1
|
Kimpel J, Kim Y, Schomaker H, Hinojosa DR, Asatryan J, Martín J, Kroon R, Sommer M, Müller C. Open-flask, ambient temperature direct arylation synthesis of mixed ionic-electronic conductors. SCIENCE ADVANCES 2025; 11:eadv8168. [PMID: 40333976 PMCID: PMC12057656 DOI: 10.1126/sciadv.adv8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Conjugated polymers are widely studied for application areas ranging from energy technology to wearable electronics and bioelectronics. To develop a truly sustainable technology, environmentally benign synthesis is essential. Here, the open-flask synthesis of a multitude of conjugated polymers at room temperature by ambient direct arylation polymerization (ADAP) is demonstrated. The batch synthesis of over 100 grams of polymer in a green solvent and continuous droplet flow synthesis without any solid support is described. Polymers prepared by ADAP are characterized by improved structural order compared to materials prepared by other methods. Hence, organic electrochemical transistors (OECTs) feature beyond state-of-the-art electrical properties, i.e., an OECT hole mobility μ as high as 6 cm2 V-1 s-1, a volumetric capacitance C* over 200 F cm-3, and thus a figure of merit [μC*] exceeding 1100 F cm-1 V-1 s-1. Thus, ADAP paves the way for the benign and large-scale production of high-performance conjugated polymers.
Collapse
Affiliation(s)
- Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Youngseok Kim
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | | - Diego R. Hinojosa
- Institut für Chemie & Forschungszentrum MAIN, Technische Universität Chemnitz, Chemnitz, Germany
| | - Jesika Asatryan
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol, Spain
| | - Jaime Martín
- Universidade da Coruña, Campus Industrial de Ferrol, CITENI, Esteiro, Ferrol, Spain
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Michael Sommer
- Institut für Chemie & Forschungszentrum MAIN, Technische Universität Chemnitz, Chemnitz, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
- Wallenberg Wood Science Center, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
2
|
Kim H, Yoo H, Kim H, Park JM, Lee BH, Choi TL. Low-Temperature Direct Arylation Polymerization for the Sustainable Synthesis of a Library of Low-Defect Donor-Acceptor Conjugated Polymers via Pd/Ag Dual-Catalysis. J Am Chem Soc 2025; 147:11886-11895. [PMID: 40163371 DOI: 10.1021/jacs.4c16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Donor-acceptor alternating conjugated polymers (D-A CPs) are one of the best materials for high-performance organic electronic devices, owing to their low bandgap and high charge carrier mobility. However, most of the D-A CPs are synthesized by less sustainable polymerization methods. To address this issue, direct arylation polymerization (DArP), eliminating the need for transmetalating agents, was developed over the past two decades. Nevertheless, C-H activation during DArP still requires significantly harsh reaction conditions, limiting the precision and applicability of CPs. In this report, we demonstrate a versatile and sustainable Pd/Ag dual-catalytic DArP conducted at low or even room temperatures, thereby yielding low-defect D-A CPs. Initially, electron-deficient acceptor substrates with various electronic properties and pKa underwent successful concerted-metalation-deprotonation (CMD) via Ag catalysis with mild conditions and highly chemoselective Pd-catalyzed C-C coupling. This synergistic dual-catalysis allowed for the library synthesis of D-A and A-A CPs from acceptor C-H monomers and aryl halide monomers at low temperatures (25-70 °C) in sustainable solvents such as p-cymene. Interestingly, the D-A CPs obtained via Pd/Ag DArP displayed higher structural regularity and crystallinity, eventually outperforming those prepared by conventional synthetic methods in device performances of ambipolar organic field-effect transistors (μe up to 0.80 cm2 V-1 s-1) and complementary metal-oxide semiconductor inverters (gain up to 102).
Collapse
Affiliation(s)
- Hwangseok Kim
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Hyeonjin Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hongsik Kim
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Jun-Mo Park
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Byoung Hoon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
3
|
Moro S, Spencer SE, Lester DW, Nübling F, Sommer M, Costantini G. Molecular-Scale Imaging Enables Direct Visualization of Molecular Defects and Chain Structure of Conjugated Polymers. ACS NANO 2024; 18:11655-11664. [PMID: 38652866 PMCID: PMC11080458 DOI: 10.1021/acsnano.3c10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Conjugated polymers have become materials of choice for applications ranging from flexible optoelectronics to neuromorphic computing, but their polydispersity and tendency to aggregate pose severe challenges to their precise characterization. Here, the combination of vacuum electrospray deposition (ESD) with scanning tunneling microscopy (STM) is used to acquire, within the same experiment, assembly patterns, full mass distributions, exact sequencing, and quantification of polymerization defects. In a first step, the ESD-STM results are successfully benchmarked against NMR for low molecular mass polymers, where this technique is still applicable. Then, it is shown that ESD-STM is capable of reaching beyond its limits by characterizing, with the same accuracy, samples that are inaccessible to NMR. Finally, a recalibration procedure is proposed for size exclusion chromatography (SEC) mass distributions, using ESD-STM results as a reference. The distinctiveness of the molecular-scale information obtained by ESD-STM highlights its role as a crucial technique for the characterization of conjugated polymers.
Collapse
Affiliation(s)
- Stefania Moro
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Daniel W. Lester
- Polymer
Characterisation Research Technology Platform, University of Warwick, Coventry CV4 7AL, U.K.
| | - Fritz Nübling
- Institute
for Macromolecular Chemistry, University
of Freiburg, Freiburg 79104, Germany
| | - Michael Sommer
- Institute
for Chemistry, Chemnitz University of Technology, Chemnitz 09111, Germany
- Center
for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | - Giovanni Costantini
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
4
|
Stäter S, Woering EF, Lombeck F, Sommer M, Hildner R. Hexylation Stabilises Twisted Backbone Configurations in the Prototypical Low-Bandgap Copolymer PCDTBT. Chemphyschem 2024; 25:e202300971. [PMID: 38372667 DOI: 10.1002/cphc.202300971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/20/2024]
Abstract
Conjugated donor-acceptor copolymers hold great potential as materials for high-performance organic photovoltaics, organic transistors and organic thermoelectric devices. Their low optical bandgap is achieved by alternation of donor and acceptor moieties along the polymer chain, leading to a pronounced charge-transfer character of electronic excitations. However, the influence of appended side chains and of chemical defects of the backbone on their photophysical and conformational properties remains largely unexplored on the level of individual chains. Here, we employ room temperature single-molecule photoluminescence spectroscopy on four compounds based on the prototypical copolymer PCDTBT with systematically changed chemical structure. Our results show that an increasing density of statistically added hexyl chains to the TBT comonomer distorts the molecular conformation, likely through the increase of average dihedral angles along the backbone. We find that, although the conformation becomes more twisted with high hexyl density, the side chains appear to stabilize the backbone in this twisted conformation. In addition, we demonstrate that homocoupling defects along the backbone barely influence the PL spectra of single chains, and thus intra-chain electronic properties.
