1
|
González-Guevara E, Lara-González E, Rendon-Ochoa E, Franco-Pérez J, Hernández-Cerón M, Laville A, Pérez-Severiano F, Martínez-de Los Santos C, Custodio V, Bargas J, Martínez-Lazcano JC. Inhibition of the NMDA Currents by Probenecid in Amygdaloid Kindling Epilepsy Model. Mol Neurobiol 2024; 61:6264-6278. [PMID: 38289456 DOI: 10.1007/s12035-024-03969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/17/2024] [Indexed: 08/22/2024]
Abstract
Epilepsy is characterized by a sustained depolarization and repeated discharge of neurons, attributed to overstimulation of N-methyl-D-aspartate receptors (NMDAr). Herein, we propose that probenecid (PROB), an inhibitor of the activity of some ATP binding-cassette transporters (ABC-transporters) can modify NMDAr activity and expression in amygdaloid kindled model. Some studies have suggested that NMDAr expression could be regulated by inhibiting the activity of P-glycoprotein (MDR1) and drug resistance protein-1 (MRP1). Besides, PROB was found to interact with other proteins with proven activity in the kindling model, such as TRPV2 channels, OAT1, and Panx1. Administering PROB at two doses (100 and 300 mg/kg/d) for 5 d decreased after-discharge duration and Racine behavioral scores. It also reduced the expression of NR2B and the activity of total NOS and the expression of nNOS with respect to the kindling group. In a second protocol, voltage-clamp measurements of NMDA-evoked currents were performed in CA1 hippocampal cells dissociated from control and kindled rats. PROB produced a dose-dependent reduction in NMDA-evoked currents. In neurons from kindled rats, a residual NMDA-evoked current was registered with respect to control animals, while a reduction in NMDA-evoked currents was observed in the presence of 20 mM PROB. Finally, we evaluated the expression of MRP1 and MDR1 in order to establish a relationship between the reduction of kindling parameters, the inhibition of NMDA-type currents, and the expression of these transporters. Based on our results, we conclude that at the concentrations used, PROB inhibits currents evoked by NMDA in dissociated neurons of control and kindled rats. In the kindling model, at the tested doses, PROB decreases the after-discharge duration and Racine behavioral score in the kindling model. We propose a mechanism that could be dependent on the expression of ABC-type transporters.
Collapse
Affiliation(s)
- Edith González-Guevara
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14629, México
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía MVS, Insurgentes Sur 3877, La Fama, Mexico City, 14629, México
| | - Esther Lara-González
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14629, México
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, México
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ernesto Rendon-Ochoa
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, México
- Laboratorio de Psicofarmacología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, México
| | - Javier Franco-Pérez
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14629, México
- Laboratorio de Neuropatología Vascular, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14629, México
| | - Miguel Hernández-Cerón
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14629, México
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14629, México
| | - Antonio Laville
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía MVS, Insurgentes Sur 3877, La Fama, Mexico City, 14629, México
| | - Cesar Martínez-de Los Santos
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14629, México
- Departamento de Neuroanestesiología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14269, México
| | - Verónica Custodio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14629, México
| | - José Bargas
- División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Juan Carlos Martínez-Lazcano
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, 14629, México.
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía MVS, Insurgentes Sur 3877, La Fama, Mexico City, 14629, México.
| |
Collapse
|
2
|
Brunetti V, Soda T, Berra-Romani R, De Sarro G, Guerra G, Scarpellino G, Moccia F. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age. Biomedicines 2024; 12:880. [PMID: 38672234 PMCID: PMC11048239 DOI: 10.3390/biomedicines12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Glutamatergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs), which mediate slower postsynaptic responses through the recruitment of second messenger systems. A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs, i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothelial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective strategies against brain disorders.
Collapse
Affiliation(s)
- Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, School of Medicine and Surgery, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.S.); (G.D.S.)
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, 88110 Catanzaro, Italy
| | - Germano Guerra
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, 27110 Pavia, Italy; (V.B.); (G.S.)
| | - Francesco Moccia
- Department of Medicine and Health Science “Vincenzo Tiberio”, School of Medicine and Surgery, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
3
|
Auvin S, Galanopoulou AS, Moshé SL, Potschka H, Rocha L, Walker MC. Revisiting the concept of drug-resistant epilepsy: A TASK1 report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2891-2908. [PMID: 37676719 PMCID: PMC10836613 DOI: 10.1111/epi.17751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
Despite progress in the development of anti-seizure medications (ASMs), one third of people with epilepsy have drug-resistant epilepsy (DRE). The working definition of DRE, proposed by the International League Against Epilepsy (ILAE) in 2010, helped identify individuals who might benefit from presurgical evaluation early on. As the incidence of DRE remains high, the TASK1 workgroup on DRE of the ILAE/American Epilepsy Society (AES) Joint Translational Task Force discussed the heterogeneity and complexity of its presentation and mechanisms, the confounders in drawing mechanistic insights when testing treatment responses, and barriers in modeling DRE across the lifespan and translating across species. We propose that it is necessary to revisit the current definition of DRE, in order to transform the preclinical and clinical research of mechanisms and biomarkers, to identify novel, effective, precise, pharmacologic treatments, allowing for earlier recognition of drug resistance and individualized therapies.
