1
|
de la Rosa-Carrillo D, Suárez-Cuartín G, Sibila O, Golpe R, Girón RM, Martínez-García MÁ. Efficacy and Safety of Dry Powder Antibiotics: A Narrative Review. J Clin Med 2023; 12:jcm12103577. [PMID: 37240682 DOI: 10.3390/jcm12103577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The use of inhaled antibiotics was initially almost exclusively confined to patients with cystic fibrosis (CF). However, it has been extended in recent decades to patients with non-CF bronchiectasis or chronic obstructive pulmonary disease who present with chronic bronchial infection by potentially pathogenic microorganisms. Inhaled antibiotics reach high concentrations in the area of infection, which enhances their effect and enables their long-term administration to defeat the most resistant infections, while minimizing possible adverse effects. New formulations of inhaled dry powder antibiotics have been developed, providing, among other advantages, faster preparation and administration of the drug, as well as avoiding the requirement to clean nebulization equipment. In this review, we analyze the advantages and disadvantages of the different types of devices that allow the inhalation of antibiotics, especially dry powder inhalers. We describe their general characteristics, the different inhalers on the market and the proper way to use them. We analyze the factors that influence the way in which the dry powder drug reaches the lower airways, as well as aspects of microbiological effectiveness and risks of resistance development. We review the scientific evidence on the use of colistin and tobramycin with this type of device, both in patients with CF and with non-CF bronchiectasis. Finally, we discuss the literature on the development of new dry powder antibiotics.
Collapse
Affiliation(s)
| | | | - Oriol Sibila
- Respiratory Department, Hospital Clínic i Provincial, 08036 Barcelona, Spain
| | - Rafael Golpe
- Respiratory Department, Hospital Lucus Augusti, 27003 Lugo, Spain
| | - Rosa-María Girón
- Respiratory Department, Hospital de la Princesa, 28006 Madrid, Spain
| | | |
Collapse
|
2
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
3
|
Sharma PR, Dravid AA, Kalapala YC, Gupta VK, Jeyasankar S, Goswami A, Agarwal R. Cationic inhalable particles for enhanced drug delivery to M. tuberculosis infected macrophages. BIOMATERIALS ADVANCES 2022; 133:112612. [PMID: 35527151 DOI: 10.1016/j.msec.2021.112612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/16/2022]
Abstract
Inhalable microparticle-based drug delivery platforms are being investigated extensively for Tuberculosis (TB) treatment as they offer efficient deposition in lungs and improved pharmacokinetics of the encapsulated cargo. However, the effect of physical parameters of microcarriers on interaction with Mycobacterium tuberculosis (Mtb) infected mammalian cells is underexplored. In this study, we report that Mtb-infected macrophages are highly phagocytic and microparticle surface charge plays a major role in particle internalization by infected cells. Microparticles of different sizes (0.5-2 μm) were internalized in large numbers by Mtb-infected THP-1 macrophages and murine primary Bone Marrow Derived Macrophages in vitro. Drastic improvement in particle uptake was observed with cationic particles in vitro and in mice lungs. Rapid uptake of rifampicin-loaded cationic microparticles allowed high intracellular accumulation of the drug and led to enhanced anti-bacterial function when compared to non-modified rifampicin-loaded microparticles. Cytocompatibility assay and histological analysis in vivo confirmed that the formulations were safe and did not elicit any adverse reaction. Additionally, pulmonary delivery of cationic particles in mice resulted in two-fold higher uptake in resident alveolar macrophages compared to non-modified particles. This study provides a framework for future design of drug carriers to improve delivery of anti-TB drugs inside Mtb-infected cells.
