weeks. Furthermore, pharmacokinetic parameters, such as AUC and Cmax of candesartan, had a 4.45-fold and 7.42-fold improvement, respectively, in CCSDpM-treated rats compared to those in the CC-treated rats. Thus, these results suggest that CCSDpM is highly effective for increasing oral absorption. The application of these techniques can be a viable strategy to improve a drug's bioavailability.
Collapse
Affiliation(s)
| | - Dong Wuk Kim
- Vessel-Organ Interaction Research Center (VOICE, MRC), BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
3
|
Fleischmann D, Maslanka Figueroa S, Beck S, Abstiens K, Witzgall R, Schweda F, Tauber P, Goepferich A. Adenovirus-Mimetic Nanoparticles: Sequential Ligand-Receptor Interplay as a Universal Tool for Enhanced In Vitro/ In Vivo Cell Identification. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34689-34702. [PMID: 32639709 DOI: 10.1021/acsami.0c10057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Viral infection patterns often rely on precisely coordinated sequences of distinct ligand-receptor interactions, leading in many cases to an outstanding target cell specificity. A successful mimicry of viral targeting strategies to create more site-specific nanoparticles (NPs) would therefore require particle-cell interactions to also be adequately controllable. In the present study, hetero-multivalent block-copolymer NPs present their attached ligands in a sterically controlled manner to create a sequential NP-cell interaction similar to the cell infiltration strategy of human adenovirus type 2. Targeting renal mesangial cells, particles therefore initially bind angiotensin II receptor type 1 (AT1r) on the cell surface via a structurally flexible AT1r antagonist. After a mandatory spatial approach, particle endocytosis is realized via binding of immobile αVβ3 integrins with a previously concealed secondary ligand, thereby creating a stepwise particle-cell interplay of primary NP attachment and subsequent uptake. Manufactured adenovirus-mimetic NPs show great avidity for both target motifs in vitro, leading to a substantial binding as well as subsequent cell uptake into target mesangial cells. Additionally, steric shielding of secondary ligand visibility leads to a highly controllable, sequential ligand-receptor interaction, whereby hetero-functional NPs activate mesangial cell surface integrins only after a successful prior binding to the AT1r. This stepwise cell identification significantly enhances mesangial cell specificity in co-culture assays with different off-target cells. Additionally, described NPs display excellent in vivo robustness by efficiently accumulating in the mesangium upon injection, thereby opening new paths for possible drug delivery applications.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Sara Maslanka Figueroa
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Sebastian Beck
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Kathrin Abstiens
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Frank Schweda
- Department of Physiology II, Institute for Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Philipp Tauber
- Department of Physiology II, Institute for Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
4
|
One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process. Mol Divers 2017; 22:291-303. [PMID: 29230611 DOI: 10.1007/s11030-017-9801-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
A facile one-pot method has been developed for the synthesis of novel pyrrolo[2,1-a]pyrazine scaffolds. A variety of 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives were obtained in moderate to high yields in methanol using a one-pot four-component condensation of 1-(2-bromoethyl)-1H-pyrrole-2-carbaldehyde, amine, isocyanide and sodium azide at room temperature. These reactions presumably proceed via a domino imine formation, intramolecular annulation and Ugi-azide reaction. Unambiguous assignment of the molecular structures was carried out by single-crystal X-ray diffraction.
Collapse
|
5
|
Synthesis, pH dependent, plasma and enzymatic stability of bergenin prodrugs for potential use against rheumatoid arthritis. Bioorg Med Chem 2017; 25:5513-5521. [DOI: 10.1016/j.bmc.2017.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 01/11/2023]
|
6
|
Mechanisms underlying the cardiac antifibrotic effects of losartan metabolites. Sci Rep 2017; 7:41865. [PMID: 28157237 PMCID: PMC5291109 DOI: 10.1038/srep41865] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Excessive myocardial collagen deposition and cross-linking (CCL), a process regulated by lysyl oxidase (LOX), determines left ventricular (LV) stiffness and dysfunction. The angiotensin II antagonist losartan, metabolized to the EXP3179 and EXP3174 metabolites, reduces myocardial fibrosis and LV stiffness in hypertensive patients. Our aim was to investigate the differential influence of losartan metabolites on myocardial LOX and CCL in an experimental model of hypertension with myocardial fibrosis, and whether EXP3179 and EXP3174 modify LOX expression and activity in fibroblasts. In rats treated with NG-nitro-L-arginine methyl ester (L-NAME), administration of EXP3179 fully prevented LOX, CCL and connective tissue growth factor (CTGF) increase, as well as fibrosis, without normalization of blood pressure (BP). In contrast, administration of EXP3174 normalized BP and attenuated fibrosis but did not modify LOX, CCL and CTGF. In TGF-β1-stimulated fibroblasts, EXP3179 inhibited CTGF and LOX expression and activity with lower IC50 values than EXP3174. Our results indicate that, despite a lower antihypertensive effect, EXP3179 shows higher anti-fibrotic efficacy than EXP3174, likely through its ability to prevent the excess of LOX and CCL. It is suggested that the anti-fibrotic effect of EXP3179 may be partially mediated by the blockade of CTGF-induced LOX in fibroblasts.
