1
|
Liu J, Xi Z, Fan C, Mei Y, Zhao J, Jiang Y, Zhao M, Xu L. Hydrogels for Nucleic Acid Drugs Delivery. Adv Healthc Mater 2024; 13:e2401895. [PMID: 39152918 DOI: 10.1002/adhm.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.
Collapse
Affiliation(s)
- Jiaping Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yihua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiale Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yingying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
2
|
Zhan T, Li X, Liu J, Ye C. CRISPR-based gene expression platform for precise regulation of bladder cancer. Cell Mol Biol Lett 2024; 29:66. [PMID: 38724931 PMCID: PMC11080256 DOI: 10.1186/s11658-024-00569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
The development of compact CRISPR systems has facilitated delivery but has concurrently reduced gene editing efficiency, thereby limiting the further utilization of CRISPR systems. Enhancing the efficiency of CRISPR systems poses a challenging task and holds significant implications for the advancement of biotechnology. In our work, we report a synthetic dual-antibody system that can stably exist in the intracellular environment, specifically inhibiting the functions of NF-κB and β-catenin. This not only elevates the transgenic expression of the CRISPR system by suppressing the innate immune response within cells to enhance the gene editing efficiency but also demonstrates a notable tumor inhibitory effect. Based on the specific output expression regulation of CRISPR-CasΦ, we constructed a CRISPR-based gene expression platform, which includes sensor modules for detecting intracellular β-catenin and NF-κB, as well as an SDA module to enhance overall efficiency. In vitro experiments revealed that the CRISPR-based gene expression platform exhibited superior CDK5 expression inhibition efficiency and specific cytotoxicity towards tumor cells. In vitro experiments, we found that CRISPR-based gene expression platforms can selectively kill bladder cancer cells through T cell-mediated cytotoxicity. Our design holds significant assistant potential of transgene therapy and may offer the capability to treat other diseases requiring transgene therapy.
Collapse
Affiliation(s)
- Tianying Zhan
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- Department of Urology, Carson International Cancer Centre, Shenzhen University General Hospital, Shenzhen, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Guang Dong Medical Academic Exchange Center, Guangzhou, China.
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Guang Dong Medical Academic Exchange Center, Guangzhou, China.
| |
Collapse
|
3
|
Ma Y, Li S, Lin X, Chen Y. Bioinspired Spatiotemporal Management toward RNA Therapies. ACS NANO 2023; 17:24539-24563. [PMID: 38091941 DOI: 10.1021/acsnano.3c08219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Ribonucleic acid (RNA)-based therapies have become an attractive topic in disease intervention, especially with some that have been approved by the FDA such as the mRNA COVID-19 vaccine (Comirnaty, Pfizer-BioNTech, and Spikevax, Moderna) and Patisiran (siRNA-based drug for liver delivery). However, extensive applications are still facing challenges in delivering highly negatively charged RNA to the targeted site. Therapeutic delivery strategies including RNA modifications, RNA conjugates, and RNA polyplexes and delivery platforms such as viral vectors, nanoparticle-based delivery platforms, and hydrogel-based delivery platforms as potential nucleic acid-releasing depots have been developed to enhance their cellular uptake and protect nucleic acid from being degraded by immune systems. Here, we review the growing number of viral vectors, nanoparticles, and hydrogel-based RNA delivery systems; describe RNA loading/release mechanism induced by environmental stimulations including light, heat, pH, or enzyme; discuss their physical or chemical interactions; and summarize the RNA therapeutics release period (temporal) and their target cells/organs (spatial). Finally, we describe current concerns, highlight current challenges and future perspectives of RNA-based delivery systems, and provide some possible research areas that provide opportunities for clinical translation of RNA delivery carriers.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhong R, Talebian S, Mendes BB, Wallace G, Langer R, Conde J, Shi J. Hydrogels for RNA delivery. NATURE MATERIALS 2023; 22:818-831. [PMID: 36941391 PMCID: PMC10330049 DOI: 10.1038/s41563-023-01472-w] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
RNA-based therapeutics have shown tremendous promise in disease intervention at the genetic level, and some have been approved for clinical use, including the recent COVID-19 messenger RNA vaccines. The clinical success of RNA therapy is largely dependent on the use of chemical modification, ligand conjugation or non-viral nanoparticles to improve RNA stability and facilitate intracellular delivery. Unlike molecular-level or nanoscale approaches, macroscopic hydrogels are soft, water-swollen three-dimensional structures that possess remarkable features such as biodegradability, tunable physiochemical properties and injectability, and recently they have attracted enormous attention for use in RNA therapy. Specifically, hydrogels can be engineered to exert precise spatiotemporal control over the release of RNA therapeutics, potentially minimizing systemic toxicity and enhancing in vivo efficacy. This Review provides a comprehensive overview of hydrogel loading of RNAs and hydrogel design for controlled release, highlights their biomedical applications and offers our perspectives on the opportunities and challenges in this exciting field of RNA delivery.