Collapse
Affiliation(s)
| | - Stéphane Auvin
- Institut Universitaire de France, Paris, France; Paediatric Neurology, Assistance Publique - Hôpitaux de Paris, EpiCARE ERN Member, Robert-Debré Hospital, Paris, France; University Paris-Cité, Paris, France
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, and Montefiore/Einstein Epilepsy Center, Bronx, New York, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Luisa Rocha
- Pharmacobiology Department. Center for Research and Advanced Studies (CINVESTAV). Mexico City, Mexico
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
4
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
5
|
von Rüden EL, Potschka H, Tipold A, Stein VM. The role of neuroinflammation in canine epilepsy. Vet J 2023; 298-299:106014. [PMID: 37393038 DOI: 10.1016/j.tvjl.2023.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The lack of therapeutics that prevent the development of epilepsy, improve disease prognosis or overcome drug resistance represents an unmet clinical need in veterinary as well as in human medicine. Over the past decade, experimental studies and studies in human epilepsy patients have demonstrated that neuroinflammatory processes are involved in epilepsy development and play a key role in neuronal hyperexcitability that underlies seizure generation. Targeting neuroinflammatory signaling pathways may provide a basis for clinically relevant disease-modification strategies in general, and moreover, could open up new therapeutic avenues for human and veterinary patients with drug-resistant epilepsy. A sound understanding of the neuroinflammatory mechanisms underlying seizure pathogenesis in canine patients is therefore essential for mechanism-based discovery of selective epilepsy therapies that may enable the development of new disease-modifying treatments. In particular, subgroups of canine patients in urgent needs, e.g. dogs with drug-resistant epilepsy, might benefit from more intensive research in this area. Moreover, canine epilepsy shares remarkable similarities in etiology, disease manifestation, and disease progression with human epilepsy. Thus, canine epilepsy is discussed as a translational model for the human disease and epileptic dogs could provide a complementary species for the evaluation of antiepileptic and antiseizure drugs. This review reports key preclinical and clinical findings from experimental research and human medicine supporting the role of neuroinflammation in the pathogenesis of epilepsy. Moreover, the article provides an overview of the current state of knowledge regarding neuroinflammatory processes in canine epilepsy emphasizing the urgent need for further research in this specific field. It also highlights possible functional impact, translational potential and future perspectives of targeting specific inflammatory pathways as disease-modifying and multi-target treatment options for canine epilepsy.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Veronika M Stein
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Soda T, Brunetti V, Berra-Romani R, Moccia F. The Emerging Role of N-Methyl-D-Aspartate (NMDA) Receptors in the Cardiovascular System: Physiological Implications, Pathological Consequences, and Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24043914. [PMID: 36835323 PMCID: PMC9965111 DOI: 10.3390/ijms24043914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate, mediate the slow component of excitatory neurotransmission in the central nervous system (CNS), and induce long-term changes in synaptic plasticity. NMDARs are non-selective cation channels that allow the influx of extracellular Na+ and Ca2+ and control cellular activity via both membrane depolarization and an increase in intracellular Ca2+ concentration. The distribution, structure, and role of neuronal NMDARs have been extensively investigated and it is now known that they also regulate crucial functions in the non-neuronal cellular component of the CNS, i.e., astrocytes and cerebrovascular endothelial cells. In addition, NMDARs are expressed in multiple peripheral organs, including heart and systemic and pulmonary circulations. Herein, we survey the most recent information available regarding the distribution and function of NMDARs within the cardiovascular system. We describe the involvement of NMDARs in the modulation of heart rate and cardiac rhythm, in the regulation of arterial blood pressure, in the regulation of cerebral blood flow, and in the blood-brain barrier (BBB) permeability. In parallel, we describe how enhanced NMDAR activity could promote ventricular arrhythmias, heart failure, pulmonary artery hypertension (PAH), and BBB dysfunction. Targeting NMDARs could represent an unexpected pharmacological strategy to reduce the growing burden of several life-threatening cardiovascular disorders.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987613
| |
Collapse
|
7
|
Vore AS, Deak T. Alcohol, inflammation, and blood-brain barrier function in health and disease across development. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:209-249. [PMID: 34801170 DOI: 10.1016/bs.irn.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alcohol is the most commonly used drug of abuse in the world and binge drinking is especially harmful to the brain, though the mechanisms by which alcohol compromises overall brain health remain somewhat elusive. A number of brain diseases and pathological states are accompanied by perturbations in Blood-Brain Barrier (BBB) function, ultimately exacerbating disease progression. The BBB is critical for coordinating activity between the peripheral immune system and the brain. Importantly, BBB integrity is responsive to circulating cytokines and other immune-related signaling molecules, which are powerfully modulated by alcohol exposure. This review will highlight key cellular components of the BBB; discuss mechanisms by which permeability is achieved; offer insight into methodological approaches for assessing BBB integrity; and forecast how alcohol-induced changes in the peripheral and central immune systems might influence BBB function in individuals with a history of binge drinking and ultimately Alcohol Use Disorders (AUD).
Collapse
Affiliation(s)
- A S Vore
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States
| | - T Deak
- Behavioral Neuroscience Program, Department of Psychology, Developmental Exposure Alcohol Research Center, Binghamton, NY, United States.
| |
Collapse
|
8
|
Enrique AV, Di Ianni ME, Goicoechea S, Lazarowski A, Valle-Dorado MG, Costa JJL, Rocha L, Girardi E, Talevi A. New anticonvulsant candidates prevent P-glycoprotein (P-gp) overexpression in a pharmacoresistant seizure model in mice. Epilepsy Behav 2021; 121:106451. [PMID: 31420290 DOI: 10.1016/j.yebeh.2019.106451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/04/2023]
Abstract
Despite the approval of a considerable number of last generation antiepileptic drugs (AEDs) (only in the last decade, six drugs have gained Food and Drug Administration approval), the global figures of seizure control have seemingly not improved, and available AED can still be regarded as symptomatic treatments. Fresh thinking in AEDs drug discovery, including the development of drugs with novel mechanisms of action, is required to achieve truly innovative antiepileptic medications. The transporter hypothesis proposes that inadequate penetration of AEDs across the blood-brain barrier, caused by increased expression of efflux transporters such as P-glycoprotein (P-gp), contributes to drug-resistant epilepsy. Neuroinflammation due to high levels of glutamate has been identified as one of the causes of P-gp upregulation, and several studies in animal models of epilepsy suggest that antiinflammatory drugs might prevent P-gp overexpression and, thus, avoid the development of refractory epilepsy. We have applied ligand-based in silico screening to select compounds that exert dual anticonvulsant and antiinflammatory effects. Five of the hits were tested in animal models of seizure, with protective effects. Later, two of them (sebacic acid (SA) and gamma-decanolactone) were submitted to the recently described MP23 model of drug-resistant seizures. All in all, SA displayed the best profile, showing activity in the maximal electroshock seizure (MES) and pentylenetetrazol (PTZ) seizure models, and reversing resistance to phenytoin (PHT) and decreasing the P-gp upregulation in the MP23 model. Furthermore, pretreatment with SA in the pilocarpine status epilepticus (SE) model resulted in decreased histamine release in comparison with nontreated animals. This is the first report of the use of the MP23 model to screen for novel anticonvulsant compounds that may avoid the development of P-gp-related drug resistance.