Collapse
|
7
|
Modulating lipophilicity of rohitukine via prodrug approach: Preparation, characterization, and in vitro enzymatic hydrolysis in biorelevant media. Eur J Pharm Sci 2016; 92:203-11. [DOI: 10.1016/j.ejps.2016.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 01/22/2023]
|
8
|
Yang Y, Zhao Z, Wang Y, Yang L, Liu D, Yang X, Pan W. A novel asymmetric membrane osmotic pump capsule with in situ formed delivery orifices for controlled release of gliclazide solid dispersion system. Int J Pharm 2016; 506:340-50. [PMID: 27132166 DOI: 10.1016/j.ijpharm.2016.04.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/07/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
In this study, a novel asymmetric membrane osmotic pump capsule of gliclazide (GLC) solid dispersion was developed to achieve a controlled drug release. The capsule shells were obtained by wet phase inversion process using cellulose acetate as semi-permeable membrane, glycerol and kolliphor P188 as pore formers, then filled with the mixture of GLC solid dispersion and pH modifiers. Differentiate from the conventional formulations, sodium carbonate was chosen as the osmotic agent and effervescent agent simultaneously to control the drug release, instead of the polymer materials. The ternary solid dispersion of GLC, with polyethylene glycol 6000 and kolliphor P188 as carriers, was prepared by solvent-evaporation method, realizing a 2.09-fold increment in solubility and dissolution rate in comparison with unprocessed GLC. Influence of the composition of the coating solution and pH modifiers on the drug release from the asymmetric membrane capsule (AMC) was investigated. The ultimate cumulative release of the optimal formulation reached 91.32% in an approximately zero-order manner. The osmotic pressure test and dye test were conducted to validate the drug release mechanism from the AMC. The in vivo pharmacokinetic study of the AMC indicated a 102.66±10.95% relative bioavailability compared with the commercial tablet, suggesting the bioequivalence between the two formulations. Consequently, the novel controlled delivery system with combination of solid dispersion and AMC system is capable of providing a satisfactory alternative to release the water-insoluble drugs in a controlled manner.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Zhinan Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yongfei Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Lu Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Dandan Liu
- School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, PR China
| | - Xinggang Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
9
|
Li S, Wang X, Wang Y, Zhao Q, Zhang L, Yang X, Liu D, Pan W. A novel osmotic pump-based controlled delivery system consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen: in vitro and in vivo evaluation. Drug Dev Ind Pharm 2015; 41:2089-99. [PMID: 26304493 DOI: 10.3109/03639045.2015.1078348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.
Collapse
Affiliation(s)
- Shujuan Li
- a Department of Pharmaceutics , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Xiaoyu Wang
- a Department of Pharmaceutics , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Yingying Wang
- a Department of Pharmaceutics , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Qianqian Zhao
- a Department of Pharmaceutics , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Lina Zhang
- a Department of Pharmaceutics , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Xinggang Yang
- a Department of Pharmaceutics , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Dandan Liu
- b School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology , Benxi , PR China
| | - Weisan Pan
- a Department of Pharmaceutics , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| |
Collapse
|
10
|
Hennig R, Veser A, Kirchhof S, Goepferich A. Branched Polymer-Drug Conjugates for Multivalent Blockade of Angiotensin II Receptors. Mol Pharm 2015; 12:3292-302. [PMID: 26252154 DOI: 10.1021/acs.molpharmaceut.5b00301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of angiotensin receptor blockers (ARBs) for treatment of ocular diseases associated with neovascularizations, such as proliferative diabetic retinopathy, shows tremendous promise but is presently limited due to short intravitreal half-life. Conjugation of ARB molecules to branched polymers could vastly augment their therapeutic efficacy. EXP3174, a potent non-peptide ARB, was conjugated to branched poly(ethylene glycol) (PEG) and poly(amido amine) (PAMAM) dendrimers: 7.8 ligand molecules were tethered to each 40 kDa PEG molecule whereas 16.7 ligand molecules were linked to each PAMAM generation 5 dendrimer. The multivalent PEG and PAMAM conjugates blocked AT1R signaling with an IC50 of 224 and 36.3 nM, respectively. The 6-fold higher affinity of the multivalent ligand-conjugated PAMAM dendrimers was due to their unique microarchitecture and ability to suppress polymer-drug interactions. Remarkably, both polymer-drug conjugates exhibited no cytotoxicity, in stark contrast to plain PAMAM dendrimers. With sufficiently long vitreous half-lives, both synthesized polymer-ARB conjugates have the potential to pave a new path for the therapy of ocular diseases accompanied by retinal neovascularizations.