Collapse
Affiliation(s)
- Sebastian Stäter
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| | - Erik F Woering
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| | - Florian Lombeck
- Makromolekulare Chemie, Stefan-Meier-Str. 31, Universität Freiburg, 79104, Freiburg, Germany
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Michael Sommer
- TU Chemnitz, Institute for Chemistry, Str. der Nationen 62, 09111, Chemnitz, Germany
| | - Richard Hildner
- University of Groningen, Zernike Institute for Advanced Materials, 9747AG, Groningen, Netherlands
| |
Collapse
|
5
|
Shen T, Li W, Zhao Y, Wang Y, Liu Y. A Hybrid Acceptor-Modulation Strategy: Fluorinated Triple-Acceptor Architecture for Significant Enhancement of Electron Transport in High-Performance Unipolar n-Type Organic Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210093. [PMID: 36484290 DOI: 10.1002/adma.202210093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The development of unipolar n-type semiconducting polymers with electron mobility (µe ) over 5 cm2 V-1 s-1 remains a massive challenge in organic semiconductors. Diketopyrrolopyrrole (DPP) has proven to be a successful unit for high-performance p-type and ambipolar polymers. However, DPP's moderate electron-accepting capability leads to the shallow frontier molecular orbital (FMO) levels of the resultant polymers and hence limit the µe in unipolar n-type organic transistors. Herein, this issue has been addressed by using a hybrid acceptor-modulation strategy based on DPP-containing "fluorinated triple-acceptor architecture", namely DPP-difluorobenzothiadiazole-DPP (DFB). Compared with DFB's non-fluorinated counterpart, DFB features deeper FMO levels and a shape-persistent framework. Therefore, a series of DFB-based polymers demonstrate planar backbones and lowered FMO levels by ≈0.10 to 0.25 eV versus that of the control polymer. Intriguingly, all DFB-polymers exhibit excellent unipolar n-type transistor performances. Notably, a full-locked backbone conformation and high crystallinity with crystalline coherence length of 524 Å are observed for pDFB-TF, accounting for its high µe of 5.04 cm2 V-1 s-1 , which is the highest µe value for DPP-based unipolar n-type polymers reported to date. This work demonstrates that the strategy of "fluorinated triple-acceptor architecture" opens a new path towards high-performance unipolar n-type semiconducting polymers.
Collapse
Affiliation(s)
- Tao Shen
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, P. R. China
| | - Wenhao Li
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, P. R. China
| | - Yang Wang
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
6
|
Nikam SB, Pratap Singh C, Krishnamurty S, SK A. Structure-property insights into chiral thiophene copolymers by direct heteroarylation polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Zhang X, Shi Y, Dang Y, Liang Z, Wang Z, Deng Y, Han Y, Hu W, Geng Y. Direct Arylation Polycondensation of β-Fluorinated Bithiophenes to Polythiophenes: Effect of Side Chains in C–Br Monomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuwen Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ziqi Liang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongli Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
8
|
Nayak N, Arora K, Shirke S, Shriwardhankar S, Kumar A. An improved greener process for the direct C H:C H arylation polymerization of 3,4-Propylenedioxythiophene derivatives. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Jang SY, Kim IB, Kim Y, Lim DH, Kang H, Heeney M, Kim DY. Facile direct C-H arylation polymerization of conjugated polymer, PDCBT, for organic solar cells. Macromol Rapid Commun 2022; 43:e2200405. [PMID: 35938972 DOI: 10.1002/marc.202200405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Direct arylation polymerization (DArP) is a synthetic method for conjugated polymers; in DArP, organometallic functionalization steps are omitted and there are no toxic byproducts. As a result, it is considered a more sustainable alternative compared to conventional methods such as Stille polymerization. To explore the possibility of DArP-based polymers as donor materials in organic solar cells (OSCs), a series of conjugated polymers based on the structure of PDCBT are synthesized using DArP and Stille polymerization. By controlling the monomer concentration and reaction time in DArP, DArP-5 with the highest Mn (21.9 kDa) can be obtained and its optoelectronic properties, electrochemical properties, and microscopic molecular ordering are comparable to those of Stille-based PDCBT (Stille-P). Analysis of the polymer structure indicates no structural defects such as crosslinking from undesired β-coupling reactions in DArP-5. Upon blending with the PC71 BM acceptor molecule, an increase in the crystallite size of DArP-5 is also observed. In OSC devices with a polymer:PC71 BM bulk-heterojunction photoactive layer, DArP-5 demonstrates a comparable power conversion efficiency of 5.8% with that of Stille-P (5.5%). These results prove that DArP is suitable for synthesizing PDCBT, and DArP-based PDCBT can be used in OSCs as an alternative of Stille-based one. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Soo-Young Jang
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - In-Bok Kim
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yunseul Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Dae-Hee Lim
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Hongkyu Kang
- Center for Research Innovation, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, (White City Campus), 80 Wood Lane Shepherd's Bush, London, W12 0BZ, UK
| | - Dong-Yu Kim
- School of Materials Science and Engineering, Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
10
|
Zappia S, Veronese L, Forni A, Dattilo S, Samperi F, Dagar J, Brown TM, Panigati M, Destri S. Carbazole-Pyridazine copolymers and their rhenium complexes: effect of the molecular structure on the electronic properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Ye L, Hooshmand T, Thompson BC. Recycling Heterogenous Catalysts for Multi-Batch Conjugated Polymer Synthesis via Direct Arylation Polymerization. ACS Macro Lett 2022; 11:78-83. [PMID: 35574785 DOI: 10.1021/acsmacrolett.1c00722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the inherent sustainability direct arylation polymerization (DArP) offers through a C-H activation pathway, the use of expensive homogeneous Pd catalysts remains problematic for large-scale conjugated polymer (CP) synthesis. Herein, the first report on the recycling of heterogeneous catalysts for CP synthesis using DArP is presented. We found SiliaCat Pd-DPP to be a highly efficient and recyclable catalyst for multi-batch CP synthesis providing CPs with molecular weights (Mn) up to 82 kg/mol even after being recycled three times. Batch-to-batch variations were further optimized to afford up to five batches of polymers with a Mn of 25 ± 2.5 kg/mol without structural disparity. Significantly, this work discloses among the most sustainable CP synthesis protocols to date and presents the critical concept of catalyst-recycling to the important field of organic semiconducting polymers, which potentially enables access to truly low-cost flow chemistry for industrial-scale CP synthesis.