Collapse
Affiliation(s)
- Ruibo Zhong
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sepehr Talebian
- Faculty of Engineering, School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
- Nano Institute (Sydney Nano), The University of Sydney, Sydney, New South Wales, Australia
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - João Conde
- ToxOmics, NOVA Medical School Faculdade de Ciências Médicas, NMS FCM, Universidade NOVA de Lisboa, Lisbon, Portugal.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021; 35:643-671. [PMID: 34705260 PMCID: PMC8548996 DOI: 10.1007/s40259-021-00500-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Delivering macromolecules into the cytosol or nucleus is possible in vitro for DNA, RNA and proteins, but translation for clinical use has been limited. Therapeutic delivery of macromolecules into cells requires overcoming substantially higher barriers compared to the use of small molecule drugs or proteins in the extracellular space. Breakthroughs like DNA delivery for approved gene therapies and RNA delivery for silencing of genes (patisiran, ONPATTRO®, Alnylam Pharmaceuticals, Cambridge, MA, USA) or for vaccination such as the RNA-based coronavirus disease 2019 (COVID-19) vaccines demonstrated the feasibility of using macromolecules inside cells for therapy. Chemical carriers are part of the reason why these novel RNA-based therapeutics possess sufficient efficacy for their clinical application. A clear advantage of synthetic chemicals as carriers for macromolecule delivery is their favourable properties with respect to production and storage compared to more bioinspired vehicles like viral vectors or more complex drugs like cellular therapies. If biologicals can be applied to intracellular targets, the druggable space is substantially broadened by circumventing the limited utility of small molecules for blocking protein–protein interactions and the limitation of protein-based drugs to the extracellular space. An in depth understanding of the macromolecular cargo types, carrier types and the cell biology of delivery is crucial for optimal application and further development of biologicals inside cells. Basic mechanistic principles of the molecular and cell biological aspects of cytosolic/nuclear delivery of macromolecules, with particular consideration of protein delivery, are reviewed here. The efficiency of macromolecule delivery and applications in research and therapy are highlighted.
Collapse
Affiliation(s)
- Andrea L J Marschall
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Brunswick, Germany.
| |
Collapse
|
7
|
Zhan H, Li A, Cai Z, Huang W, Liu Y. Improving transgene expression and CRISPR-Cas9 efficiency with molecular engineering-based molecules. Clin Transl Med 2020; 10:e194. [PMID: 33135339 PMCID: PMC7533053 DOI: 10.1002/ctm2.194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023] Open
Abstract
As a novel and robust gene‐editing tool, the Clustered Regularly Interspaced Short Palindromic Repeats CRISPR‐associated protein 9 (CRISPR‐Cas9) system has revolutionized gene therapy. Plasmid vector delivery is the most commonly used method for integrating the CRISPR‐Cas9 system into cells. However, such foreign cytosolic DNAs trigger an innate immune response (IIR) within cells, which can hinder gene editing by inhibiting transgene expression. Although some small molecules have been shown to avoid the action of IIR on plasmids, they only work on a single target and may also affect cell viability. A genetic approach that works at a comprehensive level for manipulating IIR is still lacking. Here, we designed and constructed several artificial nucleic acid molecules (ANAMs), which are combinations of aptamers binding to two key players of IIR (β‐catenin and NF‐κB). ANAMs strongly inhibited the IIR in cells, thus improving transgene expression. We also used ANAMs to improve the gene‐editing efficiency of the CRISPR‐Cas9 system and its derivatives, thus enhancing the apoptosis of cancer cells induced by CRISPR‐Cas9. ANAMs can be valuable tools for improving transgene expression and gene editing in mammalian cells.