Collapse
Affiliation(s)
- Pallavi Raj Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Ameya Atul Dravid
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Vishal K Gupta
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sharumathi Jeyasankar
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Avijit Goswami
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Rachit Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
4
|
Ma C, Wu M, Ye W, Huang Z, Ma X, Wang W, Wang W, Huang Y, Pan X, Wu C. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res 2021; 11:1218-1235. [PMID: 32946043 DOI: 10.1007/s13346-020-00849-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 02/01/2023]
Abstract
Mycobacterium tuberculosis (MTB) is one of the most threatening pathogens for its latent infection in macrophages. The intracellular MTB isolated itself from drugs and could spread via macrophages. Therefore, a mannose-modified macrophage-targeting solid lipid nanoparticle, MAN-IC-SLN, loading the pH-sensitive prodrug of isoniazid (INH), was designed to treat the latent tuberculosis infection. The surface of SLNs was modified by a synthesized 6-octadecylimino-hexane-1,2,3,4,5-pentanol (MAN-SA) to target macrophages, and the modified SLNs showed a higher cell uptake in macrophages (97.2%) than unmodified SLNs (42.4%). The prodrug, isonicotinic acid octylidene-hydrazide (INH-CHO), was synthesized to achieve the pH-sensitive release of INH in macrophages. The INH-CHO-loaded SLNs exhibited a pH-sensitive release profile and accomplished a higher accumulated release in pH 5.5 media (82.63 ± 2.12%) compared with the release in pH 7.4 media (58.83 ± 3.84%). Mycobacterium smegmatis was used as a substitute for MTB, and the MAN-IC-SLNs showed a fourfold increase of intracellular antibiotic efficacy and enhanced macrophage uptake because of the pH-sensitive degradation of INH-CHO and MAN-SA in SLNs, respectively. For the in vivo antibiotic efficacy test, the SLNs group displayed an 83% decrease of the colony-forming unit while the free INH group only showed a 60% decrease. The study demonstrates that macrophage targeting and pH-sensitive SLNs can be used as a promising platform for the latent tuberculosis infection. Graphical Abstract Table of contents: Macrophage-targeting and pH-sensitive solid lipid nanoparticles (SLN) were administrated to the lung via nebulization. Macrophage targeting was achieved by appropriate particle size and surface mannose modification with synthesized MAN-SA. After being swallowed by macrophages, the prodrug, Isonicotinic acid octylidene-hydrazide (INH-CHO), quickly released isoniazid, which was triggered by the intracellular acid environment. The SLNs exhibited higher intracellular antibiotic efficacy due to their macrophage-targeting and pH-sensitive properties.
Collapse
Affiliation(s)
- Cheng Ma
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mingjun Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Weifen Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiangyu Ma
- College of Pharmacy, Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wenhua Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ying Huang
- School of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
- School of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
5
|
Singh AK, Verma RK, Mukker JK, Yadav AB, Muttil P, Sharma R, Mohan M, Agrawal AK, Gupta A, Dwivedi AK, Gupta P, Gupta UD, Mani U, Chaudhari BP, Murthy RC, Sharma S, Bhadauria S, Singh S, Rath SK, Misra A. Inhalable particles containing isoniazid and rifabutin as adjunct therapy for safe, efficacious and relapse-free cure of experimental animal tuberculosis in one month. Tuberculosis (Edinb) 2021; 128:102081. [PMID: 33915379 DOI: 10.1016/j.tube.2021.102081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
We investigated the preclinical efficacy and safety/tolerability of biodegradable polymeric particles containing isoniazid (INH) and rifabutin (RFB) dry powder for inhalation (DPI) as an adjunct to oral first-line therapy. Mice and guinea pigs infected with Mycobacterium tuberculosis H37Rv (Mtb) were treated with ∼80 and ∼300 μg of the DPI, respectively, for 3-4 weeks starting 3, 10, and 30 days post-infection. Adjunct combination therapy eliminated culturable Mtb from the lungs and spleens of all but one of 52 animals that received the DPI. Relapse-free cure was not achieved in one mouse that received DPI + oral, human-equivalent doses (HED) of four drugs used in the Directly Observed Treatment, Short Course (DOTS), starting 30 days post-infection. Oral doses (20 mg/Kg/day, each) of INH + RFB reduced Mtb burden from ∼106 to ∼103 colony-forming units. Combining half the oral dose with DPI prevented relapse of infection four weeks after stopping the treatment. The DPI was safe in rodents, guinea pigs, and monkeys at 1, 10, and 100 μg/day doses over 90 days. In conclusion, we show the efficacy and safety/tolerability of the DPI as an adjunct to oral chemotherapy in three different animal models of TB.