Collapse
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Tanin Hooshmand
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
12
|
Ye L, Thompson BC. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| |
Collapse
|
13
|
Xu J, Liu Z, Jing L, Chen J. Fabrication of PCDTBT Conductive Network via Phase Separation. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5071. [PMID: 34501162 PMCID: PMC8433801 DOI: 10.3390/ma14175071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
Poly[N-9'-hepta-decanyl-2,7-carbazole-alt-5-5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) is a stable semiconducting polymer with high rigidity in its molecular chains, which makes it difficult to organize into an ordered structure and affects the device performance. Here, a PCDTBT network consisting of aggregates and nanofibers in thin films was fabricated through the phase separation of mixed PCDTBT and polyethylene glycol (PEG). Using atomic force microscopy (AFM), the effect of the blending conditions (weight ratio, solution concentration, and molecular weight) and processing conditions (substrate temperature and solvent) on the resulting phase-separated morphologies of the blend films after a selective washing procedure was studied. It was found that the phase-separated structure's transition from an island to a continuous structure occurred when the weight ratio of PCDTBT/PEG changed from 2:8 to 7:3. Increasing the solution concentration from 0.1 to 3.0 wt% led to an increase in both the height of the PCDTBT aggregate and the width of the nanofiber. When the molecular weight of the PEG was increased, the film exhibited a larger PCDTBT aggregate size. Meanwhile, denser nanofibers were found in films prepared using PCDTBT with higher molecular weight. Furthermore, the electrical characteristics of the PCDTBT network were measured using conductive AFM. Our findings suggest that phase separation plays an important role in improving the molecular chain diffusion rate and fabricating the PCDTBT network.
Collapse
Affiliation(s)
- Jianwei Xu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, China; (Z.L.); (L.J.)
| | | | | | - Jingbo Chen
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou 450002, China; (Z.L.); (L.J.)
| |
Collapse
|
14
|
Affiliation(s)
- J. Charlie Maier
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, Illinois 61801, United States
| | - Nicholas E. Jackson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
15
|
Ye L, Schmitt A, Pankow RM, Thompson BC. An Efficient Precatalyst Approach for the Synthesis of Thiazole-Containing Conjugated Polymers via Cu-Catalyzed Direct Arylation Polymerization (Cu-DArP). ACS Macro Lett 2020; 9:1446-1451. [PMID: 35653661 DOI: 10.1021/acsmacrolett.0c00626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past decade, direct arylation polymerization (DArP) has emerged as a facile and sustainable methodology for the synthesis of conjugated polymers. Recently, we developed Cu-catalyzed DArP (Cu-DArP) as a low-cost, Pd-free synthetic pathway, which enables conjugated polymers to be synthesized with high molecular weights and minimization of defects. However, the lack of study on the use of Cu-precatalysts in small-molecule direct arylation poses significant limitations for Cu-DArP to potentially overtake conventional Pd-catalyzed methodology, such as the low solubility and stability of the previously employed CuI. Therefore, in this report, we decide to explore the utility of a well-defined, easy-to-prepare, highly soluble, and stable precatalyst, Cu(phen)(PPh3)Br, as an alternative to the CuI, 1,10-phenanthroline catalytic system previously used for Cu-DArP. Herein, we report a drastic improvement of Cu-DArP methodology for the synthesis of 5,5'-bithiazole (5-BTz)-based conjugated polymers enabled by an efficient precatalyst approach, affording polymers with good Mn (up to 16.5 kDa) and excellent yields (up to 79%). 1H NMR studies reveal the exclusion of homocoupling defects, which further verifies the excellent stability of Cu(phen)(PPh3)Br compared to CuI. Furthermore, we were able to decrease the catalyst loading from 15 mol % to only 5 mol % (Mn of 11.8 kDa, 64% yield), which is unprecedented when aryl bromides are employed for Cu-DArP. Significantly, 5-BTz was shown to be inactive under various of Pd-DArP conditions, which demonstrates the high compatibility of Cu-DArP as the only pathway for the C-H activation of the 5-BTz unit and a clear case demonstrating an advantage of Cu-DArP relative to Pd-DArP.
Collapse
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Alexander Schmitt
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Robert M. Pankow
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
16
|
Jones AL, De Keersmaecker M, Pelse I, Reynolds JR. Curious Case of BiEDOT: MALDI-TOF Mass Spectrometry Reveals Unbalanced Monomer Incorporation with Direct (Hetero)arylation Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Austin L. Jones
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, and Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michel De Keersmaecker
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, and Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ian Pelse
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, and Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John R. Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, and Georgia Tech Polymer Network, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Calascibetta AM, Mattiello S, Sanzone A, Facchinetti I, Sassi M, Beverina L. Sustainable Access to π-Conjugated Molecular Materials via Direct (Hetero)Arylation Reactions in Water and under Air. Molecules 2020; 25:E3717. [PMID: 32824058 PMCID: PMC7465621 DOI: 10.3390/molecules25163717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Direct (hetero)arylation (DHA) is playing a key role in improving the efficiency and atom economy of C-C cross coupling reactions, so has impacts in pharmaceutical and materials chemistry. Current research focuses on further improving the generality, efficiency and selectivity of the method through careful tuning of the reaction conditions and the catalytic system. Comparatively fewer studies are dedicated to the replacement of the high-boiling-point organic solvents dominating the field and affecting the overall sustainability of the method. We show herein that the use of a 9:1 v/v emulsion of an aqueous Kolliphor 2 wt% solution while having toluene as the reaction medium enables the preparation of relevant examples of thiophene-containing π-conjugated building blocks in high yield and purity.