Collapse
Affiliation(s)
- Hengji Zhan
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Aolin Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Zhiming Cai
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Weiren Huang
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Yuchen Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
8
|
Vaughan HJ, Green JJ, Tzeng SY. Cancer-Targeting Nanoparticles for Combinatorial Nucleic Acid Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901081. [PMID: 31222852 PMCID: PMC6923623 DOI: 10.1002/adma.201901081] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/13/2019] [Indexed: 05/03/2023]
Abstract
Nucleic acids are a promising type of therapeutic for the treatment of a wide range of conditions, including cancer, but they also pose many delivery challenges. For efficient and safe delivery to cancer cells, nucleic acids must generally be packaged into a vehicle, such as a nanoparticle, that will allow them to be taken up by the target cells and then released in the appropriate cellular compartment to function. As with other types of therapeutics, delivery vehicles for nucleic acids must also be designed to avoid unwanted side effects; thus, the ability of such carriers to target their cargo to cancer cells is crucial. Classes of nucleic acids, hurdles that must be overcome for effective intracellular delivery, types of nonviral nanomaterials used as delivery vehicles, and the different strategies that can be employed to target nucleic acid delivery specifically to tumor cells are discussed. Additonally, nanoparticle designs that facilitate multiplexed delivery of combinations of nucleic acids are reviewed.
Collapse
Affiliation(s)
- Hannah J Vaughan
- Department of Biomedical Engineering, Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, 400 North Broadway, Smith Building 5001, Baltimore, MD, 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, 400 North Broadway, Smith Building 5001, Baltimore, MD, 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, 400 North Broadway, Smith Building 5001, Baltimore, MD, 21231, USA
| |
Collapse
|
9
|
Capella Roca B, Lao NT, Clynes M, Doolan P. Investigation and circumvention of transfection inhibition by ferric ammonium citrate in serum-free media for Chinese hamster ovary cells. Biotechnol Prog 2019; 36:e2954. [PMID: 31850663 DOI: 10.1002/btpr.2954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022]
Abstract
While reliable transfection methods are essential for Chinese hamster ovary (CHO) cell line engineering, reduced transfection efficiencies have been observed in several commercially prepared media. In this study, we aimed to assess common media additives that impede efficiency mediated by three chemical transfection agents: liposomal-based (Lipofectamine 2000), polymer-based (TransIT-X2), and lipopolyplex-based (TransIT-PRO). An in-house GFP-expressing vector and serum-free medium (BCR-F12: developed for the purposes of this study) were used to analyze transient transfection efficiencies of three CHO cell lines (CHO-K1, DG44, DP12). Compared to a selection of commercially available media, BCR-F12 displayed challenges associated with transfection in vendor-prepared formulations, with no detection when liposomal-based methods were used, reduced (<3%) efficiency observed when polymer-based methods were used and only limited efficiency (25%) with lipopolyplexes. Following a stepwise removal protocol, ferric ammonium citrate (FAC) was identified as the critical factor impeding transfection, with transfection enabled with the liposomal- and polymer-based methods and a 1.3- to 7-fold increased lipopolyplex efficiency observed in all cell lines in FAC-depleted media (-FAC), although lower viabilities were observed. Subsequent early addition of FAC (0.5-5 hr post-transfection) revealed 0.5 hr post-transfection as the optimal time to supplement in order to achieve transfection efficiencies similar to -FAC medium while retaining optimal cellular viabilities. In conclusion, FAC was observed to interfere with DNA transfection acting at early stages in all transfection agents and all cell lines studied, and a practical strategy to circumvent this problem is suggested.