Collapse
Affiliation(s)
- Amit K Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rahul K Verma
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Awadh B Yadav
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pavan Muttil
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rolee Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Mradul Mohan
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Atul K Agrawal
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anuradha Gupta
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anil K Dwivedi
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pushpa Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, 282001, India
| | - Umesh D Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, 282001, India
| | - Uthirappan Mani
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | | | - Ramesh C Murthy
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Sharad Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Sarika Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | | | - Amit Misra
- CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
6
|
Alhudaithi SS, Almuqbil RM, Zhang H, Bielski ER, Du W, Sunbul FS, Bos PD, da Rocha SRP. Local Targeting of Lung-Tumor-Associated Macrophages with Pulmonary Delivery of a CSF-1R Inhibitor for the Treatment of Breast Cancer Lung Metastases. Mol Pharm 2020; 17:4691-4703. [PMID: 33170724 DOI: 10.1021/acs.molpharmaceut.0c00983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lungs are major sites of metastases for several cancer types, including breast cancer (BC). Prognosis and quality of life of BC patients that develop pulmonary metastases are negatively impacted. The development of strategies to slow the growth and relieve the symptoms of BC lung metastases (BCLM) is thus an important goal in the management of BC. However, systemically administered first line small molecule chemotherapeutics have poor pharmacokinetic profiles and biodistribution to the lungs and significant off-target toxicity, severely compromising their effectiveness. In this work, we propose the local delivery of add-on immunotherapy to the lungs to support first line chemotherapy treatment of advanced BC. In a syngeneic murine model of BCLM, we show that local pulmonary administration (p.a.) of PLX-3397 (PLX), a colony-stimulating factor 1 receptor inhibitor (CSF-1Ri), is capable of overcoming physiological barriers of the lung epithelium, penetrating the tumor microenvironment (TME), and decreasing phosphorylation of CSF-1 receptors, as shown by the Western blot of lung tumor nodules. That inhibition is accompanied by an overall decrease in the abundance of protumorigenic (M2-like) macrophages in the TME, with a concomitant increase in the amount of antitumor (M1-like) macrophages when compared to the vehicle-treated control. These effects with PLX (p.a.) were achieved using a much smaller dose (1 mg/kg, every other day) compared to the systemic doses typically used in preclinical studies (40-800 mg/kg/day). As an additive in combination with intravenous (i.v.) administration of paclitaxel (PTX), PLX (p.a.) leads to a decrease in tumor burden without additional toxicity. These results suggested that the proposed immunochemotherapy, with regional pulmonary delivery of PLX along with the i.v. standard of care chemotherapy, may lead to new opportunities to improve treatment, quality of life, and survival of patients with BCLM.
Collapse
Affiliation(s)
- Sulaiman S Alhudaithi
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Rashed M Almuqbil
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Hanming Zhang
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Elizabeth R Bielski
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Wei Du
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Fatemah S Sunbul
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Paula D Bos
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Sandro R P da Rocha
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
7
|
Wyszogrodzka-Gaweł G, Dorożyński P, Giovagnoli S, Strzempek W, Pesta E, Węglarz WP, Gil B, Menaszek E, Kulinowski P. An Inhalable Theranostic System for Local Tuberculosis Treatment Containing an Isoniazid Loaded Metal Organic Framework Fe-MIL-101-NH2-From Raw MOF to Drug Delivery System. Pharmaceutics 2019; 11:pharmaceutics11120687. [PMID: 31861138 PMCID: PMC6969914 DOI: 10.3390/pharmaceutics11120687] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
The theranostic approach to local tuberculosis treatment allows drug delivery and imaging of the lungs for a better control and personalization of antibiotic therapy. Metal-organic framework (MOF) Fe-MIL-101-NH2 nanoparticles were loaded with isoniazid. To optimize their functionality a 23 factorial design of spray-drying with poly(lactide-co-glycolide) and leucine was employed. Powder aerodynamic properties were assessed using a twin stage impinger based on the dose emitted and the fine particle fraction. Magnetic resonance imaging (MRI) contrast capabilities were tested on porous lung tissue phantom and ex vivo rat lungs. Cell viability and uptake studies were conducted on murine macrophages RAW 246.9. The final product showed good aerodynamic properties, modified drug release, easier uptake by macrophages in relation to raw isoniazid-MOF, and MRI contrast capabilities. Starting from raw MOF, a fully functional inhalable theranostic system with a potential application in personalized tuberculosis pulmonary therapy was developed.
