1
|
Taherinia D, Frisbie CD. Deciphering I-V characteristics in molecular electronics with the benefit of an analytical model. Phys Chem Chem Phys 2023; 25:32305-32316. [PMID: 37991400 DOI: 10.1039/d3cp03877g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We share our perspective that a simple analytical model for electron tunneling in molecular junctions can greatly aid quantitative analysis of experimental data in molecular electronics. In particular, the single-level model (SLM), derived from first principles, provides a precise prediction for the current-voltage (I-V) characteristics in terms of key electronic structure parameters, which in turn depend on the molecular and contact architecture. SLM analysis thus facilitates understanding of structure-property relationships and provides metrics that can be compared across different types of tunnel junctions, as we illustrate with several examples.
Collapse
Affiliation(s)
- Davood Taherinia
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Medvedev IG. Dependence of Differential Conductance of Electrochemical Transistor on Overpotential in Fully Non-Adiabatic Regime. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522120047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Engelbrekt C, Nazmutdinov RR, Shermukhamedov S, Ulstrup J, Zinkicheva TT, Xiao X. Complex single‐molecule and molecular scale entities in electrochemical environments: Mechanisms and challenges. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Christian Engelbrekt
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Renat R. Nazmutdinov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Shokirbek Shermukhamedov
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Jens Ulstrup
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| | - Tamara T. Zinkicheva
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Str. 68 Kazan 420015 Russian Federation
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark Building 207, DK0‐2800 Kgs. Lyngby Denmark
| |
Collapse
|
4
|
Koo JY, Oh J, Hyun G, Choi HC, Song I, Yoon SM. Anisotropic Electrical Conductivity of a Single-Crystalline Oxo-Bridged Cr 4IIIMo 2VI Heterometallic Complex. Inorg Chem 2021; 60:13262-13268. [PMID: 34375084 DOI: 10.1021/acs.inorgchem.1c01618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new oxo-bridged chromium-molybdenum heterometallic complex, O-CrMoHC ([Cr4(MoO4)2O2(OAc)4(DMF)4]·2DMF), was synthesized by using a simple solvothermal reaction. In this complex, the octahedrally coordinated Cr(III) and tetrahedrally coordinated Mo(VI) metal centers are bridged by oxo ligands. O-CrMoHC has in-plane π-conjugation systems, which are interconnected by noncoordinating DMF molecules. The crystals show anisotropic conductivity with respect to the crystal planes, and theoretical calculations were used to study their origins. The O-CrMoHC single crystals exhibited that a relatively high electrical conductivity with an average value of 5.37 × 10-7 S/cm was observed along the [01-1] direction, but the current level was very low along the [100] direction. This is the first report of anisotropic conductivity observed in the single crystal of a monomeric heterometallic complex.
Collapse
Affiliation(s)
- Jin Young Koo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang-si, Korea 37673
| | - Jongwon Oh
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538.,Wonkang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538
| | - Gyeongeun Hyun
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538.,Wonkang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538
| | - Hee Cheul Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang-si, Korea 37673
| | - Intek Song
- Department of Applied Chemistry, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea 36729
| | - Seok Min Yoon
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538.,Wonkang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk, Korea 54538
| |
Collapse
|
5
|
STM studies of electron transfer through single molecules at electrode-electrolyte interfaces. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Nováková Lachmanová Š, Vavrek F, Sebechlebská T, Kolivoška V, Valášek M, Hromadová M. Charge transfer in self-assembled monolayers of molecular conductors containing tripodal anchor and terpyridine-metal redox switching element. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Yan J, Frøkjær EE, Engelbrekt C, Leimkühler S, Ulstrup J, Wollenberger U, Xiao X, Zhang J. Voltammetry and Single‐Molecule In Situ Scanning Tunnelling Microscopy of the Redox Metalloenzyme Human Sulfite Oxidase. ChemElectroChem 2021. [DOI: 10.1002/celc.202001258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiawei Yan
- Department of Chemistry Technical University of Denmark Building 207, Kemitorvet 2800 Kgs. Lyngby Denmark
- State key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 Fujian P.R. China
| | - Emil Egede Frøkjær
- Department of Chemistry Technical University of Denmark Building 207, Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Christian Engelbrekt
- Department of Chemistry Technical University of Denmark Building 207, Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Silke Leimkühler