Collapse
Affiliation(s)
- Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.,SSPC-SFI Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Nga T Lao
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.,SSPC-SFI Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
10
|
Alazzo A, Al-Natour MA, Spriggs K, Stolnik S, Ghaemmaghami A, Kim DH, Alexander C. Investigating the intracellular effects of hyperbranched polycation-DNA complexes on lung cancer cells using LC-MS-based metabolite profiling. Mol Omics 2019; 15:77-87. [PMID: 30706066 DOI: 10.1039/c8mo00139a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cationic polymers have emerged as a promising alternative to viral vectors in gene therapy. They are cheap to scale up, easy to functionalise and are potentially safer than viral vectors, however many are cytotoxic. The large number of polycations, designed to address the toxicity problem, raises a practical need to develop a fast and reliable method for assessing the safety of these materials. In this regard, metabolomics provides a detailed and comprehensive method that can assess the potential toxicity at the cellular and molecular level. Here, we applied metabolomics to investigate the impact of hyperbranched polylysine, hyperbranched polylysine-co-histidine and branched polyethyleneimine polyplexes at sub-toxic concentrations on the metabolic pathways of A459 and H1299 lung carcinoma cell lines. The study revealed that the polyplexes downregulated metabolites associated with glycolysis and the TCA cycle, and induced oxidative stress in both cell lines. The relative changes of the metabolites indicated that the polyplexes of polyethyleneimine and hyperbranched polylysine affected the metabolism much more than the polyplexes of hyperbranched polylysine-co-histidine. This was in line with transfection results, suggesting a correlation between the toxicity and transfection efficiency of these polyplexes. Our work highlights the importance of the metabolomics approach not just to assess the potential toxicity of polyplexes but also to understand the molecular mechanisms underlying any adverse effects, which could help in designing more efficient vectors.
Collapse
Affiliation(s)
- Ali Alazzo
- School of Pharmacy, University of Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | |
Collapse
|
11
|
Patel M, De Paoli SH, Elhelu OK, Farooq S, Simak J. Cell membrane disintegration and extracellular vesicle release in a model of different size and charge PAMAM dendrimers effects on cultured endothelial cells. Nanotoxicology 2019; 13:664-681. [DOI: 10.1080/17435390.2019.1570373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mehulkumar Patel
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Silvia H. De Paoli
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Oumsalama K. Elhelu
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sehrish Farooq
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jan Simak
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
12
|
Kretzmann JA, Feng R, Munshi AM, Ho D, Ranieri AM, Massi M, Saunders M, Norret M, Iyer KS, Evans CW. A facile methodology using quantum dot multiplex labels for tracking co-transfection. RSC Adv 2019; 9:20053-20057. [PMID: 35514698 PMCID: PMC9065570 DOI: 10.1039/c9ra03518d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022] Open
Abstract
The development of efficient non-viral transfection agents capable of delivering multiple nucleic acids is crucial for the field of genome engineering. Herein a facile methodology of polyplex labelling and tracking with quantum dots is presented.
Collapse
Affiliation(s)
| | - RuiLu Feng
- University of Science and Technology of China
- Hefei Shi
- China
| | - Alaa M. Munshi
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
| | - Diwei Ho
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
| | - Anna M. Ranieri
- Department of Chemistry
- Nanochemistry Research Institute
- Curtin University of Technology
- Bentley
- Australia
| | - Massimiliano Massi
- Department of Chemistry
- Nanochemistry Research Institute
- Curtin University of Technology
- Bentley
- Australia
| | - Martin Saunders
- Centre for Microscopy
- Characterisation and Analysis
- The University of Western Australia
- Crawley
- Australia
| | - Marck Norret
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
| | - Cameron W. Evans
- School of Molecular Sciences
- The University of Western Australia
- Crawley
- Australia
| |
Collapse
|
13
|
Durymanov M, Reineke J. Non-viral Delivery of Nucleic Acids: Insight Into Mechanisms of Overcoming Intracellular Barriers. Front Pharmacol 2018; 9:971. [PMID: 30186185 PMCID: PMC6111240 DOI: 10.3389/fphar.2018.00971] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022] Open
Abstract
Delivery of genes, including plasmid DNAs, short interfering RNAs (siRNAs), and messenger RNAs (mRNAs), using artificial non-viral nanotherapeutics is a promising approach in cancer gene therapy. However, multiple physiological barriers upon systemic administration remain a key challenge in clinical translation of anti-cancer gene therapeutics. Besides extracellular barriers including sequestration of gene delivery nanoparticles from the bloodstream by resident organ-specific macrophages, and their poor extravasation and tissue penetration in tumors, overcoming intracellular barriers is also necessary for successful delivery of nucleic acids. Whereas for RNA delivery the endosomal barrier holds a key importance, transfer of DNA cargo additionally requires translocation into the nucleus. Better understanding of crossing membrane barriers by nucleic acid nanoformulations is essential to the improvement of current non-viral carriers. This review aims to summarize relevant literature on intracellular trafficking of non-viral nanoparticles and determine key factors toward surmounting intracellular barriers. Moreover, recent data allowed us to propose new interpretations of current hypotheses of endosomal escape mechanisms of nucleic acid nanoformulations.