Collapse
Affiliation(s)
- Adiel Mauro Calascibetta
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, I-20125 Milano, Italy; (A.M.C.); (A.S.); (I.F.)
| | - Sara Mattiello
- Department of Materials Science, University of Milano-Bicocca and INSTM, Via R. Cozzi, 55, I-20125 Milano, Italy; (S.M.); (M.S.)
| | - Alessandro Sanzone
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, I-20125 Milano, Italy; (A.M.C.); (A.S.); (I.F.)
| | - Irene Facchinetti
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi, 55, I-20125 Milano, Italy; (A.M.C.); (A.S.); (I.F.)
| | - Mauro Sassi
- Department of Materials Science, University of Milano-Bicocca and INSTM, Via R. Cozzi, 55, I-20125 Milano, Italy; (S.M.); (M.S.)
| | - Luca Beverina
- Department of Materials Science, University of Milano-Bicocca and INSTM, Via R. Cozzi, 55, I-20125 Milano, Italy; (S.M.); (M.S.)
| |
Collapse
|
18
|
Lai Y, Yang H, Lee H, Tsai T, Sun H. In vitro and In silico Studies on the Base Effect in Palladium‐Catalyzed Direct Arylation. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yu‐Ying Lai
- Institute of Polymer Science and EngineeringNational Taiwan University Taipei 10617 Taiwan
| | - Hau‐Ren Yang
- Institute of Polymer Science and EngineeringNational Taiwan University Taipei 10617 Taiwan
| | - Hao‐Ting Lee
- Institute of Polymer Science and EngineeringNational Taiwan University Taipei 10617 Taiwan
| | - Tien‐Liang Tsai
- Institute of Polymer Science and EngineeringNational Taiwan University Taipei 10617 Taiwan
| | - Han‐Sheng Sun
- Institute of Polymer Science and EngineeringNational Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
19
|
Keller T, Gahlmann T, Riedl T, Scherf U. Direct Arylation Polycondensation (DAP) Synthesis of Alternating Quaterthiophene-Benzothiadiazole Copolymers for Organic Solar Cell Applications. Chempluschem 2020; 84:1249-1252. [PMID: 31944056 DOI: 10.1002/cplu.201900260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/03/2019] [Indexed: 11/11/2022]
Abstract
Poly[(2,1,3-benzothiadiazole-4,7-diyl)-alt-4',3''-difluoro-3,3'''-di(2-octyldodecyl)-2,2';5',2'';5'',2'''-quaterthiophene-5,5'''-diyl)] (PBTff4T-2OD) and poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-3,3'''-di(2-octyldodecyl)-2,2';5',2'';5'',2'''-quaterthiophene-5,5'''-diyl)] (PffBT4T-2OD) for use as the p-donor component of high-efficiency fullerene-based organic solar cells are usually synthesized in established C-C cross-coupling reactions, preferably using the Stille procedure. This report describes how PBTff4T-2OD and PffBT4T-2OD are generated in a direct arylation polycondensation (DAP) approach with molecular weights up to Mn =19.4 kDa and 21.1 kDa, respectively, and how structural defects in the copolymers (e. g., homocoupling defects) show a strong impact on the pre-aggregation behavior. The optimized reaction conditions allow for a distinct reduction of the amount of such defects in the resulting copolymers. When the Stille-type products are used in the active layer of organic solar cells (OCSs) together with fullerene acceptors, high power-conversion efficiencies (PCEs) in the range of 8.6-10.8 % have been reported. The high PCEs are particularly related to the pre-aggregation of the conjugated copolymers prior to film formation. Despite quite similar characterization data, non-optimized OCSs with the DAP polymers as replacement for the Stille products afforded a relatively low power-conversion efficiency of up to 2.4 %.
Collapse
Affiliation(s)
- Tina Keller
- Macromolecular Chemistry Group and Institute for Polymer Technology, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Tobias Gahlmann
- Institute of Electronic Devices, Bergische Universität Wuppertal, Rainer-Gruenter-Str. 21, 42199, Wuppertal, Germany
| | - Thomas Riedl
- Institute of Electronic Devices, Bergische Universität Wuppertal, Rainer-Gruenter-Str. 21, 42199, Wuppertal, Germany
| | - Ullrich Scherf
- Macromolecular Chemistry Group and Institute for Polymer Technology, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| |
Collapse
|
20
|
Ye L, Pankow RM, Horikawa M, Melenbrink EL, Liu K, Thompson BC. Green-Solvent-Processed Amide-Functionalized Conjugated Polymers Prepared via Direct Arylation Polymerization (DArP). Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Robert M. Pankow
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Mami Horikawa
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Elizabeth L. Melenbrink
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Kangying Liu
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
21
|
Guo K, Jiang Y, Sui Y, Deng YF, Geng YH. Dimethylacetamide-promoted Direct Arylation Polycondensation of 6,6′-Dibromo-7,7′-diazaisoindigo and (E)-1,2-bis(3,4-difluorothien-2-yl)ethene toward High Molecular Weight n-Type Conjugated Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2277-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Heintges GHL, Janssen RAJ. On the homocoupling of trialkylstannyl monomers in the synthesis of diketopyrrolopyrrole polymers and its effect on the performance of polymer-fullerene photovoltaic cells. RSC Adv 2019; 9:15703-15714. [PMID: 35521400 PMCID: PMC9064343 DOI: 10.1039/c9ra02670c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Homocoupling of monomers in a palladium-catalyzed copolymerization of donor-acceptor polymers affects the perfect alternating structure and may deteriorate the performance of such materials in solar cells. Here we investigate the effect of homocoupling bis(trialkylstannyl)-thiophene and -bithiophene monomers in two low band gap poly(diketopyrrolopyrrole-alt-oligothiophene) polymers by deliberately introducing extended oligothiophene defects in a controlled fashion. We find that extension of the oligothiophene by one or two thiophenes and creating defects up to at least 10% does not significantly affect the opto-electronic properties of the polymers or their photovoltaic performance as electron donor in solar cells in combination with [6,6]-phenyl C71 butytic acid methyl ester as acceptor. By using model reactions, we further demonstrate that for the optimized synthetic protocol and palladium-catalyst system the naturally occurring defect concentration in the polymers is expected to be less than 0.5%.