- Department of Molecular Enzymology University of Potsdam 14476 PotsdamPotsdam-Golm Germany
| | - Jens Ulstrup
- Department of Chemistry Technical University of Denmark Building 207, Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Ulla Wollenberger
- Department of Molecular Enzymology University of Potsdam 14476 PotsdamPotsdam-Golm Germany
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark Building 207, Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Jingdong Zhang
- Department of Chemistry Technical University of Denmark Building 207, Kemitorvet 2800 Kgs. Lyngby Denmark
| |
Collapse
|
8
|
Naher M, Bock S, Langtry ZM, O’Malley KM, Sobolev AN, Skelton BW, Korb M, Low PJ. Synthesis, Structure and Physical Properties of “Wire-like” Metal Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masnun Naher
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Sören Bock
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Zakary M. Langtry
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Kieran M. O’Malley
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Brian W. Skelton
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Marcus Korb
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Paul J. Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
9
|
Theoretical study of amplification of the tunnel current in the redox-mediated tunneling junctions for the symmetric and asymmetric electron-molecular coupling in the case of the adiabatic transport regime. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Pensa E, Karpowicz R, Jabłoński A, Trzybiński D, Woźniak K, Šakić D, Vrček V, Long NJ, Albrecht T, Kowalski K. Gold-Induced Desulfurization in a Bis(ferrocenyl) Alkane Dithiol. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evangelina Pensa
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K
| | - Rafał Karpowicz
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| | - Artur Jabłoński
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| | - Damian Trzybiński
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Krzysztof Woźniak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warszawa, Poland
| | - Davor Šakić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Valerije Vrček
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Nicholas J. Long
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K
| | - Tim Albrecht
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Konrad Kowalski
- Faculty of Chemistry, Department of Organic Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
11
|
Black JM, Come J, Bi S, Zhu M, Zhao W, Wong AT, Noh JH, Pudasaini PR, Zhang P, Okatan MB, Dai S, Kalinin SV, Rack PD, Ward TZ, Feng G, Balke N. Role of Electrical Double Layer Structure in Ionic Liquid Gated Devices. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40949-40958. [PMID: 29063758 DOI: 10.1021/acsami.7b11044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ionic liquid gating of transition metal oxides has enabled new states (magnetic, electronic, metal-insulator), providing fundamental insights into the physics of strongly correlated oxides. However, despite much research activity, little is known about the correlation of the structure of the liquids in contact with the transition metal oxide surface, its evolution with the applied electric potential, and its correlation with the measured electronic properties of the oxide. Here, we investigate the structure of an ionic liquid at a semiconducting oxide interface during the operation of a thin film transistor where the electrical double layer gates the device using experiment and theory. We show that the transition between the ON and OFF states of the amorphous indium gallium zinc oxide transistor is accompanied by a densification and preferential spatial orientation of counterions at the oxide channel surface. This process occurs in three distinct steps, corresponding to ion orientations, and consequently, regimes of different electrical conductivity. The reason for this can be found in the surface charge densities on the oxide surface when different ion arrangements are present. Overall, the field-effect gating process is elucidated in terms of the interfacial ionic liquid structure, and this provides unprecedented insight into the working of a liquid gated transistor linking the nanoscopic structure to the functional properties. This knowledge will enable both new ionic liquid design as well as advanced device concepts.
Collapse
Affiliation(s)
| | | | - Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | - Mengyang Zhu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | - Wei Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | | | | | | | | | | | | | | | | | | | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST) , Wuhan 430074, China
| | | |
Collapse
|
12
|
Lovat G, Choi B, Paley DW, Steigerwald ML, Venkataraman L, Roy X. Room-temperature current blockade in atomically defined single-cluster junctions. NATURE NANOTECHNOLOGY 2017; 12:1050-1054. [PMID: 28805817 DOI: 10.1038/nnano.2017.156] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.