Collapse
Affiliation(s)
- Mikhail Durymanov
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, United States
| | - Joshua Reineke
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
14
|
Control of the transfection efficiency of human dermal fibroblasts by adjusting the characteristics of jetPEI®/plasmid complexes/polyplexes through the cation/anion ratio. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Kretzmann JA, Evans CW, Norret M, Blancafort P, Swaminathan Iyer K. Non-viral Methodology for Efficient Co-transfection. Methods Mol Biol 2018. [PMID: 29524139 DOI: 10.1007/978-1-4939-7774-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The potential impact of CRISPR/Cas9, TALE, and zinc finger technology is immense, both with respect to their use as tools for understanding the roles and functions of the genomic elements and epigenome modifications in an endogenous context and as new methods for treatment of diseases. Application of such technologies has drawn attention, however, to the prevailing lack of effective delivery methods. Promising viral and non-viral methods both currently fall short when the efficient delivery of large plasmids or multiple plasmids is required. Therefore, the use of TALE and CRISPR platforms has been severely limited in applications where selection methods to increase the relative proportion of treated cells are not applicable, and it represents a significant bottleneck in the further application of these tools as therapeutics.The protocol presented here describes the synthesis of a dendronized polymer as a highly efficient and nontoxic transfection agent. Furthermore, the optimization of the polymer as a co-transfection reagent for large and multiple plasmids in cell lines is described, in addition to general considerations for co-transfection experiments. Usage of this method has allowed for significantly improved large plasmid co-transfection efficiency over Lipofectamine 2000 in multiple cell lines, allowing an improved delivery of CRISPR/dCas9 and TALE systems.
Collapse
Affiliation(s)
- Jessica A Kretzmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
16
|
Bus T, Traeger A, Schubert US. The great escape: how cationic polyplexes overcome the endosomal barrier. J Mater Chem B 2018; 6:6904-6918. [DOI: 10.1039/c8tb00967h] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endo-lysosomal escape strategies of cationic polymer-mediated gene delivery at a glance.
Collapse
Affiliation(s)
- Tanja Bus
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Anja Traeger
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic Chemistry and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
17
|
Duek AR, Costa GCDD, Más BA, Barbo MLP, Motta AC, Duek EADR. In vitro and in vivo cell tracking of PKH26-labeled osteoblasts cultured on PLDLA scaffolds. POLIMEROS 2017. [DOI: 10.1590/0104-1428.2372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | - Bruna Antunes Más
- Pontifícia Universidade Católica de São Paulo, Brazil; Universidade Estadual de Campinas, Brazil
| | | | | | | |
Collapse
|
18
|
Vaidyanathan S, Orr BG, Banaszak Holl MM. Role of Cell Membrane-Vector Interactions in Successful Gene Delivery. Acc Chem Res 2016; 49:1486-93. [PMID: 27459207 DOI: 10.1021/acs.accounts.6b00200] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cationic polymers have been investigated as nonviral vectors for gene delivery due to their favorable safety profile when compared to viral vectors. However, nonviral vectors are limited by poor efficacy in inducing gene expression. The physicochemical properties of cationic polymers enabling successful gene expression have been investigated in order to improve expression efficiency and safety. Studies over the past several years have focused on five possible rate-limiting processes to explain the differences in gene expression: (1) endosomal release, (2) transport within specific intracellular pathways, (3) protection of DNA from nucleases, (4) transport into the nucleus, and (5) DNA release from vectors. However, determining the relative importance of these processes and the vector properties necessary for optimization remain a challenge to the field. In this Account, we describe over a decade of studies focused on understanding the interaction of cationic polymer and cationic polymer/oligonucleotide (polyplex) interactions