Collapse
Affiliation(s)
- Gaël H L Heintges
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Hasselt University Agoralaan 3590 Diepenbeek Belgium
| | - René A J Janssen
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Dutch Institute for Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| |
Collapse
|
23
|
Matt C, Lombeck F, Sommer M, Biskup T. Impact of Side Chains of Conjugated Polymers on Electronic Structure: A Case Study. Polymers (Basel) 2019; 11:E870. [PMID: 31086059 PMCID: PMC6572471 DOI: 10.3390/polym11050870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 11/22/2022] Open
Abstract
Processing from solution is a crucial aspect of organic semiconductors, as it is at the heart of the promise of easy and inexpensive manufacturing of devices. Introducing alkyl side chains is an approach often used to increase solubility and enhance miscibility in blends. The influence of these side chains on the electronic structure, although highly important for a detailed understanding of the structure-function relationship of these materials, is still barely understood. Here, we use time-resolved electron paramagnetic resonance spectroscopy with its molecular resolution to investigate the role of alkyl side chains on the polymer PCDTBT and a series of its building blocks with increasing length. Comparing our results to the non-hexylated compounds allows us to distinguish four different factors determining exciton delocalization. Detailed quantum-chemical calculations (DFT) allows us to further interpret our spectroscopic data and to relate our findings to the molecular geometry. Alkylation generally leads to more localized excitons, most prominent only for the polymer. Furthermore, singlet excitons are more delocalized than the corresponding triplet excitons, despite the larger dihedral angles within the backbone found for the singlet-state geometries. Our results show TREPR spectroscopy of triplet excitons to be well suited for investigating crucial aspects of the structure-function relationship of conjugated polymers used as organic semiconductors on a molecular basis.
Collapse
Affiliation(s)
- Clemens Matt
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| | - Florian Lombeck
- Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.
| | - Michael Sommer
- Institut für Makromolekulare Chemie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.
| | - Till Biskup
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| |
Collapse
|
24
|
Kuwabara J, Tsuchida W, Guo S, Hu Z, Yasuda T, Kanbara T. Synthesis of conjugated polymers via direct C–H/C–Cl coupling reactions using a Pd/Cu binary catalytic system. Polym Chem 2019. [DOI: 10.1039/c9py00232d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective C–H/C–Br coupling and polycondensation with C–H/C–Cl coupling afforded conjugated polymers in a short synthetic step.
Collapse
Affiliation(s)
- Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Wataru Tsuchida
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Shuyang Guo
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Ziwei Hu
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| | - Takeshi Yasuda
- Research Center for Functional Materials
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS)
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba
- Japan
| |
Collapse
|
25
|
Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RPH, Melkonyan FS, Facchetti A, Marks TJ. Suppressing Defect Formation Pathways in the Direct C–H Arylation Polymerization of Photovoltaic Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02297] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | | | - Lin X. Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | | | | | - Antonio Facchetti
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | | |
Collapse
|
26
|
Gao Y, Bai J, Sui Y, Han Y, Deng Y, Tian H, Geng Y, Wang F. High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated Polymers Synthesized via Direct Arylation Polycondensation: Influence of Thiophene Moieties and Side Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01112] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yao Gao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Junhua Bai
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
| | - Ying Sui
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Collaborative
Innovation
Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Fosong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
27
|
Blaskovits JT, Leclerc M. CH Activation as a Shortcut to Conjugated Polymer Synthesis. Macromol Rapid Commun 2018; 40:e1800512. [DOI: 10.1002/marc.201800512] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Indexed: 11/11/2022]
|
28
|
Ichige A, Saito H, Kuwabara J, Yasuda T, Choi JC, Kanbara T. Facile Synthesis of Thienopyrroledione-Based π-Conjugated Polymers via Direct Arylation Polycondensation under Aerobic Conditions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Akito Ichige
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hitoshi Saito
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Junpei Kuwabara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takeshi Yasuda
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Jun-Chul Choi
- National Institute
of Advanced Industrial Science and Technology (AIST) Tsukuba Central
5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takaki Kanbara
- Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
29
|
|
30
|
Hendsbee AD, Li Y. Performance Comparisons of Polymer Semiconductors Synthesized by Direct (Hetero)Arylation Polymerization (DHAP) and Conventional Methods for Organic Thin Film Transistors and Organic Photovoltaics. Molecules 2018; 23:E1255. [PMID: 29794982 PMCID: PMC6100596 DOI: 10.3390/molecules23061255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022] Open
Abstract
C-C bond forming reactions are central to the construction of π-conjugated polymers. Classical C-C bond forming reactions such as the Stille and Suzuki coupling reactions have been widely used in the past for this purpose. More recently, direct (hetero)arylation polymerization (DHAP) has earned a place in the spotlight with an increasing number of π-conjugated polymers being produced using this atom-economic and more sustainable chemistry. As semiconductors in organic electronics, the device performances of the polymers made by DHAP are of great interest and importance. This review compares the device performances of some representative π-conjugated polymers made using the DHAP method with those made using the conventional C-C bond forming reactions when they are used as semiconductors in organic thin film transistors (OTFTs) and organic photovoltaics (OPVs).