Collapse
Affiliation(s)
- Robert Hennig
- Department of Pharmaceutical Technology, University of Regensburg , Regensburg, Germany
| | - Anika Veser
- Department of Pharmaceutical Technology, University of Regensburg , Regensburg, Germany
| | - Susanne Kirchhof
- Department of Pharmaceutical Technology, University of Regensburg , Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg , Regensburg, Germany
| |
Collapse
|
11
|
Synthesis and biological evaluation of liguzinediol mono- and dual ester prodrugs as promising inotropic agents. Molecules 2014; 19:18057-72. [PMID: 25379643 PMCID: PMC6271266 DOI: 10.3390/molecules191118057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/29/2014] [Accepted: 10/29/2014] [Indexed: 11/24/2022] Open
Abstract
The potent positive inotropic effect, together with the relatively low safety risk of liguzinediol (LZDO), relative to currently available inotropic drugs, has prompted us to intensively research and develop LZDO as a potent positive inotropic agent. In this study, to obtain LZDO alternatives for oral chronic administration, a series of long-chain fatty carboxylic mono- and dual-esters of LZDO were synthesized, and preliminarily evaluated for physicochemical properties and bioconversion. Enhanced lipophilic properties and decreased solubility of the prodrugs were observed as the side chain length increased. All esters showed conspicuous chemical stability in phosphate buffer (pH 7.4). Moreover, the enzymatic hydrolysis of esters in human plasma and human liver microsomes confirmed that the majority of esters were converted to LZDO, with release profiles that varied due to the size and structure of the side chain. In vivo pharmacokinetic studies following oral administration of monopivaloyl (M5), monodecyl (M10) and monododecyl (M12) esters demonstrated the evidently extended half-lives relative to LZDO dosed alone. In particular the monopivaloyl ester M5 exhibited an optimal pharmacokinetic profile with appropriate physiochemical characteristics.
Collapse
|
12
|
Yuan Y, Zhang H, Ma W, Sun S, Wang B, Zhao L, Zhang G, Chai Y. Influence of compound danshen tablet on the pharmacokinetics of losartan and its metabolite EXP3174 by liquid chromatography coupled with mass spectrometry. Biomed Chromatogr 2013; 27:1219-24. [PMID: 23722257 DOI: 10.1002/bmc.2930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/10/2022]
Abstract
Losartan is an effective anti-hypotension drug frequently used in clinic. Compound danshen tablet (CDST) is an important traditional Chinese multiherbal formula composed of Danshen, Sanqi and Bingpian, which is widely used for the treatment of cardiovascular and cerebrovascular diseases in China. More often, losartan and CDST are simultaneously used for the treatment of anti-hypertension in the clinic. The aim of this study was to compare the pharmacokinetics of losartan and EXP3174 after oral administration of single losartan and both losartan and CDST, and to investigate the influence of CDST on the pharmacokinetics of losartan and its metabolite EXP3174. Male Sprague-Dawley rats were randomly assigned to two groups: a losartan-only group and a losartan and CDST group. Plasma concentrations of losartan and EXP3174 were determined by LC-MS at designated points after drug administration, and the main pharmacokinetic parameters were estimated. It was found that there were significant differences (p < 0.05) between the pharmacokinetic parameters of losartan and EXP3174, which showed that CDST influenced the metabolism and excretion of losartan in vivo. The result could be used for clinical medication guidance of losartan and CDST to avoid the occurrence of adverse reactions.