Collapse
Affiliation(s)
- Andrea Verónica Enrique
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y115, La Plata B1900BJW, Argentina
| | - Mauricio Emiliano Di Ianni
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y115, La Plata B1900BJW, Argentina
| | - Sofía Goicoechea
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y115, La Plata B1900BJW, Argentina
| | - Alberto Lazarowski
- Instituto de Fisiopatología y Bioquímica Clínica (INFIBIOC), Facultad de Farmacia y Bioquímica (FFyB), Universidad de Buenos Aires (UBA,) Junín 956, C1113AAD CABA, Argentina
| | | | - Juan José López Costa
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires (UBA) / Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Elena Girardi
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires (UBA) / Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Paraguay 2155, C1121ABG, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biologicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y115, La Plata B1900BJW, Argentina.
| |
Collapse
|
9
|
Brukner AM, Billington S, Benifla M, Nguyen TB, Han H, Bennett O, Gilboa T, Blatch D, Fellig Y, Volkov O, Unadkat JD, Ekstein D, Eyal S. Abundance of P-glycoprotein and Breast Cancer Resistance Protein Measured by Targeted Proteomics in Human Epileptogenic Brain Tissue. Mol Pharm 2021; 18:2263-2273. [PMID: 34008992 PMCID: PMC8488956 DOI: 10.1021/acs.molpharmaceut.1c00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Our goal was to measure the absolute
differential abundance of
key drug transporters in human epileptogenic brain tissue and to compare
them between patients and at various distances from the epileptogenic
zone within the same patient. Transporter protein abundance was quantified
in brain tissue homogenates from patients who underwent epilepsy surgery,
using targeted proteomics, and correlations with clinical and tissue
characteristics were assessed. Fourteen brain samples (including four
epileptogenic hippocampal samples) were collected from nine patients.
Among the quantifiable drug transporters, the abundance (median, range)
ranked: breast cancer resistance protein (ABCG2/BCRP; 0.55, 0.01–3.26
pmol/g tissue) > P-glycoprotein (ABCB1/MDR1; 0.30,
0.02–1.15 pmol/g tissue) > equilibrative nucleoside transporter
1 (SLC29A1/ENT1; 0.06, 0.001–0.35 pmol/g tissue). The ABCB1/ABCG2
ratio (mean 0.27, range 0.08–0.47) was comparable with literature
values from nonepileptogenic brain tissue (mean 0.5–0.8). Transporter
abundance was lower in the hippocampi than in the less epileptogenic
neocortex of the same patients. ABCG2/BCRP and ABCB1/MDR1 expression
strongly correlated with that of glucose transporter 1 (SLC2A1/GLUT1)
(r = 0.97, p < 0.001; r = 0.90, p < 0.01, respectively). Low
transporter abundance was found in patients with overt vascular pathology,
whereas the highest abundance was seen in a sample with normally appearing
blood vessels. In conclusion, drug transporter abundance highly varies
across patients and between epileptogenic and less epileptogenic brain
tissue of the same patient. The strong correlation in abundance of
ABCB1/MDR1, ABCG2/BCRP, and SLC2A1/GLUT1 suggests variation in the
content of the functional vasculature within the tissue samples. The
epileptogenic tissue can be depleted of key drug transport mechanisms,
warranting consideration when selecting treatments for patients with
drug-resistant epilepsy.
Collapse
Affiliation(s)
- Aniv Mann Brukner
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, Jerusalem 91120, Israel
| | - Sarah Billington
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States
| | - Mony Benifla
- Children's Neurosurgery Department, Rambam Academic Hospital, Haifa 31999, Israel
| | - Tot Bui Nguyen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States
| | - Hadas Han
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, Jerusalem 91120, Israel
| | - Odeya Bennett
- Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem 91031, Israel
| | - Tal Gilboa
- Neuropediatric Unit, Pediatrics Division, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.,The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Dana Blatch
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Yakov Fellig
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Olga Volkov
- Nuclear Medicine Institute, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Jashvant D Unadkat
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, United States
| | - Dana Ekstein
- The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Room 613, Ein Kerem, Jerusalem 91120, Israel
| |
Collapse
|
10
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
11
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
12
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
13
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs ("precision medicine") for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal. SIGNIFICANCE STATEMENT: Drug resistance provides a major challenge in epilepsy management. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of drug resistance in epilepsy and discuss how the problem might be overcome.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
14
|
Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci Rep 2020; 10:2546. [PMID: 32054883 PMCID: PMC7018850 DOI: 10.1038/s41598-020-59259-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Antiepileptic drug therapy has significant inter-patient variability in response towards it. The current study aims to understand this variability at the molecular level using microarray-based analysis of peripheral blood gene expression profiles of patients receiving valproate (VA) monotherapy. Only 10 unique genes were found to be differentially expressed in VA responders (n = 15) and 6 genes in the non-responders (n = 8) (fold-change >2, p < 0.05). PTGS2 which encodes cyclooxygenase-2, COX-2, showed downregulation in the responders compared to the non-responders. PTGS2/COX-2 mRNA profiles in the two groups corresponded to their plasma profiles of the COX-2 product, prostaglandin E2 (PGE2). Since COX-2 is believed to regulate P-glycoprotein (P-gp), a multidrug efflux transporter over-expressed at the blood-brain barrier (BBB) in drug-resistant epilepsy, the pathway connecting COX-2 and P-gp was further explored in vitro. Investigation of the effect of VA upon the brain endothelial cells (hCMEC/D3) in hyperexcitatory conditions confirmed suppression of COX-2-dependent P-gp upregulation by VA. Our findings suggest that COX-2 downregulation by VA may suppress seizure-mediated P-gp upregulation at the BBB leading to enhanced drug delivery to the brain in the responders. Our work provides insight into the association of peripheral PTGS2/COX-2 expression with VA efficacy and the role of COX-2 as a potential therapeutic target for developing efficacious antiepileptic treatment.
Collapse
|
15
|
Rawat C, Kushwaha S, Sharma S, Srivastava AK, Kukreti R. Altered plasma prostaglandin E 2 levels in epilepsy and in response to antiepileptic drug monotherapy. Prostaglandins Leukot Essent Fatty Acids 2020; 153:102056. [PMID: 32007745 DOI: 10.1016/j.plefa.2020.102056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
Prostaglandin E2 (PGE2), a physiologically active lipid compound, is increased in several diseases characterized by chronic inflammation. To determine its significance in epilepsy-associated inflammation and response to antiepileptic drug (AED), we evaluated the plasma PGE2 (median, pg/ml) levels in drug-free patients with epilepsy (N = 34) and patients receiving AED monotherapy (N = 55) in addition to that in healthy controls (N = 34). When compared to controls, plasma PGE2 levels were significantly elevated in all drug-free patients independent of the type of epilepsy (137.2 versus 475.7 pg/ml, p < 0.0001). Among the patients receiving AED monotherapy, only valproate responders showed a significant decrease compared to both drug-free patients (232.1 versus 475.7 pg/ml, p < 0.01) as well as valproate non-responders (232.1 versus 611.9 pg/ml, p < 0.0001). Both responders and non-responders on phenytoin or carbamazepine monotherapy had elevated PGE2 levels similar to drug-free patients. In addition, no difference was observed in plasma profiles of PGE2 precursor, arachidonic acid among the groups. Our work presents the clinical evidence of the association between plasma PGE2 levels and valproate efficacy in patients with epilepsy.