Collapse
Affiliation(s)
- Arthur D Hendsbee
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| | - Yuning Li
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
31
|
Wakioka M, Ozawa F. Highly Efficient Catalysts for Direct Arylation Polymerization (DArP). ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800227] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Masayuki Wakioka
- International Research Center for Elements Science (IRCELS); Institute for Chemical Research & IRCCS; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Fumiyuki Ozawa
- International Research Center for Elements Science (IRCELS); Institute for Chemical Research & IRCCS; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
32
|
Zimmermann D, Sprau C, Schröder J, Gregoriou VG, Avgeropoulos A, Chochos CL, Colsmann A, Janietz S, Krüger H. Synthesis of D-π
-A-π
type benzodithiophene-quinoxaline copolymers by direct arylation and their application in organic solar cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Diana Zimmermann
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| | - Christian Sprau
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13; Karlsruhe 76131 Germany
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7; Karlsruhe 76131 Germany
| | - Jonas Schröder
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| | | | - Apostolos Avgeropoulos
- Department of Materials Science Engineering; University of Ioannina; Ioannina 45110 Greece
| | - Christos L. Chochos
- Advent Technologies S.A., Stadiou Str; Platani Achaias Patras 26504 Greece
- Department of Materials Science Engineering; University of Ioannina; Ioannina 45110 Greece
| | - Alexander Colsmann
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13; Karlsruhe 76131 Germany
- Material Research Center for Energy Systems, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7; Karlsruhe 76131 Germany
| | - Silvia Janietz
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| | - Hartmut Krüger
- Fraunhofer Institute for Applied Polymer Research, Department Polymers & Electronics, Geiselbergstrasse 69; Potsdam 14476 Germany
| |
Collapse
|
33
|
Pirotte G, Kesters J, Cardeynaels T, Verstappen P, D'Haen J, Lutsen L, Champagne B, Vanderzande D, Maes W. The Impact of Acceptor-Acceptor Homocoupling on the Optoelectronic Properties and Photovoltaic Performance of PDTSQx ff Low Bandgap Polymers. Macromol Rapid Commun 2018; 39:e1800086. [PMID: 29682847 DOI: 10.1002/marc.201800086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/12/2018] [Indexed: 11/09/2022]
Abstract
Push-pull-type conjugated polymers applied in organic electronics do not always contain a perfect alternation of donor and acceptor building blocks. Misscouplings can occur, which have a noticeable effect on the device performance. In this work, the influence of homocoupling on the optoelectronic properties and photovoltaic performance of PDTSQxff polymers is investigated, with a specific focus on the quinoxaline acceptor moieties. A homocoupled biquinoxaline segment is intentionally inserted in specific ratios during the polymerization. These homocoupled units cause a gradually blue-shifted absorption, while the highest occupied molecular orbital energy levels decrease only significantly upon the presence of 75-100% of homocouplings. Density functional theory calculations show that the homocoupled acceptor unit generates a twist in the polymer backbone, which leads to a decreased conjugation length and a reduced aggregation tendency. The virtually defect-free PDTSQxff affords a solar cell efficiency of 5.4%, which only decreases substantially upon incorporating a homocoupling degree over 50%.
Collapse
Affiliation(s)
- Geert Pirotte
- UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Electrical and Physical Characterization (ELPHYC), Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Jurgen Kesters
- UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Electrical and Physical Characterization (ELPHYC), Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Tom Cardeynaels
- UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Electrical and Physical Characterization (ELPHYC), Agoralaan-Building D, 3590, Diepenbeek, Belgium.,Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Pieter Verstappen
- UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Electrical and Physical Characterization (ELPHYC), Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Jan D'Haen
- UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Electrical and Physical Characterization (ELPHYC), Agoralaan-Building D, 3590, Diepenbeek, Belgium.,IMEC - IMOMEC, Universitaire Campus - Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Laurence Lutsen
- IMEC - IMOMEC, Universitaire Campus - Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Benoît Champagne
- Laboratory of Theoretical Chemistry, Theoretical and Structural Physical Chemistry Unit, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Dirk Vanderzande
- UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Electrical and Physical Characterization (ELPHYC), Agoralaan-Building D, 3590, Diepenbeek, Belgium.,IMEC - IMOMEC, Universitaire Campus - Wetenschapspark 1, 3590, Diepenbeek, Belgium
| | - Wouter Maes
- UHasselt - Hasselt University, Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Electrical and Physical Characterization (ELPHYC), Agoralaan-Building D, 3590, Diepenbeek, Belgium.,IMEC - IMOMEC, Universitaire Campus - Wetenschapspark 1, 3590, Diepenbeek, Belgium
| |
Collapse
|
34
|
Josse P, Dayneko S, Zhang Y, Dabos-Seignon S, Zhang S, Blanchard P, Welch GC, Cabanetos C. Direct (Hetero)Arylation Polymerization of a Spirobifluorene and a Dithienyl-Diketopyrrolopyrrole Derivative: New Donor Polymers for Organic Solar Cells. Molecules 2018; 23:E962. [PMID: 29677127 PMCID: PMC6017812 DOI: 10.3390/molecules23040962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022] Open
Abstract
The synthesis and preliminary evaluation as donor material for organic photovoltaics of the poly(diketopyrrolopyrrole-spirobifluorene) (PDPPSBF) is reported herein. Prepared via homogeneous and heterogeneous direct (hetero)arylation polymerization (DHAP), through the use of different catalytic systems, conjugated polymers with comparable molecular weights were obtained. The polymers exhibited strong optical absorption out to 700 nm as thin-films and had appropriate electronic energy levels for use as a donor with PC70BM. Bulk heterojunction solar cells were fabricated giving power conversion efficiencies above 4%. These results reveal the potential of such polymers prepared in only three steps from affordable and commercially available starting materials.
Collapse
Affiliation(s)
- Pierre Josse
- CNRS UMR 6200, MOLTECH-Anjou, University of Angers, 2 Bd Lavoisier, 49045 Angers, France.
| | - Sergey Dayneko
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada.
| | - Yangqian Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Sylvie Dabos-Seignon
- CNRS UMR 6200, MOLTECH-Anjou, University of Angers, 2 Bd Lavoisier, 49045 Angers, France.
| | - Shiming Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Philippe Blanchard
- CNRS UMR 6200, MOLTECH-Anjou, University of Angers, 2 Bd Lavoisier, 49045 Angers, France.
| | - Gregory C Welch
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada.
| | - Clément Cabanetos
- CNRS UMR 6200, MOLTECH-Anjou, University of Angers, 2 Bd Lavoisier, 49045 Angers, France.
| |
Collapse
|
35
|
Aoki H, Saito H, Shimoyama Y, Kuwabara J, Yasuda T, Kanbara T. Synthesis of Conjugated Polymers Containing Octafluorobiphenylene Unit via Pd-Catalyzed Cross-Dehydrogenative-Coupling Reaction. ACS Macro Lett 2018; 7:90-94. [PMID: 35610923 DOI: 10.1021/acsmacrolett.7b00887] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polycondensation via Pd-catalyzed cross-dehydrogenative-coupling reaction of 2,2',3,3',5,5',6,6'-octafluorobiphenyl with thiophene analogues was studied. The synthetic protocol, in which employment of prefunctionalized starting monomers was fully avoided, allowed straightforward access to an alternating π-conjugated polymer. The addition of K2CO3 to the catalytic system promotes the cross-coupling reaction and suppresses the undesired homocoupling reaction, producing the corresponding donor-acceptor type π-conjugated polymers with minor homocoupling defects. The reaction also proceeded using O2 as the terminal oxidant, resulting in lower loading of the Ag oxidant. The obtained polymer was evaluated as an emitting material for an organic light-emitting diode.