Collapse
Affiliation(s)
- Yongfang Yuan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Marasini N, Yan YD, Poudel BK, Choi H, Yong CS, Kim JO. Development and Optimization of Self‐Nanoemulsifying Drug Delivery System with Enhanced Bioavailability by Box–Behnken Design and Desirability Function. J Pharm Sci 2012; 101:4584-96. [DOI: 10.1002/jps.23333] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/20/2012] [Accepted: 09/11/2012] [Indexed: 11/09/2022]
|
14
|
Marasini N, Tran TH, Poudel BK, Cho HJ, Choi YK, Chi SC, Choi HG, Yong CS, Kim JO. Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique. Int J Pharm 2012; 441:424-32. [PMID: 23174408 DOI: 10.1016/j.ijpharm.2012.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/06/2012] [Accepted: 11/09/2012] [Indexed: 01/10/2023]
Abstract
The present study was undertaken to overcome the problems associated with solubility, dissolution and oral bioavailability of a poorly water-soluble ionizable drug, telmisartan (TMS). For these purposes, a solubility test was carried to select the appropriate formulation composition from various carriers and alkalizers. Solid dispersions (SDs) of TMS were prepared at different drug-to-carrier ratios by the spray-drying technique, and were characterized by dissolution and aqueous solubility studies. The optimum formulation was investigated by dissolution studies at different pH and water media and its solid state characterisations were performed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. In solubility and dissolution tests, all TMS-loaded pH-modulated SDs (pH(M)-SDs) exhibited marked improvement in the dissolution behavior when compared with crystalline TMS powder. The optimum formulation of pH(M)-SD consisted of TMS/PVP (polyvinylpyrrolidone) K30/Na(2)CO(3) at a weight ratio of 2/0.5/3 and showed significant improvement in the aqueous solubility and dissolution rate by approximately 40,000- and 3-fold, respectively, compared to TMS powder. Solid-state characterization revealed the changed in crystallinity of TMS into amorphous state. Furthermore, area under the drug concentration time-curve (AUC) of TMS from the pH(M)-SD increased by 13.4- and 2.1-fold, compared with TMS powder and commercial product, respectively. According to these observations, taken together with dissolution and pharmacokinetic behaviors, pH-modulated SD in the presence of an alkalizer for a poorly water-soluble ionizable drug, TMS, appeared to be efficacious for enhancing its bioavailability.
Collapse
Affiliation(s)
- Nirmal Marasini
- College of Pharmacy, Yeungnam University, 214-1 Dae-Dong, Gyungsan, Gyungbuk 712-749, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The prodrug concept has been used to improve undesirable properties of drugs since the late 19th century, although it was only at the end of the 1950s that the actual term prodrug was introduced for the first time. Prodrugs are inactive, bioreversible derivatives of active drug molecules that must undergo an enzymatic and/or chemical transformation in vivo to release the active parent drug, which can then elicit its desired pharmacological effect in the body. In most cases, prodrugs are simple chemical derivatives that are only one or two chemical or enzymatic steps away from the active parent drug. However, some prodrugs lack an obvious carrier or promoiety but instead result from a molecular modification of the prodrug itself, which generates a new active compound. Numerous prodrugs designed to overcome formulation, delivery, and toxicity barriers to drug utilization have reached the market. In fact, approximately 20% of all small molecular drugs approved during the period 2000 to 2008 were prodrugs. Although the development of a prodrug can be very challenging, the prodrug approach represents a feasible way to improve the erratic properties of investigational drugs or drugs already on the market. This review introduces in depth the rationale behind the use of the prodrug approach from past to present, and also considers the possible problems that can arise from inadequate activation of prodrugs.
Collapse
Affiliation(s)
- Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | | | | |
Collapse
|
16
|
Yang SH, Cho YA, Choi JS. Effects of ticlopidine on pharmacokinetics of losartan and its main metabolite EXP-3174 in rats. Acta Pharmacol Sin 2011; 32:967-72. [PMID: 21666702 PMCID: PMC4003123 DOI: 10.1038/aps.2011.32] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/23/2011] [Indexed: 11/09/2022]
Abstract
AIM Losartan and antiplatelet agent ticlopidine can be prescribed concomitantly for prevention or therapy of cardiovascular diseases. Hence, the effects of ticlopidine on the pharmacokinetics of losartan and its active metabolite EXP-3174 were evaluated in rats. METHODS Ticlopidine (4 or 10 mg/kg po) was administered 30 min before administration of losartan (9 mg/kg po or 3 mg/kg iv). The activity of human CYP2C9 and 3A4 were measured using the CYP inhibition assay kit. The activity of P-gp was evaluated using rhodamine-123 retention assay in MCF-7/ADR cells. RESULTS Ticlopidine (10 mg/kg) significantly increased the areas under the plasma concentration-time curves (AUCs) and peak plasma concentration (C(max)) of oral losartan (9 mg/kg), as well as the AUCs of the active metabolite EXP-3174. Ticlopidine (10 mg/kg) did not significantly change the pharmacokinetics of intravenous losartan (3 mg/kg). Ticlopidine inhibited CYP2C9 and 3A4 with IC₅₀ values of 26.0 and 32.3 μmol/L, respectively. The relative cellular uptake of rhodamine-123 was unchanged. CONCLUSION The significant increase in the AUC of losartan (9 mg/kg) by ticlopidine (10 mg/kg) could be attributed to the inhibition of CYP2C9- and 3A4-mediated losartan metabolism in small intestine and/or in liver. The inhibition of P-gp in small intestine and reduction of renal elimination of losartan by ticlopidine are unlikely to be causal factors.
Collapse
Affiliation(s)
- Si-hyung Yang
- College of Medicine, Dankook University, Cheonan 330–714, Korea
| | - Young-ah Cho
- College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 660–701, Korea
| | - Jun-shik Choi
- College of Pharmacy, Chosun University, Gwangju 501–759, Korea
| |
Collapse
|