with model lipid membranes, cell membranes, and cells in culture. In particular, we have been interested in how the interaction between cationic polymers and the membrane influences the intracellular transport of intact DNA to the nucleus. Recent advances in microfluidic patch clamp techniques enabled us to quantify polyplex cell membrane interactions at the cellular level with precise control over material concentrations and exposure times. In attempting to relate these findings to subsequent intracellular transport of DNA and expression of protein, we needed to develop an approach that could distinguish DNA that was intact and potentially functional for gene expression from the much larger pool of degraded, nonfunctional DNA within the cell. We addressed this need by developing a FRET oligonucleotide molecular beacon (OMB) to monitor intact DNA transport. The research highlighted in this Account builds to the conclusion that polyplex transported DNA is released from endosomes by free cationic polymer intercalated into the endosomal membrane. This cationic polymer initially interacts with the cell plasma membrane and appears to reach the endosome by lipid cycling mechanisms. The fraction of cells displaying release of intact DNA from endosomes quantitatively predicts the fraction of cells displaying gene expression for both linear poly(ethylenimine) (L-PEI; an effective vector) and generation five poly(amidoamine) dendrimer (G5 PAMAM; an ineffective vector). Moreover, intact OMB delivered with G5 PAMAM, which normally is confined to endosomes, was released by the subsequent addition of L-PEI with a corresponding 10-fold increase in transgene expression. These observations are consistent with experiments demonstrating that cationic polymer/membrane partition coefficients, not polyplex/membrane partition coefficients, predict successful gene expression. Interestingly, a similar partitioning of cationic polymers into the mitochondrial membranes has been proposed to explain the cytotoxicity of these materials. Thus, the proposed model indicates the same physicochemical property (partitioning into lipid bilayers) is linked to release from endosomes, giving protein expression, and to cytotoxicity.
Collapse
Affiliation(s)
- Sriram Vaidyanathan
- Departments of Biomedical Engineering, ‡Chemistry, and §Physics, ∥Program in Applied Physics and ⊥Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bradford G. Orr
- Departments of Biomedical Engineering, ‡Chemistry, and §Physics, ∥Program in Applied Physics and ⊥Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mark M. Banaszak Holl
- Departments of Biomedical Engineering, ‡Chemistry, and §Physics, ∥Program in Applied Physics and ⊥Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Kirchenbuechler I, Kirchenbuechler D, Elbaum M. Correlation between cationic lipid-based transfection and cell division. Exp Cell Res 2016; 345:1-5. [DOI: 10.1016/j.yexcr.2014.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/27/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
|
20
|
Vaidyanathan S, Chen J, Orr BG, Banaszak Holl MM. Cationic Polymer Intercalation into the Lipid Membrane Enables Intact Polyplex DNA Escape from Endosomes for Gene Delivery. Mol Pharm 2016; 13:1967-78. [PMID: 27111496 DOI: 10.1021/acs.molpharmaceut.6b00139] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing improved cationic polymer-DNA polyplexes for gene delivery requires improved understanding of DNA transport from endosomes into the nucleus. Using a FRET-capable oligonucleotide molecular beacon (OMB), we monitored the transport of intact DNA to cell organelles. We observed that for effective (jetPEI) and ineffective (G5 PAMAM) vectors, the fraction of cells displaying intact OMB in the cytosol (jetPEI ≫ G5 PAMAM) quantitatively predicted the fraction expressing transgene (jetPEI ≫ G5 PAMAM). Intact OMB delivered with PAMAM and confined to endosomes could be released to the cytosol by the subsequent addition of L-PEI, with a corresponding 10-fold increase in transgene expression. These results suggest that future vector development should optimize vectors for intercalation into, and destabilization of, the endosomal membrane. Finally, the study highlights a two-step strategy in which the pDNA is loaded in cells using one vector and endosomal release is mediated by a second agent.