Collapse
Affiliation(s)
- Giacomo Lovat
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - Bonnie Choi
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Daniel W Paley
- Department of Chemistry, Columbia University, New York, New York 10027, USA
- Columbia Nano Initiative, Columbia University, New York, New York 10027, USA
| | | | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
13
|
Medvedev IG. Exact identities between values of the tunnel current in the redox-mediated tunneling contacts and the positions of the extrema of the tunnel current/overvoltage characteristics. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Al-Owaedi OA, Bock S, Milan DC, Oerthel MC, Inkpen MS, Yufit DS, Sobolev AN, Long NJ, Albrecht T, Higgins SJ, Bryce MR, Nichols RJ, Lambert CJ, Low PJ. Insulated molecular wires: inhibiting orthogonal contacts in metal complex based molecular junctions. NANOSCALE 2017; 9:9902-9912. [PMID: 28678257 DOI: 10.1039/c7nr01829k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal complexes are receiving increased attention as molecular wires in fundamental studies of the transport properties of metal|molecule|metal junctions. In this context we report the single-molecule conductance of a systematic series of d8 square-planar platinum(ii) trans-bis(alkynyl) complexes with terminal trimethylsilylethynyl (C[triple bond, length as m-dash]CSiMe3) contacting groups, e.g. trans-Pt{C[triple bond, length as m-dash]CC6H4C[triple bond, length as m-dash]CSiMe3}2(PR3)2 (R = Ph or Et), using a combination of scanning tunneling microscopy (STM) experiments in solution and theoretical calculations using density functional theory and non-equilibrium Green's function formalism. The measured conductance values of the complexes (ca. 3-5 × 10-5G0) are commensurate with similarly structured all-organic oligo(phenylene ethynylene) and oligo(yne) compounds. Based on conductance and break-off distance data, we demonstrate that a PPh3 supporting ligand in the platinum complexes can provide an alternative contact point for the STM tip in the molecular junctions, orthogonal to the terminal C[triple bond, length as m-dash]CSiMe3 group. The attachment of hexyloxy side chains to the diethynylbenzene ligands, e.g. trans-Pt{C[triple bond, length as m-dash]CC6H2(Ohex)2C[triple bond, length as m-dash]CSiMe3}2(PPh3)2 (Ohex = OC6H13), hinders contact of the STM tip to the PPh3 groups and effectively insulates the molecule, allowing the conductance through the full length of the backbone to be reliably measured. The use of trialkylphosphine (PEt3), rather than triarylphosphine (PPh3), ancillary ligands at platinum also eliminates these orthogonal contacts. These results have significant implications for the future design of organometallic complexes for studies in molecular junctions.
Collapse
Affiliation(s)
- Oday A Al-Owaedi
- Department of Physics, University of Lancaster, Lancaster, LA1 4YB, UK. and Department of Laser Physics, Women Faculty of Science, Babylon University, Hilla, Iraq
| | - Sören Bock
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - David C Milan
- Department of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, UK
| | | | - Michael S Inkpen
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Dmitry S Yufit
- Department of Chemistry, Durham University, South Rd, Durham, DH1 3LE, UK
| | - Alexandre N Sobolev
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia and Centre for Microscopy Characterization and Analysis, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Tim Albrecht
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Simon J Higgins
- Department of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, UK
| | - Martin R Bryce
- Department of Chemistry, Durham University, South Rd, Durham, DH1 3LE, UK
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, UK
| | - Colin J Lambert
- Department of Physics, University of Lancaster, Lancaster, LA1 4YB, UK.
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Perth 6009, Australia
| |
Collapse
|
15
|
Bock S, Al‐Owaedi OA, Eaves SG, Milan DC, Lemmer M, Skelton BW, Osorio HM, Nichols RJ, Higgins SJ, Cea P, Long NJ, Albrecht T, Martín S, Lambert CJ, Low PJ. Single-Molecule Conductance Studies of Organometallic Complexes Bearing 3-Thienyl Contacting Groups. Chemistry 2017; 23:2133-2143. [PMID: 27897344 PMCID: PMC5396322 DOI: 10.1002/chem.201604565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 01/09/2023]
Abstract
The compounds and complexes 1,4-C6 H4 (C≡C-cyclo-3-C4 H3 S)2 (2), trans-[Pt(C≡C-cyclo-3-C4 H3 S)2 (PEt3 )2 ] (3), trans-[Ru(C≡C-cyclo-3-C4 H3 S)2 (dppe)2 ] (4; dppe=1,2-bis(diphenylphosphino)ethane) and trans-[Ru(C≡C-cyclo-3-C4 H3 S)2 {P(OEt)3 }4 ] (5) featuring the 3-thienyl moiety as a surface contacting group for gold electrodes have been prepared, crystallographically characterised in the case of 3-5 and studied in metal|molecule|metal junctions by using both scanning tunnelling microscope break-junction (STM-BJ) and STM-I(s) methods (measuring the tunnelling current (I) as a function of distance (s)). The compounds exhibit similar conductance profiles, with a low conductance feature being more readily identified by STM-I(s) methods, and a higher feature by the STM-BJ method. The lower conductance feature was further characterised by analysis using an unsupervised, automated multi-parameter vector classification (MPVC) of the conductance traces. The combination of similarly structured HOMOs and non-resonant tunnelling mechanism accounts for the remarkably similar conductance values across the chemically distinct members of the family 2-5.