Collapse
Affiliation(s)
- Chitra Rawat
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India
| | - Suman Kushwaha
- Institute of Human Behavior & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110095, India
| | - Sangeeta Sharma
- Institute of Human Behavior & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110095, India
| | - Achal K Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, Delhi 110029, India
| | - Ritushree Kukreti
- Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India.
| |
Collapse
|
16
|
Bell AH, Miller SL, Castillo-Melendez M, Malhotra A. The Neurovascular Unit: Effects of Brain Insults During the Perinatal Period. Front Neurosci 2020; 13:1452. [PMID: 32038147 PMCID: PMC6987380 DOI: 10.3389/fnins.2019.01452] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The neurovascular unit (NVU) is a relatively recent concept in neuroscience that broadly describes the relationship between brain cells and their blood vessels. The NVU incorporates cellular and extracellular components involved in regulating cerebral blood flow and blood-brain barrier function. The NVU within the adult brain has attracted strong research interest and its structure and function is well described, however, the NVU in the developing brain over the fetal and neonatal period remains much less well known. One area of particular interest in perinatal brain development is the impact of known neuropathological insults on the NVU. The aim of this review is to synthesize existing literature to describe structure and function of the NVU in the developing brain, with a particular emphasis on exploring the effects of perinatal insults. Accordingly, a brief overview of NVU components and function is provided, before discussion of NVU development and how this may be affected by perinatal pathologies. We have focused this discussion around three common perinatal insults: prematurity, acute hypoxia, and chronic hypoxia. A greater understanding of processes affecting the NVU in the perinatal period may enable application of targeted therapies, as well as providing a useful basis for research as it expands further into this area.
Collapse
Affiliation(s)
- Alexander H. Bell
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Spampinato SF, Bortolotto V, Canonico PL, Sortino MA, Grilli M. Astrocyte-Derived Paracrine Signals: Relevance for Neurogenic Niche Regulation and Blood-Brain Barrier Integrity. Front Pharmacol 2019; 10:1346. [PMID: 31824311 PMCID: PMC6881379 DOI: 10.3389/fphar.2019.01346] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/24/2019] [Indexed: 01/12/2023] Open
Abstract
Astrocytes are essential for proper regulation of the central nervous system (CNS). Importantly, these cells are highly secretory in nature. Indeed they can release hundreds of molecules which play pivotal physiological roles in nervous tissues and whose abnormal regulation has been associated with several CNS disorders. In agreement with these findings, recent studies have provided exciting insights into the key contribution of astrocyte-derived signals in the pleiotropic functions of these cells in brain health and diseases. In the future, deeper analysis of the astrocyte secretome is likely to further increase our current knowledge on the full potential of these cells and their secreted molecules not only as active participants in pathophysiological events, but as pharmacological targets or even as therapeutics for neurological and psychiatric diseases. Herein we will highlight recent findings in our and other laboratories on selected molecules that are actively secreted by astrocytes and contribute in two distinct functions with pathophysiological relevance for the astroglial population: i) regulation of neural stem cells (NSCs) and their progeny within adult neurogenic niches; ii) modulation of the blood–brain barrier (BBB) integrity and function.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
18
|
Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflammation 2019; 16:197. [PMID: 31666079 PMCID: PMC6822425 DOI: 10.1186/s12974-019-1592-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epilepsy, a common multifactorial neurological disease, affects about 69 million people worldwide constituting nearly 1% of the world population. Despite decades of extensive research on understanding its underlying mechanism and developing the pharmacological treatment, very little is known about the biological alterations leading to epileptogenesis. Due to this gap, the currently available antiepileptic drug therapy is symptomatic in nature and is ineffective in 30% of the cases. Mounting evidences revealed the pathophysiological role of neuroinflammation in epilepsy which has shifted the focus of epilepsy researchers towards the development of neuroinflammation-targeted therapeutics for epilepsy management. Markedly increased expression of key inflammatory mediators in the brain and blood-brain barrier may affect neuronal function and excitability and thus may increase seizure susceptibility in preclinical and clinical settings. Cyclooxygenase-2 (COX-2), an enzyme synthesizing the proinflammatory mediators, prostaglandins, has widely been reported to be induced during seizures and is considered to be a potential neurotherapeutic target for epilepsy management. However, the efficacy of such therapy involving COX-2 inhibition depends on various factors viz., therapeutic dose, time of administration, treatment duration, and selectivity of COX-2 inhibitors. This article reviews the preclinical and clinical evidences supporting the role of COX-2 in seizure-associated neuroinflammation in epilepsy and the potential clinical use of COX-2 inhibitors as a future strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ujjwal Ranjan Dahiya
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), Delhi, India.
| |
Collapse
|
19
|
Ding Y, Wang R, Zhang J, Zhao A, Lu H, Li W, Wang C, Yuan X. Potential Regulation Mechanisms of P-gp in the Blood-Brain Barrier in Hypoxia. Curr Pharm Des 2019; 25:1041-1051. [PMID: 31187705 DOI: 10.2174/1381612825666190610140153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022]
Abstract
The blood-brain barrier (BBB) is a barrier of the central nervous system (CNS), which can restrict the
free exchange of substances, such as toxins and drugs, between cerebral interstitial fluid and blood, keeping the
relative physiological stabilization. The brain capillary endothelial cells, one of the structures of the BBB, have a
variety of ATP-binding cassette transporters (ABC transporters), among which the most widely investigated is Pglycoprotein
(P-gp) that can efflux numerous substances out of the brain. The expression and activity of P-gp are
regulated by various signal pathways, including tumor necrosis factor-α (TNF-α)/protein kinase C-β (PKC-
β)/sphingosine-1-phosphate receptor 1 (S1P), vascular endothelial growth factor (VEGF)/Src kinase, etc. However,
it remains unclear how hypoxic signaling pathways regulate the expression and activity of P-gp in brain
microvascular endothelial cells. According to previous research, hypoxia affects the expression and activity of the
transporter. If the transporter is up-regulated, some drugs enter the brain's endothelial cells and are pumped back
into the blood by transporters such as P-gp before they enter the brain tissue, consequently influencing the drug
delivery in CNS; if the transporter is down-regulated, the centrally toxic drug would enter the brain tissue and
cause serious adverse reactions. Therefore, studying the mechanism of hypoxia-regulating P-gp can provide an
important reference for the treatment of CNS diseases with a hypoxia/reoxygenation (H/R) component. This
article summarized the mechanism of regulation of P-gp in BBB in normoxia and explored that of hypoxia.