Collapse
Affiliation(s)
- Gabriela Wyszogrodzka-Gaweł
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Przemysław Dorożyński
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warszawa, Poland
- Correspondence:
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, via del Liceo 1, University of Perugia, 06123 Perugia, Italy;
| | - Weronika Strzempek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Edyta Pesta
- Department of Pharmaceutical Analysis, Research Network Łukasiewicz—Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, Poland;
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (W.S.); (B.G.)
| | - Elżbieta Menaszek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-068 Kraków, Poland; (G.W.-G.); (E.M.)
| | - Piotr Kulinowski
- Institute of Technology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Kraków, Poland;
| |
Collapse
|
8
|
Mehta P, Bothiraja C, Kadam S, Pawar A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S791-S806. [DOI: 10.1080/21691401.2018.1513938] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Piyush Mehta
- Department of Quality Assurance Technique, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - C. Bothiraja
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - Shivajirao Kadam
- Bharati Vidyapeeth Bhavan, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed-to-be-University), Pune, India
| |
Collapse
|
9
|
Miranda MS, Rodrigues MT, Domingues RMA, Torrado E, Reis RL, Pedrosa J, Gomes ME. Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1090-1103. [PMID: 30274040 DOI: 10.1016/j.msec.2018.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
Abstract
The growing interest on polymeric delivery systems for pulmonary administration of drugs anticipates a more direct and efficient treatment of diseases such as tuberculosis (TB) that uses the pulmonary route as the natural route of infection. Polymeric microparticles or nano-in-microparticles offer target delivery of drugs to the lungs and the potential to control and sustain drug release within TB infected macrophages improving the efficiency of the anti-TB treatment and reducing side effects. In a dry powder form these inhalable delivery systems have increased stability and prolonged storage time without requiring refrigeration, besides being cost-effective and patient convenient. Thus, this review aims to compile the recent innovations of inhalable polymeric dry powder systems for the delivery of anti-TB drugs exploring the methods of production, aerodynamic characterization and the efficacy of targeted drug delivery systems using in vitro and in vivo models of the disease. Advanced knowledge and promising outcomes of these systems are anticipated to simplify and revolutionize the pulmonary drug delivery and to contribute towards more effective anti-TB treatments.
Collapse
Affiliation(s)
- Margarida S Miranda
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Egídio Torrado
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Jorge Pedrosa
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
10
|
Gaspar DP, Gaspar MM, Eleutério CV, Grenha A, Blanco M, Gonçalves LMD, Taboada P, Almeida AJ, Remuñán-López C. Microencapsulated Solid Lipid Nanoparticles as a Hybrid Platform for Pulmonary Antibiotic Delivery. Mol Pharm 2017; 14:2977-2990. [PMID: 28809501 DOI: 10.1021/acs.molpharmaceut.7b00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Solid lipid nanoparticles (SLN) containing rifabutin (RFB), with pulmonary administration purposes, were developed through a technique that avoids the use of organic solvents or sonication. To facilitate their pulmonary delivery, the RFB-loaded SLN were included in microspheres of appropriate size using suitable excipients (mannitol and trehalose) through a spray-drying technique. Confocal analysis microscopy showed that microspheres are spherical and that SLN are efficiently microencapsulated and homogeneously distributed throughout the microsphere matrices. The aerodynamic diameters observed an optimal distribution for reaching the alveolar region. The dry powder's performance during aerosolization and the in vitro drug deposition were tested using a twin-impinger approach, which confirmed that the microspheres can reach the deep lung. Isothermal titration calorimetry revealed that SLN have higher affinity for mannitol than for trehalose. Upon microsphere dissolution in aqueous media, SLN were readily recovered, maintaining their physicochemical properties. When these dry powders reach the deep lung, microspheres are expected to readily dissolve, delivering the SLN which, in turn, will release RFB. The in vivo biodistribution of microencapsulated RFB-SLN demonstrated that the antibiotic achieved the tested organs 15 and 30 min post pulmonary administration. Their antimycobacterial activity was also evaluated in a murine model of infection with a Mycobacterium tuberculosis strain H37Rv resulting in an enhancement of activity against M. tuberculosis infection compared to nontreated animals. These results suggest that RFB-SLN microencapsulation is a promising approach for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Diana P Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Carla V Eleutério
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | | | | | - Lídia M D Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | | | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | | |
Collapse
|
11
|
Gupta A, Misra A, Deretic V. Targeted pulmonary delivery of inducers of host macrophage autophagy as a potential host-directed chemotherapy of tuberculosis. Adv Drug Deliv Rev 2016; 102:10-20. [PMID: 26829287 DOI: 10.1016/j.addr.2016.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
Abstract
One of the promising host-directed chemotherapeutic interventions in tuberculosis (TB) is based on inducing autophagy as an immune effector. Here we consider the strengths and weaknesses of potential autophagy-based pharmacological intervention. Using the existing drugs that induce autophagy is an option, but it has limitations given the broad role of autophagy in most cells, tissues, and organs. Thus, it may be desirable that the agent being used to modulate autophagy is applied in a targeted manner, e.g. delivered to affected tissues, with infected macrophages being an obvious choice. This review addresses the advantages and disadvantages of delivering drugs to induce autophagy in M. tuberculosis-infected macrophages. One option, already being tested in models, is to design particles for inhalation delivery to lung macrophages. The choice of drugs, drug release kinetics and intracellular residence times, non-target cell exposure and feasibility of use by patients is discussed. We term here this (still experimental) approach, of compartment-targeting, autophagy-based, host-directed therapy as "Track-II antituberculosis chemotherapy."