Collapse
Affiliation(s)
- Sriram Vaidyanathan
- Departments of †Biomedical Engineering and ‡Chemistry and Programs in §Applied Physics and ⊥Macromolecular Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Junjie Chen
- Departments of †Biomedical Engineering and ‡Chemistry and Programs in §Applied Physics and ⊥Macromolecular Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Bradford G Orr
- Departments of †Biomedical Engineering and ‡Chemistry and Programs in §Applied Physics and ⊥Macromolecular Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mark M Banaszak Holl
- Departments of †Biomedical Engineering and ‡Chemistry and Programs in §Applied Physics and ⊥Macromolecular Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
pMINERVA: A donor-acceptor system for the in vivo recombineering of scFv into IgG molecules. J Immunol Methods 2016; 431:22-30. [PMID: 26851519 DOI: 10.1016/j.jim.2016.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/12/2016] [Accepted: 02/01/2016] [Indexed: 11/22/2022]
Abstract
Phage display is the most widely used method for selecting binding molecules from recombinant antibody libraries. However, validation of the phage antibodies often requires early production of the cognate full-length immunoglobulin G (IgG). The conversion of phage library outputs to a full immunoglobulin via standard subcloning is time-consuming and limits the number of clones that can be evaluated. We have developed a novel system to convert scFvs from a phage display vector directly into IgGs without any in vitro subcloning steps. This new vector system, named pMINERVA, makes clever use of site-specific bacteriophage integrases that are expressed in Escherichia coli and intron splicing that occurs within mammalian cells. Using this system, a phage display vector contains both bacterial and mammalian regulatory regions that support antibody expression in E. coli and mammalian cells. A single-chain variable fragment (scFv) antibody is expressed on the surface of bacteriophage M13 as a genetic fusion to the gpIII coat protein. The scFv is converted to an IgG that can be expressed in mammalian cells by transducing a second E. coli strain. In that strain, the phiC31 recombinase fuses the heavy chain constant domain from an acceptor plasmid to the heavy chain variable domain and introduces controlling elements upstream of the light chain variable domain. Splicing in mammalian cells removes a synthetic intron containing the M13 gpIII gene to produce the fusion of the light chain variable domain to the constant domain. We show that phage displaying a scFv and recombinant IgGs generated using this system are expressed at wild-type levels and retain normal function. Use of the pMINERVA completely eliminates the labor-intensive subcloning and DNA sequence confirmation steps currently needed to convert a scFv into a functional IgG Ab.
Collapse
|
22
|
Durymanov MO, Yarutkin AV, Khramtsov YV, Rosenkranz AA, Sobolev AS. Live imaging of transgene expression in Cloudman S91 melanoma cells after polyplex-mediated gene delivery. J Control Release 2015; 215:73-81. [DOI: 10.1016/j.jconrel.2015.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 01/05/2023]
|
23
|
Vaidyanathan S, Anderson KB, Merzel RL, Jacobovitz B, Kaushik MP, Kelly CN, van Dongen MA, Dougherty CA, Orr BG, Banaszak Holl MM. Quantitative Measurement of Cationic Polymer Vector and Polymer-pDNA Polyplex Intercalation into the Cell Plasma Membrane. ACS NANO 2015; 9:6097-6109. [PMID: 25952271 PMCID: PMC4771022 DOI: 10.1021/acsnano.5b01263] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cationic gene delivery agents (vectors) are important for delivering nucleotides, but are also responsible for cytotoxicity. Cationic polymers (L-PEI, jetPEI, and G5 PAMAM) at 1× to 100× the concentrations required for translational activity (protein expression) induced the same increase in plasma membrane current of HEK 293A cells (30-50 nA) as measured by whole cell patch-clamp. This indicates saturation of the cell membrane by the cationic polymers. The increased currents induced by the polymers are not reversible for over 15 min. Irreversibility on this time scale is consistent with a polymer-supported pore or carpet model and indicates that the cell is unable to clear the polymer from the membrane. For polyplexes, although the charge concentration was the same (at N/P ratio of 10:1), G5 PAMAM and jetPEI polyplexes induced a much larger current increase (40-50 nA) than L-PEI polyplexes (<20 nA). Both free cationic lipid and lipid polyplexes induced a lower increase in current than cationic polymers (<20 nA). To quantify the membrane bound material, partition constants were measured for both free vectors and polyplexes into the HEK 293A cell membrane using a dye influx assay. The partition constants of free vectors increased with charge density of the vectors. Polyplex partition constants did not show such a trend. The long lasting cell plasma permeability induced by exposure to the polymer vectors or the polyplexes provides a plausible mechanism for the toxicity and inflammatory response induced by exposure to these materials.