Collapse
Affiliation(s)
- Sören Bock
- School of Chemistry and BiochemistryUniversity of Western Australia35 Stirling HighwayCrawley6009WAAustralia
| | - Oday A. Al‐Owaedi
- Department of PhysicsLancaster UniversityLancasterLA1 4YBUK
- Department of Laser Physics, Women Faculty of ScienceBabylon UniversityIraq
| | - Samantha G. Eaves
- School of Chemistry and BiochemistryUniversity of Western Australia35 Stirling HighwayCrawley6009WAAustralia
- Department of ChemistryDurham UniversitySouth Rd.DurhamDH1 3LEUK
| | - David C. Milan
- Department of ChemistryUniversity of LiverpoolCrown St.LiverpoolL69 7ZDUK
| | - Mario Lemmer
- Department of ChemistryImperial College LondonLondonSW7 2AZUK
| | - Brian W. Skelton
- School of Chemistry and BiochemistryUniversity of Western Australia35 Stirling HighwayCrawley6009WAAustralia
- Centre for Microscopy, Characterisation and AnalysisUniversity of Western AustraliaCrawleyWestern Australia6009Australia
| | - Henrry M. Osorio
- Departamento de Química Física, Facultad de CienciasUniversidad de Zaragoza50009ZaragozaSpain
- Instituto de Nanociencia de Aragón (INA) y Laboratorio de Microscopias, Avanzadas (LMA), Edificio I+D Campus Rio EbroUniversidad de ZaragozaC/Mariano Esquillor, s/n50018ZaragozaSpain
- Departamento de FísicaEscuela Politécnica NacionalAv. Ladrón de Guevara, E11-253170525QuitoEcuador
| | - Richard J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown St.LiverpoolL69 7ZDUK
| | - Simon J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown St.LiverpoolL69 7ZDUK
| | - Pilar Cea
- Departamento de Química Física, Facultad de CienciasUniversidad de Zaragoza50009ZaragozaSpain
- Instituto de Nanociencia de Aragón (INA) y Laboratorio de Microscopias, Avanzadas (LMA), Edificio I+D Campus Rio EbroUniversidad de ZaragozaC/Mariano Esquillor, s/n50018ZaragozaSpain
| | | | - Tim Albrecht
- Department of ChemistryImperial College LondonLondonSW7 2AZUK
| | - Santiago Martín
- Departamento de Química Física, Facultad de CienciasUniversidad de Zaragoza50009ZaragozaSpain
- Instituto de Ciencias de Materiales de Aragón (ICMA)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | | | - Paul J. Low
- School of Chemistry and BiochemistryUniversity of Western Australia35 Stirling HighwayCrawley6009WAAustralia
| |
Collapse
|
16
|
Lemmer M, Inkpen MS, Kornysheva K, Long NJ, Albrecht T. Unsupervised vector-based classification of single-molecule charge transport data. Nat Commun 2016; 7:12922. [PMID: 27694904 PMCID: PMC5063956 DOI: 10.1038/ncomms12922] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/16/2016] [Indexed: 01/04/2023] Open
Abstract
The stochastic nature of single-molecule charge transport measurements requires collection of large data sets to capture the full complexity of a molecular system. Data analysis is then guided by certain expectations, for example, a plateau feature in the tunnelling current distance trace, and the molecular conductance extracted from suitable histogram analysis. However, differences in molecular conformation or electrode contact geometry, the number of molecules in the junction or dynamic effects may lead to very different molecular signatures. Since their manifestation is a priori unknown, an unsupervised classification algorithm, making no prior assumptions regarding the data is clearly desirable. Here we present such an approach based on multivariate pattern analysis and apply it to simulated and experimental single-molecule charge transport data. We demonstrate how different event shapes are clearly separated using this algorithm and how statistics about different event classes can be extracted, when conventional methods of analysis fail.