Collapse
|
12
|
Parumasivam T, Chang RYK, Abdelghany S, Ye TT, Britton WJ, Chan HK. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev 2016; 102:83-101. [PMID: 27212477 DOI: 10.1016/j.addr.2016.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) is an intracellular infectious disease caused by the airborne bacterium, Mycobacterium tuberculosis. Despite considerable research efforts, the treatment of TB continues to be a great challenge in part due to the requirement of prolonged therapy with multiple high-dose drugs and associated side effects. The delivery of pharmacological agents directly to the respiratory system, following the natural route of infection, represents a logical therapeutic approach for treatment or vaccination against TB. Pulmonary delivery is non-invasive, avoids first-pass metabolism in the liver and enables targeting of therapeutic agents to the infection site. Inhaled delivery also potentially reduces the dose requirement and the accompanying side effects. Dry powder is a stable formulation of drug that can be stored without refrigeration compared to liquids and suspensions. The dry powder inhalers are easy to use and suitable for high-dose formulations. This review focuses on the current innovations of inhalable dry powder formulations of drug and vaccine delivery for TB, including the powder production method, preclinical and clinical evaluations of inhaled dry powder over the last decade. Finally, the risks associated with pulmonary therapy are addressed. A novel dry powder formulation with high percentages of respirable particles coupled with a cost effective inhaler device is an appealing platform for TB drug delivery.
Collapse
Affiliation(s)
- Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Sharif Abdelghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Jordan, Amman 1192, Jordan
| | - Tian Tian Ye
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Warwick John Britton
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, NSW 2006, Australia; Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
13
|
Ianni F, Schoubben A, Montesano D, Wauthoz N, Cossignani L, Sardella R, Natalini B. Quantitative assay of capreomycin oleate levels in a drug formulation for inhalation with a fully validated HPLC method. J Pharm Biomed Anal 2016; 120:413-8. [DOI: 10.1016/j.jpba.2015.11.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 01/13/2023]
|
14
|
Arora S, Haghi M, Young PM, Kappl M, Traini D, Jain S. Highly respirable dry powder inhalable formulation of voriconazole with enhanced pulmonary bioavailability. Expert Opin Drug Deliv 2015; 13:183-93. [DOI: 10.1517/17425247.2016.1114603] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Bax HI, de Steenwinkel JEM, Ten Kate MT, van der Meijden A, Verbon A, Bakker-Woudenberg IAJM. Colistin as a potentiator of anti-TB drug activity against Mycobacterium tuberculosis. J Antimicrob Chemother 2015; 70:2828-37. [PMID: 26183185 DOI: 10.1093/jac/dkv194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/11/2015] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The mycobacterial cell wall is an effective permeability barrier that limits intracellular concentrations of anti-TB drugs and hampers the success of treatment. We hypothesized that colistin might enhance the efficacy of anti-TB drugs by increasing mycobacterial cell wall permeability. In this study, we investigated the additional effect of colistin on the activity of anti-TB drugs against Mycobacterium tuberculosis in vitro. METHODS The concentration-dependent and time-dependent killing activity of isoniazid, rifampicin or amikacin alone or in combination with colistin against M. tuberculosis H37Rv was determined. Mycobacterial populations with both high and low metabolic activity were studied, and these were characterized by increasing or steady levels of ATP, respectively. RESULTS With exposure to a single drug, striking differences in anti-TB drug activity were observed when the two mycobacterial populations were compared. The addition of colistin to isoniazid and amikacin resulted in sterilization of the mycobacterial load, but only in the M. tuberculosis population with high metabolic activity. The emergence of isoniazid and amikacin resistance was completely prevented by the addition of colistin. CONCLUSIONS The results of this study emphasize the importance of investigating mycobacterial populations with both high and low metabolic activity when evaluating the efficacy of anti-TB drugs in vitro. This is the first study showing that colistin potentiates the activity of isoniazid and amikacin against M. tuberculosis and prevents the emergence of resistance to anti-TB drugs. These results form the basis for further studies on the applicability of colistin as a potentiator of anti-TB drugs.