Collapse
Affiliation(s)
- Yidan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Rong Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Jianchun Zhang
- Pharmacy Department, First Hospital of the Chinese People's Liberation Army, Lanzhou, China
| | - Anpeng Zhao
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Hui Lu
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Wenbin Li
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Chang Wang
- Key Laboratory of the Plateau Environmental Damage Control, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Xuechun Yuan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
ABC transporters in drug-resistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res 2019; 144:357-376. [PMID: 31051235 DOI: 10.1016/j.phrs.2019.04.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023]
Abstract
Drug-resistant epilepsy (DRE) affects approximately one third of epileptic patients. Among various theories that try to explain multidrug resistance, the transporter hypothesis is the most extensively studied. Accordingly, the overexpression of efflux transporters in the blood-brain barrier (BBB), mainly from the ATP binding cassette (ABC) superfamily, may be responsible for hampering the access of antiepileptic drugs into the brain. P-glycoprotein and other efflux transporters are known to be upregulated in endothelial cells, astrocytes and neurons of the neurovascular unit, a functional barrier critically involved in the brain penetration of drugs. Inflammation and oxidative stress involved in the pathophysiology of epilepsy together with uncontrolled recurrent seizures, drug-associated induction and genetic polymorphisms are among the possible causes of ABC transporters overexpression in DRE. The aforementioned pathological mechanisms will be herein discussed together with the multiple strategies to overcome the activity of efflux transporters in the BBB - from direct transporters inhibition to down-regulation of gene expression resorting to RNA interference (RNAi), or by targeting key modulators of inflammation and seizure-mediated signalling.
Collapse
|
21
|
Zestos AG, Luna-Munguia H, Stacey WC, Kennedy RT. Use and Future Prospects of in Vivo Microdialysis for Epilepsy Studies. ACS Chem Neurosci 2019; 10:1875-1883. [PMID: 30001105 DOI: 10.1021/acschemneuro.8b00271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epilepsy is a common neurological disease characterized by recurrent unpredictable seizures. For the last 30 years, microdialysis sampling has been used to measure changes in excitatory and inhibitory neurotransmitter concentrations before, during, and after seizures. These advances have fostered breakthroughs in epilepsy research by identifying neurochemical changes associated with seizures and correlating them to electrophysiological data. Recent advances in methodology may be useful in further delineating the chemical underpinnings of seizures. A new model of ictogenesis has been developed that allows greater control over the timing of seizures that are similar to spontaneous seizures. This model will facilitate making chemical measurements before and during a seizure. Recent advancements in microdialysis sampling, including the use of segmented flow, "fast" liquid chromatography (LC), and capillary electrophoresis with laser-induced fluorescence (CE-LIF) have significantly improved temporal resolution to better than 1 min, which could be used to measure transient, spontaneous neurochemical changes associated with seizures. Microfabricated sampling probes that are markedly smaller than conventional probes and allow for a much greater spatial resolution have been developed. They may allow the targeting of specific brain regions important to epilepsy studies. Coupling microdialysis sampling to optogenetics and light-stimulated release of neurotransmitters may also prove useful for studying epileptic seizures.
Collapse
Affiliation(s)
- Alexander G. Zestos
- Department of Chemistry, Center for Behavioral Neuroscience, American University, Washington, D.C. 20016, United States
| | - Hiram Luna-Munguia
- Departamento de Neurobiologia Conductual y Cognitiva, Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - William C. Stacey
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Mohamed LA, Markandaiah SS, Bonanno S, Pasinelli P, Trotti D. Excess glutamate secreted from astrocytes drives upregulation of P-glycoprotein in endothelial cells in amyotrophic lateral sclerosis. Exp Neurol 2019; 316:27-38. [PMID: 30974102 DOI: 10.1016/j.expneurol.2019.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/09/2019] [Accepted: 04/06/2019] [Indexed: 12/13/2022]
Abstract
In amyotrophic lateral sclerosis (ALS), upregulation in expression and activity of the ABC transporter P-glycoprotein (P-gp) driven by disease advancement progressively reduces CNS penetration and efficacy of the ALS drug, riluzole. Post-mortem spinal cord tissues from ALS patients revealed elevated P-gp expression levels in endothelial cells of the blood-spinal cord barrier compared to levels measured in control, non-diseased individuals. We recently found that astrocytes expressing familial ALS-linked SOD1 mutations regulate expression levels of P-gp in endothelial cells, which also exhibit a concomitant, significant increase in reactive oxygen species production and NFκB nuclear translocation when exposed to mutant SOD1 astrocyte conditioned media. In this study, we found that glutamate, which is abnormally secreted by mutant SOD1 and sporadic ALS astrocytes, drives upregulation of P-gp expression and activity levels in endothelial cells via activation of N-Methyl-D-Aspartic acid (NMDA) receptors. Surprisingly, astrocyte-secreted glutamate regulation of endothelial P-gp levels is not a mechanism shared by all forms of ALS. C9orf72-ALS astrocytes had no effect on endothelial cell P-gp expression and did not display increased glutamate secretion. Utilizing an optimized in vitro human BBB model consisting of patient-derived induced pluripotent stem cells, we showed that co-culture of endothelial cells with patient-derived astrocytes increased P-gp expression levels and transport activity, which was significantly reduced when endothelial cells were incubated with the NMDAR antagonist, MK801. Overall, our findings unraveled a complex molecular interplay between astrocytes of different ALS genotypes and endothelial cells potentially occurring in disease that could differentially impact ALS prognosis and efficacy of pharmacotherapies.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Shashirekha S Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Silvia Bonanno
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
23
|
Torres-Vergara P, Escudero C, Penny J. Drug Transport at the Brain and Endothelial Dysfunction in Preeclampsia: Implications and Perspectives. Front Physiol 2018; 9:1502. [PMID: 30459636 PMCID: PMC6232255 DOI: 10.3389/fphys.2018.01502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022] Open
Abstract
Transport of drugs across biological barriers has been a subject of study for decades. The discovery and characterization of proteins that confer the barrier properties of endothelia and epithelia, including tight junction proteins and membrane transporters belonging to the ATP-binding cassette (ABC) and Solute Carrier (SLC) families, represented a significant step forward into understanding the mechanisms that govern drug disposition. Subsequently, numerous studies, including both pre-clinical approaches and clinical investigations, have been carried out to determine the influence of physiological and pathological states on drug disposition. Importantly, there has been increasing interest in gaining a better understanding of drug disposition during pregnancy, since epidemiological and clinical studies have demonstrated that the use of medications by pregnant women is significant and this condition embodies a series of significant anatomical and physiological modifications, particularly at excretory organs and barrier sites (e.g., placenta, breast) expressing transporter proteins which influence pharmacokinetics. Currently, most of the research in this field has focused on the expression profiling of transporter proteins in trophoblasts and endothelial cells of the placenta, regulation of drug-resistance mechanisms in disease states and pharmacokinetic studies. However, little attention has been placed on the influence that the cerebrovascular dysfunction present in pregnancy-related disorders, such as preeclampsia, might exert on drug disposition in the mother’s brain. This issue is particularly important since recent findings have demonstrated that preeclamptic women suffer from long-term alterations in the integrity of the blood-brain barrier (BBB). In this review we aim to analyze the available evidence regarding the influence of pregnancy on the expression of transporters and TJ proteins in brain endothelial cells, as well the mechanisms that govern the pathophysiological alterations in the BBB of women who experience preeclampsia. Future research efforts should be focused not only on achieving a better understanding of the influence of preeclampsia-associated endothelial dysfunction on drug disposition, but also in optimizing the pharmacological treatments of women suffering pregnancy-related disorders, its comorbidities and to develop new therapies aiming to restore the integrity of the BBB.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.,Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Trastornos del Embarazo (RIVA-TREM), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