Collapse
Affiliation(s)
- Hideaki Aoki
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hitoshi Saito
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yuto Shimoyama
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Junpei Kuwabara
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takeshi Yasuda
- Research
Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takaki Kanbara
- Tsukuba
Research Center for Energy Materials Science (TREMS), Graduate School
of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
36
|
Shih FY, Tian S, Gallagher N, Park YS, Grubbs RB. ipso-Arylative polymerization as a route to π-conjugated polymers: synthesis of poly(3-hexylthiophene). Polym Chem 2018. [DOI: 10.1039/c8py00605a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium-catalyzed ipso-arylative polymerization of diphenylcarbinol-substituted thiophene derivatives proceeds to reasonably high molecular weights, but is limited by side reactions.
Collapse
Affiliation(s)
- Feng-Yang Shih
- Department of Chemistry
- Stony Brook University
- Stony Brook
- USA
| | - Sisi Tian
- Department of Chemistry
- Stony Brook University
- Stony Brook
- USA
| | | | - Young S. Park
- Center for Functional Nanomaterials
- Brookhaven National Laboratory
- Upton
- USA
| | | |
Collapse
|
37
|
Gobalasingham NS, Carlé JE, Krebs FC, Thompson BC, Bundgaard E, Helgesen M. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion. Macromol Rapid Commun 2017; 38. [PMID: 29028137 DOI: 10.1002/marc.201700526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/31/2017] [Indexed: 11/06/2022]
Abstract
Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first β-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material.
Collapse
Affiliation(s)
- Nemal S Gobalasingham
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| | - Jon E Carlé
- DTU Energy, Technical University of Denmark, Roskilde, DK-4000, Denmark
| | - Frederik C Krebs
- DTU Energy, Technical University of Denmark, Roskilde, DK-4000, Denmark
| | - Barry C Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| | - Eva Bundgaard
- DTU Energy, Technical University of Denmark, Roskilde, DK-4000, Denmark
| | - Martin Helgesen
- DTU Energy, Technical University of Denmark, Roskilde, DK-4000, Denmark
| |
Collapse
|
38
|
Garcias-Morales C, Romero-Borja D, Maldonado JL, Roa AE, Rodríguez M, García-Merinos JP, Ariza-Castolo A. Small Molecules Derived from Thieno[3,4-c]pyrrole-4,6-dione (TPD) and Their Use in Solution Processed Organic Solar Cells. Molecules 2017; 22:E1607. [PMID: 28974003 PMCID: PMC6151745 DOI: 10.3390/molecules22101607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 11/17/2022] Open
Abstract
In this work, microwave synthesis, chemical, optical and electrochemical characterization of three small organic molecules, TPA-TPD, TPA-PT-TPD and TPA-TT-TPD with donor-acceptor structure and their use in organic photovoltaic cells are reported. For the synthesis, 5-(2-ethylhexyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione was used as electron withdrawing fragment while the triphenylamine was used as electron donating fragment. Molecular electronic geometry and electronic distribution density were established by density functional theory (DFT) calculations and confirmed by optical and chemical characterization. These molecules were employed as electron-donors in the active layer for manufacturing bulk heterojunction organic solar cells, where [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) was used as electron-acceptor. As cathode, Field's metal (FM), an eutectic alloy (Bi/In/Sn: 32.5%, 51%, and 16.5%, respectively) with a melting point above 62 °C, was easily deposited by drop casting under vacuum-free process and at air atmosphere. Prepared devices based on TPA-TPD:PC71BM (1:4 w/w ratio) presented a large VOC = 0.97 V, with JSC = 7.9 mA/cm², a FF = 0.34, then, a power conversion efficiency (PCE) of 2.6%.
Collapse
Affiliation(s)
- Cesar Garcias-Morales
- Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, A.P. 1-948, 37000 León, Guanajuato, Mexico.
| | - Daniel Romero-Borja
- Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, A.P. 1-948, 37000 León, Guanajuato, Mexico.
| | - José-Luis Maldonado
- Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, A.P. 1-948, 37000 León, Guanajuato, Mexico.
| | - Arián E Roa
- Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, A.P. 1-948, 37000 León, Guanajuato, Mexico.
| | - Mario Rodríguez
- Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, A.P. 1-948, 37000 León, Guanajuato, Mexico.
| | - J Pablo García-Merinos
- Instituto de Investigaciones Químico Biológicas Universidad Michoacana de San Nicolás de Hidalgo Edificio B-1. Ciudad Universitaria, 58030 Morelia, Michoacán, Mexico.
| | - Armando Ariza-Castolo
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508 Colonia San Pedro Zacatenco, 07360 Mexico, D.F., Mexico.
| |
Collapse
|
39
|
Wang K, Huang J, Ko J, Leong WL, Wang M. Direct arylation polymerization toward ultra-low bandgap poly(thienoisoindigo-alt
-diketopyrrolepyrrole) conjugated polymers: The effect of β-protection on the polymerization and properties of the polymers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kai Wang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Jing Huang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Jieun Ko
- School of Electrical and Electronic Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 639798 Singapore
| | - Wei Lin Leong
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
- School of Electrical and Electronic Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 639798 Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
40
|
Gedefaw D, Sharma A, Pan X, Bjuggren JM, Kroon R, Gregoriou VG, Chochos CL, Andersson MR. Optimization of the power conversion efficiency in high bandgap pyridopyridinedithiophene-based conjugated polymers for organic photovoltaics by the random terpolymer approach. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Grenier F, Goudreau K, Leclerc M. Robust Direct (Hetero)arylation Polymerization in Biphasic Conditions. J Am Chem Soc 2017; 139:2816-2824. [DOI: 10.1021/jacs.6b12955] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- François Grenier
- Département de Chimie, Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Karine Goudreau
- Département de Chimie, Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Mario Leclerc
- Département de Chimie, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
42
|
Wang K, Wang M. Hyperbranched narrow-bandgap DPP homopolymers synthesized via direct arylation polycondensation. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Wang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
43
|
Wakioka M, Takahashi R, Ichihara N, Ozawa F. Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Highly Selective Synthesis of π-Conjugated Polymers with Diketopyrrolopyrrole Units. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02679] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Masayuki Wakioka
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Rina Takahashi
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Nobuko Ichihara
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
44
|
Spicer CD, Booth MA, Mawad D, Armgarth A, Nielsen CB, Stevens MM. Synthesis of Hetero-bifunctional, End-Capped Oligo-EDOT Derivatives. Chem 2017; 2:125-138. [PMID: 28149959 PMCID: PMC5268340 DOI: 10.1016/j.chempr.2016.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/09/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022]
Abstract
Conjugated oligomers of 3,4-ethylenedioxythiophene (EDOT) are attractive materials for tissue engineering applications and as model systems for studying the properties of the widely used polymer poly(3,4-ethylenedioxythiophene). We report here the facile synthesis of a series of keto-acid end-capped oligo-EDOT derivatives (n = 2-7) through a combination of a glyoxylation end-capping strategy and iterative direct arylation chain extension. Importantly, these structures not only represent the longest oligo-EDOTs reported but are also bench stable, in contrast to previous reports on such oligomers. The constructs reported here can undergo subsequent derivatization for integration into higher-order architectures, such as those required for tissue engineering applications. The synthesis of hetero-bifunctional constructs, as well as those containing mixed-monomer units, is also reported, allowing further complexity to be installed in a controlled manner. Finally, we describe the optical and electrochemical properties of these oligomers and demonstrate the importance of the keto-acid in determining their characteristics.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Marsilea A. Booth
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Damia Mawad
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Astrid Armgarth
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Christian B. Nielsen
- Materials Research Institute and School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Molly M. Stevens
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
45
|
Gobalasingham NS, Ekiz S, Pankow RM, Livi F, Bundgaard E, Thompson BC. Carbazole-based copolymers via direct arylation polymerization (DArP) for Suzuki-convergent polymer solar cell performance. Polym Chem 2017. [DOI: 10.1039/c7py00859g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct arylation polymerization (DArP) is used to synthesize a variety of carbazole-based copolymers for evaluation in solar cells.