Collapse
Affiliation(s)
- Hannelore I Bax
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marian T Ten Kate
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Aart van der Meijden
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Cilfone NA, Pienaar E, Thurber GM, Kirschner DE, Linderman JJ. Systems Pharmacology Approach Toward the Design of Inhaled Formulations of Rifampicin and Isoniazid for Treatment of Tuberculosis. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015. [PMID: 26225241 PMCID: PMC4394619 DOI: 10.1002/psp4.22] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional oral therapies for the treatment of tuberculosis are limited by poor antibiotic distribution in granulomas, which contributes to lengthy treatment regimens and inadequate bacterial sterilization. Inhaled formulations are a promising strategy to increase antibiotic efficacy and reduce dose frequency. We develop a multiscale computational approach that accounts for simultaneous dynamics of a lung granuloma, carrier release kinetics, pharmacokinetics, and pharmacodynamics. Using this computational platform, we predict that a rationally designed inhaled formulation of isoniazid given at a significantly reduced dose frequency has better sterilizing capabilities and reduced toxicity than the current oral regimen. Furthermore, we predict that inhaled formulations of rifampicin require unrealistic carrier antibiotic loadings that lead to early toxicity concerns. Lastly, we predict that targeting carriers to macrophages has limited effects on treatment efficacy. Our platform can be extended to account for additional antibiotics and provides a new tool for rapidly prototyping the efficacy of inhaled formulations.
Collapse
Affiliation(s)
- N A Cilfone
- Department of Chemical Engineering, University of Michigan Ann Arbor, Michigan, USA
| | - E Pienaar
- Department of Chemical Engineering, University of Michigan Ann Arbor, Michigan, USA ; Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, Michigan, USA
| | - G M Thurber
- Department of Chemical Engineering, University of Michigan Ann Arbor, Michigan, USA
| | - D E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School Ann Arbor, Michigan, USA
| | - J J Linderman
- Department of Chemical Engineering, University of Michigan Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Vadakkan MV, Kumar GSV. Cryo-crystallization under a partial anti-solvent environment as a facile technology for dry powder inhalation development. RSC Adv 2015. [DOI: 10.1039/c5ra06544e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this work, Isoniazid (INH) (an anti-TB drug) was converted to inhalable particles using cryo-crystallization under a partial anti-solvent environment.
Collapse
Affiliation(s)
- Mithun Varghese Vadakkan
- Chemical Biology–Nano Drug Delivery Systems
- Rajiv Gandhi Centre for Biotechnology
- Thiruvanathapuram-695014
- India
| | - G. S. Vinod Kumar
- Chemical Biology–Nano Drug Delivery Systems
- Rajiv Gandhi Centre for Biotechnology
- Thiruvanathapuram-695014
- India
| |
Collapse
|
18
|
Chan JGY, Bai X, Traini D. An update on the use of rifapentine for tuberculosis therapy. Expert Opin Drug Deliv 2014; 11:421-31. [PMID: 24397259 DOI: 10.1517/17425247.2014.877886] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Tuberculosis (TB) remains rampant throughout the world, in large part due to the lengthy treatment times of current therapeutic options. Rifapentine, a rifamycin antibiotic, is currently approved for intermittent dosing in the treatment of TB. Recent animal studies have shown that more frequent administration of rifapentine could shorten treatment times, for both latent and active TB infection. However, these results were not replicated in a subsequent human clinical trial. AREAS COVERED This review analyses the evidence for more frequent administration of rifapentine and the reasons for the apparent lack of efficacy in shortening treatment times in human patients. Inhaled delivery is discussed as a potential option to achieve the therapeutic effect of rifapentine by overcoming the barriers associated with oral administration of this drug. Avenues for developing an inhalable form of rifapentine are also presented. EXPERT OPINION Rifapentine is a promising active pharmaceutical ingredient with potential to accelerate treatment of TB if delivered by inhaled administration. Progression of current fundamental work on inhaled anti-tubercular therapies to human clinical trials is essential for determining their role in future treatment regimens. While the ultimate goal for global TB control is a vaccine, a short and effective treatment option is equally crucial.