24
|
Cao H, Fang X, Liu P, Li H, Chen W, Liu B, Kong J. Magnetic-Immuno-Loop-Mediated Isothermal Amplification Based on DNA Encapsulating Liposome for the Ultrasensitive Detection of P-glycoprotein. Sci Rep 2017; 7:9312. [PMID: 28839228 PMCID: PMC5571029 DOI: 10.1038/s41598-017-10133-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022] Open
Abstract
Determination of proteins, especially low-abundance proteins with high sensitivity and specificity, is essential for characterizing proteomes and studying their biochemical functions. Herein, a novel Magnetic-Immuno-Loop-Mediated Isothermal Amplification (Im-LAMP) based on DNA-encapsulating liposomes (liposome-Im- LAMP), was developed for trace amounts of proteins. To the best of our knowledge, this is our first report about the magnetic Im-LAMP approach based on liposomes encapsulated template DNA as the detection reagent. The DNA template was released from liposomes and then initiated an Im-LAMP reaction, generating the fluorescence signal with high sensitivity and rapidity. This technique was applied for the determination of P-glycoprotein as a model protein. It was demonstrated that the technique exhibited a dynamic response to P-glycoprotein ranging from 1.6*10−2 to 160 pg/ml with a greatly low detection limit of 5*10−3 pg/ml (5 fg/ml) which is substantially better than conventional enzyme-linked immunosorbent assays (ELISA). This ultra sensitivity was attributed to the LAMP reaction initiated by the enormous DNA targets encapsulated in liposomes. This magnetic liposome-Im–LAMP as an alternative approach is attractive for applications in other low-abundance proteins detection in clinical diagnostics.
Collapse
Affiliation(s)
- Hongmei Cao
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Xueen Fang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China.
| | - Peng Liu
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai road, Shanghai, 200433, China
| | - Hua Li
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Weiwei Chen
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Baohong Liu
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Jilie Kong
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China.
| |
Collapse
|
25
|
Mohamed LA, Markandaiah S, Bonanno S, Pasinelli P, Trotti D. Blood-Brain Barrier Driven Pharmacoresistance in Amyotrophic Lateral Sclerosis and Challenges for Effective Drug Therapies. AAPS JOURNAL 2017; 19:1600-1614. [PMID: 28779378 DOI: 10.1208/s12248-017-0120-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is essential for proper neuronal function, homeostasis, and protection of the central nervous system (CNS) microenvironment from blood-borne pathogens and neurotoxins. The BBB is also an impediment for CNS penetration of drugs. In some neurologic conditions, such as epilepsy and brain tumors, overexpression of P-glycoprotein, an efflux transporter whose physiological function is to expel catabolites and xenobiotics from the CNS into the blood stream, has been reported. Recent studies reported that overexpression of P-glycoprotein and increase in its activity at the BBB drives a progressive resistance to CNS penetration and persistence of riluzole, the only drug approved thus far for treatment of amyotrophic lateral sclerosis (ALS), rapidly progressive and mostly fatal neurologic disease. This review will discuss the impact of transporter-mediated pharmacoresistance for ALS drug therapy and the potential therapeutic strategies to improve the outcome of ALS clinical trials and efficacy of current and future drug treatments.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA.
| | - Shashirekha Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Silvia Bonanno
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
26
|
Xie Y, Yu N, Chen Y, Zhang K, Ma HY, Di Q. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway. Mol Med Rep 2017. [PMID: 28627626 PMCID: PMC5562060 DOI: 10.3892/mmr.2017.6772] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Overexpression of P-glycoprotein (P-gp) in the brain is an important mechanism involved in drug-resistant epilepsy (DRE). High-mobility group box 1 (HMGB1), an inflammatory cytokine, significantly increases following seizures and may be involved in upregulation of P-gp. However, the underlying mechanisms remain elusive. The aim of the present study was to evaluate the role of HMGB1 and its downstream signaling components, receptor for advanced glycation end-product (RAGE) and nuclear factor-κB (NF-κB), on P-gp expression in rat brains during status epilepticus (SE). Small interfering RNA (siRNA) was administered to rats prior to induction of SE by pilocarpine, to block transcription of the genes encoding HMGB1 and RAGE, respectively. An inhibitor of NF-κB, pyrrolidinedithiocarbamic acid (PDTC), was utilized to inhibit activation of NF-κB. The expression levels of HMGB1, RAGE, phosphorylated-NF-κB p65 (p-p65) and P-gp were detected by western blotting. The relative mRNA expression levels of the genes encoding these proteins were measured using reverse transcription-quantitative polymerase chain reaction and the cellular localization of the proteins was determined by immunofluorescence. Pre-treatment with HMGB1 siRNA reduced the expression levels of RAGE, p-p65 and P-gp. PDTC reduced the expression levels of P-gp. These findings suggested that overexpression of P-gp during seizures may be regulated by HMGB1 via the RAGE/NF-κB signaling pathway, and may be a novel target for treating DRE.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nian Yu
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Chen
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Kang Zhang
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hai-Yan Ma
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qing Di
- Department of Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
27
|
Hartz AMS, Pekcec A, Soldner ELB, Zhong Y, Schlichtiger J, Bauer B. P-gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy. Mol Pharm 2017; 14:999-1011. [PMID: 28195743 DOI: 10.1021/acs.molpharmaceut.6b00770] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A cure for epilepsy is currently not available, and seizure genesis, seizure recurrence, and resistance to antiseizure drugs remain serious clinical problems. Studies show that the blood-brain barrier is altered in animal models of epilepsy and in epileptic patients. In this regard, seizures increase expression of blood-brain barrier efflux transporters such as P-glycoprotein (P-gp), which is thought to reduce brain uptake of antiseizure drugs, and thus, contribute to antiseizure drug resistance. The goal of the current study was to assess the viability of combining in vivo and ex vivo preparations of isolated brain capillaries from animal models of seizures and epilepsy as well as from patients with epilepsy to study P-gp at the blood-brain barrier. Exposing isolated rat brain capillaries to glutamate ex vivo upregulated P-gp expression to levels that were similar to those in capillaries isolated from rats that had status epilepticus or chronic epilepsy. Moreover, the fold-increase in P-gp protein expression seen in animal models is consistent with the fold-increase in P-gp observed in human brain capillaries isolated from patients with epilepsy compared to age-matched control individuals. Overall, the in vivo/ex vivo approach presented here allows detailed analysis of the mechanisms underlying seizure-induced changes of P-gp expression and transport activity at the blood-brain barrier. This approach can be extended to other blood-brain barrier proteins that might contribute to drug-resistant epilepsy or other CNS disorders as well.