Collapse
Affiliation(s)
- Nemal S. Gobalasingham
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Seyma Ekiz
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Robert M. Pankow
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| | - Francesco Livi
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
- DTU Energy
| | - Eva Bundgaard
- DTU Energy
- Technical University of Denmark
- Roskilde
- Denmark
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|
46
|
Lombeck F, Marx F, Strassel K, Kunz S, Lienert C, Komber H, Friend R, Sommer M. To branch or not to branch: C–H selectivity of thiophene-based donor–acceptor–donor monomers in direct arylation polycondensation exemplified by PCDTBT. Polym Chem 2017. [DOI: 10.1039/c7py00879a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibility for unselective C–H activation of a thiophene-based, donor–acceptor–donor monomer during direct arylation polycondensation is investigated.
Collapse
Affiliation(s)
- Florian Lombeck
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
- Optoelectronics Group
| | - Franziska Marx
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Karen Strassel
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Susanna Kunz
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | | | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Richard Friend
- Optoelectronics Group
- Cavendish Laboratory
- J.J. Thomson Avenue
- University of Cambridge
- Cambridge CB3 0HE
| | - Michael Sommer
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
- Freiburger Materialforschungszentrum
| |
Collapse
|
47
|
Kuwabara J, Fujie Y, Maruyama K, Yasuda T, Kanbara T. Suppression of Homocoupling Side Reactions in Direct Arylation Polycondensation for Producing High Performance OPV Materials. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02380] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Junpei Kuwabara
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yohei Fujie
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Keisuke Maruyama
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takeshi Yasuda
- Research
Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takaki Kanbara
- Tsukuba
Research Center for Interdisciplinary Materials Science (TIMS), Graduate
School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
48
|
Lombeck F, Di D, Yang L, Meraldi L, Athanasopoulos S, Credgington D, Sommer M, Friend RH. PCDTBT: From Polymer Photovoltaics to Light-Emitting Diodes by Side-Chain-Controlled Luminescence. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Florian Lombeck
- Optoelectronics
Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Makromolekulare
Chemie, Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
| | - Dawei Di
- Optoelectronics
Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Le Yang
- Optoelectronics
Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Meraldi
- Optoelectronics
Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Stavros Athanasopoulos
- Optoelectronics
Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Dan Credgington
- Optoelectronics
Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Michael Sommer
- Makromolekulare
Chemie, Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- FIT Freiburger Zentrum
für interaktive Werkstoffe und bioinspirierte Technologien, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburger Materialforschungszentrum, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| | - Richard H. Friend
- Optoelectronics
Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
49
|
Dudnik AS, Aldrich TJ, Eastham ND, Chang RPH, Facchetti A, Marks TJ. Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. J Am Chem Soc 2016; 138:15699-15709. [PMID: 27933999 DOI: 10.1021/jacs.6b10023] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new and highly regioselective direct C-H arylation polymerization (DARP) methodology enables the reproducible and sustainable synthesis of high-performance π-conjugated photovoltaic copolymers. Unlike traditional Stille polycondensation methods for producing photovoltaic copolymers, this DARP protocol eliminates the need for environmentally harmful, toxic organotin compounds. This DARP protocol employs low loadings of commercially available catalyst components, Pd2(dba)3·CHCl3 (0.5 mol%) and P(2-MeOPh)3 (2 mol%), sterically tuned carboxylic acid additives, and an environmentally friendly solvent, 2-methyltetrahydrofuran. Using this DARP protocol, several representative copolymers are synthesized in excellent yields and high molecular masses. The DARP-derived copolymers are benchmarked versus Stille-derived counterparts by close comparison of optical, NMR spectroscopic, and electrochemical properties, all of which indicate great chemical similarity and no significant detectable structural defects in the DARP copolymers. The DARP- and Stille-derived copolymer and fullerene blend microstructural properties and morphologies are characterized with AFM, TEM, and XRD and are found to be virtually indistinguishable. Likewise, the charge generation, recombination, and transport characteristics of the fullerene blend films are found to be identical. For the first time, polymer solar cells fabricated using DARP-derived copolymers exhibit solar cell performances rivalling or exceeding those achieved with Stille-derived materials. For the DARP copolymer PBDTT-FTTE, the power conversion efficiency of 8.4% is a record for a DARP copolymer.
Collapse
Affiliation(s)
- Alexander S Dudnik
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas J Aldrich
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas D Eastham
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Robert P H Chang
- Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Polyera Corporation , 8045 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
50
|
Pouliot JR, Grenier F, Blaskovits JT, Beaupré S, Leclerc M. Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chem Rev 2016; 116:14225-14274. [DOI: 10.1021/acs.chemrev.6b00498] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jean-Rémi Pouliot
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - François Grenier
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | | | - Serge Beaupré
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Mario Leclerc
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|