Collapse
Affiliation(s)
- John Gar Yan Chan
- The University of Sydney, Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , NSW 2037, Sydney , Australia +61 2 91140352 ;
| | | | | |
Collapse
|
19
|
Chan JGY, Tyne AS, Pang A, Chan HK, Young PM, Britton WJ, Duke CC, Traini D. A Rifapentine-Containing Inhaled Triple Antibiotic Formulation for Rapid Treatment of Tubercular Infection. Pharm Res 2013; 31:1239-53. [DOI: 10.1007/s11095-013-1245-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
|
20
|
Hickey AJ, Misra A, Fourie PB. Dry Powder Antibiotic Aerosol Product Development: Inhaled Therapy for Tuberculosis. J Pharm Sci 2013; 102:3900-7. [DOI: 10.1002/jps.23705] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/24/2013] [Indexed: 11/12/2022]
|
21
|
The binding characteristics of isoniazid with copper-zinc superoxide dismutase and its effect on enzymatic activity. Chem Cent J 2013; 7:97. [PMID: 23738738 PMCID: PMC3679938 DOI: 10.1186/1752-153x-7-97] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/30/2013] [Indexed: 11/16/2022] Open
Abstract
Background Isoniazid (INH) is front-line anti-tuberculosis (TB) drugs, which are usually prescribed to TB patients for a total period of 6 months. Antituberculosis drug-induced hepatotoxicity (ATDH) is a serious adverse reaction of TB treatment. It is reported that INH-induced hepatotoxicity is associated with oxidative stress. Superoxide dismutase (SOD, EC 1.15.1.1) is the key enzyme for the protection of oxidative stress, which catalyzes the removal of superoxide radical anion, thereby raising the need to better understand the interaction between INH and SOD. Results The experimental results showed that the fluorescence intensity of Cu/Zn-SOD regularly decreased owing to form a 1:1 INH-SOD complex. According to the corresponding association constants (KSV) between INH and SOD obtained from Stern–Volmer plot, it is shown that values of KA are 1.01 × 104, 5.31 × 103, 3.33 × 103, 2.20 × 103 L · mol−1 at four different temperatures, respectively. The binding constants, binding sites and the corresponding thermodynamic parameters (ΔH, ΔG and ΔS) were calculated. A value of 3.93 nm for the average distance between INH and chromophore of Cu/Zn-SOD was derived from Förster theory of non-radiation energy transfer. The conformational investigation showed that the presence of INH resulted in the microenvironment and conformational changes of Cu/Zn-SOD. In addition, Effects of INH on superoxide dismutase activity was examined. Conclusions The results show that the hydrogen bonding and van der Waals forces play major roles in stabilizing the 1:1 INH-SOD complex. After addition of INH during the range of the experiment, the conformation and microenvironment of Cu/Zn-SOD are changed, but the activity of Cu/Zn-SOD is not changed.
Collapse
|
22
|
Capreomycin supergenerics for pulmonary tuberculosis treatment: Preparation, in vitro, and in vivo characterization. Eur J Pharm Biopharm 2013; 83:388-95. [DOI: 10.1016/j.ejpb.2012.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 12/14/2022]
|
23
|
Chan JGY, Chan HK, Prestidge CA, Denman JA, Young PM, Traini D. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur J Pharm Biopharm 2013; 83:285-92. [DOI: 10.1016/j.ejpb.2012.08.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/18/2012] [Accepted: 08/10/2012] [Indexed: 01/24/2023]
|