Collapse
Affiliation(s)
- Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky 40536, United States.,Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington, Kentucky 40536, United States
| | - Anton Pekcec
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota , Duluth, Minnesota 55812, United States
| | - Emma L B Soldner
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota , Duluth, Minnesota 55812, United States
| | - Yu Zhong
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky 40536, United States
| | - Juli Schlichtiger
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota , Duluth, Minnesota 55812, United States
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, United States.,Epilepsy Center, University of Kentucky , Lexington, Kentucky 40536, United States
| |
Collapse
|
28
|
Du C, Zheng F, Wang X. Exploring novel AEDs from drugs used for treatment of non-epileptic disorders. Expert Rev Neurother 2016; 16:449-61. [PMID: 27010915 DOI: 10.1586/14737175.2016.1158101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epilepsy is a chronic neurological disease. Although many anti-epileptic drugs (AEDs) have been developed for clinical use, they have no effect on 20-30% of patients and do not generally prevent epileptogenesis. Because of the long development cycle for new AEDs and the high cost, increasing efforts are being made to find anti-epileptic effects among drugs that are already listed for the treatment of other diseases and repurpose them as potential anti-epileptic treatments. Here, we review the progress that has been made in this field as a result of animal and clinical trials of drugs such as rapamycin, everolimus, losartan, celecoxib, bumetanide and other non-epileptic drugs. These drugs can prevent the epileptogenesis, reduce the epileptic pathological changes, and even be used to treat intractable epilepsy. Their mechanisms of action are completely different from those of existing AEDs, prompting researchers to change their perspectives in the search for new AEDs.
Collapse
Affiliation(s)
- Chao Du
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Fangshuo Zheng
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Xuenfeng Wang
- a Department of Neurology , The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| |
Collapse
|
29
|
Salvamoser JD, Avemary J, Luna-Munguia H, Pascher B, Getzinger T, Pieper T, Kudernatsch M, Kluger G, Potschka H. Glutamate-Mediated Down-Regulation of the Multidrug-Resistance Protein BCRP/ABCG2 in Porcine and Human Brain Capillaries. Mol Pharm 2015; 12:2049-60. [PMID: 25898179 DOI: 10.1021/mp500841w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer resistance protein (BCRP) functions as a major molecular gatekeeper at the blood-brain barrier. Considering its impact on access to the brain by therapeutic drugs and harmful xenobiotics, it is of particular interest to elucidate the mechanisms of its regulation. Excessive glutamate concentrations have been reported during epileptic seizures or as a consequence of different brain insults including brain ischemia. Previously, we have demonstrated that glutamate can trigger an induction of the transporter P-glycoprotein. These findings raised the question whether other efflux transporters are affected in a comparable manner. Glutamate exposure proved to down-regulate BCRP transport function and expression in isolated porcine capillaries. The reduction was efficaciously prevented by coincubation with N-methyl-d-aspartate (NMDA) receptor antagonist MK-801. The involvement of the NMDA receptor in the down-regulation of BCRP was further confirmed by experiments showing an effect of NMDA exposure on brain capillary BCRP transport function and expression. Pharmacological targeting of cyclooxygenase-1 and -2 (COX-1 and -2) using the nonselective inhibitor indomethacin, COX-1 inhibitor SC-560, and COX-2 inhibitor celecoxib revealed a contribution of COX-2 activity to the NMDA receptor's downstream signaling events affecting BCRP. Translational studies were performed using human capillaries isolated from surgical specimens of epilepsy patients. The findings confirmed a glutamate-induced down-regulation of BCRP transport activity in human capillaries, which argued against major species differences. In conclusion, our data reveal a novel mechanism of BCRP down-regulation in porcine and human brain capillaries. Moreover, together with previous data sets for P-glycoprotein, the findings point to a contrasting impact of the signaling pathway on the regulation of BCRP and P-glycoprotein. The effect of glutamate and arachidonic acid signaling on BCRP function might have implications for brain drug delivery and for radiotracer brain access in epilepsy patients and patients with other brain insults.