Collapse
Affiliation(s)
- Sriram Vaidyanathan
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kevin B Anderson
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel L Merzel
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Binyamin Jacobovitz
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Milan P Kaushik
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christina N Kelly
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mallory A van Dongen
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Casey A Dougherty
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bradford G Orr
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mark M Banaszak Holl
- †Departments of Biomedical Engineering, ‡Chemistry, and §Physics, and ∥the Programs in Applied Physics and ⊥Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Sohail A, Bhat SA, Siddiqui AA, Zaman M, Khan RH, Bano B. Conformational transitions induced byin vitromacromolecular crowding lead to the amyloidogenesis of buffalo heart cystatin. J Mol Recognit 2015; 28:699-709. [DOI: 10.1002/jmr.2484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/02/2015] [Accepted: 05/08/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Aamir Sohail
- Department of Biochemistry, Faculty of Life Sciences; AMU; Aligarh India
| | - Sheraz A. Bhat
- Department of Biochemistry, Faculty of Life Sciences; AMU; Aligarh India
| | - Azad A. Siddiqui
- Department of Biochemistry, Faculty of Life Sciences; AMU; Aligarh India
| | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit (IBU); AMU; Aligarh India
| | - Rizwan H. Khan
- Interdisciplinary Biotechnology Unit (IBU); AMU; Aligarh India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences; AMU; Aligarh India
| |
Collapse
|
25
|
Wong PT, Tang K, Coulter A, Tang S, Baker JR, Choi SK. Multivalent Dendrimer Vectors with DNA Intercalation Motifs for Gene Delivery. Biomacromolecules 2014; 15:4134-45. [PMID: 25285357 DOI: 10.1021/bm501169s] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pamela T. Wong
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Kenny Tang
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Alexa Coulter
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine
and Biological Sciences and ‡Department of
Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Zhao B, Sun X, Li X, Yang Q, Li Y, Zhang Y, Li B, Ma X. Improved preparation of acellular nerve scaffold and application of PKH26 fluorescent labeling combined with in vivo fluorescent imaging system in nerve tissue engineering. Neurosci Lett 2013; 556:52-7. [DOI: 10.1016/j.neulet.2013.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 11/16/2022]
|
27
|
Opposing influence of intracellular and membrane thiols on the toxicity of reducible polycations. Biomaterials 2013; 34:8843-50. [PMID: 23948163 DOI: 10.1016/j.biomaterials.2013.07.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/29/2013] [Indexed: 11/23/2022]
Abstract
Toxicity of polycations has been recognized since their first use in gene delivery. Bioreducible polycations attract attention because of their improved safety due to selective intracellular degradation by glutathione (GSH). Here we present a systematic study of the toxicity of bioreducible poly(amido amine)s (PAA). PAA with increasing content of disulfide bonds were synthesized by Michael addition. Toxicity of PAA was evaluated in two cell lines with different innate levels of intracellular GSH. Increasing the content of disulfide bonds decreased the toxicity of PAA, with more significant decrease observed in cells with high GSH. Depleting intracellular GSH by diethyl maleate resulted in increased toxicity of bioreducible PAA. In contrast, increasing the GSH concentrations by growing cells in hypoxic conditions resulted in further decreased toxicity compared with cells grown in normoxic conditions. The presence of exofacial plasma membrane thiols selectively increased toxicity of bioreducible PAA while having no effect on non-degradable controls. These results improve our understanding of the cellular mechanisms of polycation toxicity. They also shed light on the opposing effects of different cellular thiol pools on the toxicity of bioreducible polycations.
Collapse
|