Collapse
Affiliation(s)
- Josephine D Salvamoser
- †Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Janine Avemary
- †Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | - Hiram Luna-Munguia
- †Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| | | | | | | | | | | | - Heidrun Potschka
- †Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstrasse 16, D-80539 Munich, Germany
| |
Collapse
|
30
|
Luna-Munguia H, Salvamoser JD, Pascher B, Pieper T, Getzinger T, Kudernatsch M, Kluger G, Potschka H. Glutamate-mediated upregulation of the multidrug resistance protein 2 in porcine and human brain capillaries. J Pharmacol Exp Ther 2015; 352:368-78. [PMID: 25503388 DOI: 10.1124/jpet.114.218180] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
As a member of the multidrug-resistance associated protein (MRP) family, MRP2 affects the brain entry of different endogenous and exogenous compounds. Considering the role of this transporter at the blood-brain barrier, the regulation is of particular interest. However, there is limited knowledge regarding the factors that regulate MRP2 in neurologic disease states. Thus, we addressed the hypothesis that MRP2 might be affected by a glutamate-induced signaling pathway that we previously identified as one key mechanism in the regulation of P-glycoprotein. Studies in isolated porcine brain capillaries confirmed that glutamate and N-methyl-d-aspartic acid (NMDA) exposure upregulates expression and function of MPR2. The involvement of the NMDA receptor was further suggested by the fact that the NMDA receptor antagonist MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], as well as the NMDA receptor glycine binding site antagonist L-701,324 [7-chloro-4-hydroxy-3-(3-phenoxy)phenyl-2(1H)-quinolinone], prevented the impact of glutamate. A role of cyclooxygenase-2 was indicated by coincubation with the cyclooxygenase-2 inhibitor celecoxib and the cyclooxygenase-1/-2 inhibitor indomethacin, which both efficaciously abolished a glutamate-induced upregulation of MRP2. Translational studies in human capillaries from surgical specimen demonstrated a relevant MRP2 efflux function and indicated an effect of glutamate exposure as well as its prevention by cyclooxygenase-2 inhibition. Taken together the findings provide first evidence for a role of a glutamate-induced NMDA receptor/cyclooxygenase-2 signaling pathway in the regulation of MRP2 expression and function. The response to excessive glutamate concentrations might contribute to overexpression of MRP2, which has been reported in neurologic diseases including epilepsy. The overexpression might have implications for brain access of various compounds including therapeutic drugs.
Collapse
Affiliation(s)
- Hiram Luna-Munguia
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Bettina Pascher
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Tom Pieper
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Thekla Getzinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Manfred Kudernatsch
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Gerhard Kluger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.L.M., J.D.S., H.P.); Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents (B.P., T.P., T.G., G.K.) and Clinic for Neurosurgery and Epilepsy Surgery (M.K.), Schön Klinik Vogtareuth, Vogtareuth, Germany; and Paracelsus Medical University, Salzburg, Austria (G.K.)
| |
Collapse
|
31
|
Miller DS. Regulation of ABC transporters at the blood-brain barrier. Clin Pharmacol Ther 2015; 97:395-403. [PMID: 25670036 DOI: 10.1002/cpt.64] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023]
Abstract
ATP binding cassette (ABC) transporters at the blood-brain barrier function as ATP-driven xenobiotic efflux pumps and limit delivery of small molecule drugs to the brain. Here I review recent progress in understanding the regulation of the expression and transport activity of these transporters and comment on how this new information might aid in improving drug delivery to the brain.
Collapse
Affiliation(s)
- D S Miller
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
32
|
Varvel NH, Jiang J, Dingledine R. Candidate drug targets for prevention or modification of epilepsy. Annu Rev Pharmacol Toxicol 2014; 55:229-47. [PMID: 25196047 DOI: 10.1146/annurev-pharmtox-010814-124607] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epilepsy is a prevalent neurological disorder afflicting nearly 50 million people worldwide. The disorder is characterized clinically by recurrent spontaneous seizures attributed to abnormal synchrony of brain neurons. Despite advances in the treatment of epilepsy, nearly one-third of patients are resistant to current therapies, and the underlying mechanisms whereby a healthy brain becomes epileptic remain unresolved. Therefore, researchers have a major impetus to identify and exploit new drug targets. Here we distinguish between epileptic effectors, or proteins that set the seizure threshold, and epileptogenic mediators, which control the expression or functional state of the effector proteins. Under this framework, we then discuss attempts to regulate the mediators to control epilepsy. Further insights into the complex processes that render the brain susceptible to seizures and the identification of novel mediators of these processes will lead the way to the development of drugs to modify disease outcome and, potentially, to prevent epileptogenesis.
Collapse
Affiliation(s)
- Nicholas H Varvel
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322;
| | | | | |
Collapse
|
33
|
Zellinger C, Salvamoser JD, Soerensen J, van Vliet EA, Aronica E, Gorter J, Potschka H. Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701,324 improves pharmacosensitivity in a mouse kindling model. Epilepsy Res 2014; 108:634-43. [DOI: 10.1016/j.eplepsyres.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/06/2014] [Accepted: 02/20/2014] [Indexed: 01/16/2023]
|
34
|
Akanuma SI, Higuchi T, Higashi H, Ozeki G, Tachikawa M, Kubo Y, Hosoya KI. Transporter-mediated prostaglandin E₂ elimination across the rat blood-brain barrier and its attenuation by the activation of N-methyl-D-aspartate receptors. Drug Metab Pharmacokinet 2014; 29:387-93. [PMID: 24717839 DOI: 10.2133/dmpk.dmpk-14-rg-004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prostaglandin (PG) E2 is involved in neuroinflammation and neurotoxicity, and the cerebral PGE2 concentration is increased in neurodegenerative diseases. Because the intracerebral concentration of L-glutamate (L-Glu) is reported to be also elevated in neurodegenerative diseases, it has been proposed that L-Glu affects PGE2 dynamics in the brain, and thus exacerbates neural excitotoxicity. The purpose of this study was to investigate the effect of intracerebral L-Glu on PGE2 elimination across the blood-brain barrier (BBB) in rats by using the intracerebral microinjection technique. [(3)H]PGE2 injected into the cerebral cortex was eliminated from the brain in rats, and the apparent brain-to-blood [(3)H]PGE2 efflux clearance was found to be 60.1 µL/(min·g brain). Intracerebral pre-administration of 50 mM L-Glu significantly inhibited [(3)H]PGE2 elimination across the BBB and this L-Glu-induced inhibition was abolished by co-administration of an intracellular Ca(2+) chelator. The intracellular Ca(2+) concentration is reported to be increased via N-methyl-d-aspartate (NMDA)-type L-Glu receptors (NMDAR) and [(3)H]PGE2 elimination was attenuated by intracerebral pre-administration of a mixture of NMDA and D-serine. Moreover, the co-administration of antagonists of NMDAR with L-Glu abolished the attenuation of PGE2 elimination induced by intracerebral L-Glu administration. These results suggest that L-Glu attenuates BBB-mediated PGE2 elimination via NMDAR-mediated processes.
Collapse
Affiliation(s)
- Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | | | | | | | | | | | | |
Collapse
|
35
|
ABC Transporter Regulation by Signaling at the Blood–Brain Barrier. PHARMACOLOGY OF THE BLOOD BRAIN BARRIER: TARGETING CNS DISORDERS 2014; 71:1-24. [DOI: 10.1016/bs.apha.2014.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Functional Expression of Drug Transporters in Glial Cells. PHARMACOLOGY OF THE BLOOD BRAIN BARRIER: TARGETING CNS DISORDERS 2014; 71:45-111. [DOI: 10.1016/bs.apha.2014.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|