Collapse
Affiliation(s)
- Mario Lemmer
- Department of Chemistry, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - Michael S. Inkpen
- Department of Chemistry, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - Katja Kornysheva
- Institute for Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AR, UK
| | - Nicholas J. Long
- Department of Chemistry, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - Tim Albrecht
- Department of Chemistry, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| |
Collapse
|
17
|
|
18
|
Morari C, Buimaga-Iarinca L, Rungger I, Sanvito S, Melinte S, Rignanese GM. Charge and spin transport in single and packed ruthenium-terpyridine molecular devices: Insight from first-principles calculations. Sci Rep 2016; 6:31856. [PMID: 27550064 PMCID: PMC4994010 DOI: 10.1038/srep31856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023] Open
Abstract
Using first-principles calculations, we study the electronic and transport properties of rutheniumterpyridine molecules sandwiched between two Au(111) electrodes. We analyse both single and packed molecular devices, more amenable to scaling and realistic integration approaches. The devices display all together robust negative differential resistance features at low bias voltages. Remarkably, the electrical control of the spin transport in the studied systems implies a subtle distribution of the magnetisation density within the biased devices and highlights the key role of the Au(111) electrical contacts.
Collapse
Affiliation(s)
- C. Morari
- National Institute for Research and Development of Isotopic and Molecular Technologies (NIRDIMT), 65-103 Donath, Ro-400293, Cluj-Napoca, Romania
| | - L. Buimaga-Iarinca
- National Institute for Research and Development of Isotopic and Molecular Technologies (NIRDIMT), 65-103 Donath, Ro-400293, Cluj-Napoca, Romania
| | - I. Rungger
- School of Physics and CRANN, Trinity College, Dublin 2, Ireland
- National Physical Laboratory, Teddington, TW11 0LW, United Kingdom
| | - S. Sanvito
- School of Physics and CRANN, Trinity College, Dublin 2, Ireland
| | - S. Melinte
- ICTM Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - G.-M. Rignanese
- IMCN Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
- European Theoretical Spectroscopy Facility (ETSF), 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
Kastlunger G, Stadler R. Bias-induced conductance switching in single molecule junctions containing a redox-active transition metal complex. MONATSHEFTE FUR CHEMIE 2016; 147:1675-1686. [PMID: 27729711 PMCID: PMC5028406 DOI: 10.1007/s00706-016-1795-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/05/2016] [Indexed: 10/25/2022]
Abstract
ABSTRACT The paper provides a comprehensive theoretical description of electron transport through transition metal complexes in single molecule junctions, where the main focus is on an analysis of the structural parameters responsible for bias-induced conductance switching as found in recent experiments, where an interpretation was provided by our simulations. The switching could be theoretically explained by a two-channel model combining coherent electron transport and electron hopping, where the underlying mechanism could be identified as a charging of the molecule in the junction made possible by the presence of a localized electronic state on the transition metal center. In this article, we present a framework for the description of an electron hopping-based switching process within the semi-classical Marcus-Hush theory, where all relevant quantities are calculated on the basis of density functional theory (DFT). Additionally, structural aspects of the junction and their respective importance for the occurrence of irreversible switching are discussed. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Georg Kastlunger
- Institute of Theoretical Physics, Vienna University of Technology, TU Wien, Vienna, Austria
| | - Robert Stadler
- Institute of Theoretical Physics, Vienna University of Technology, TU Wien, Vienna, Austria
| |
Collapse
|
20
|
Davidson R, Al-Owaedi OA, Milan DC, Zeng Q, Tory J, Hartl F, Higgins SJ, Nichols RJ, Lambert CJ, Low PJ. Effects of Electrode–Molecule Binding and Junction Geometry on the Single-Molecule Conductance of bis-2,2′:6′,2″-Terpyridine-based Complexes. Inorg Chem 2016; 55:2691-700. [DOI: 10.1021/acs.inorgchem.5b02094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ross Davidson
- Department of Chemistry, Durham University, South
Rd, Durham, DH1 3LE, United Kingdom
| | - Oday A. Al-Owaedi
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
- Department of Laser Physics, Women Faculty of Science, Babylon University, Hillah, Iraq
| | - David C. Milan
- Department of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, United Kingdom
| | - Qiang Zeng
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Peoples’ Republic of China
| | - Joanne Tory
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - František Hartl
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Simon J. Higgins
- Department of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, United Kingdom
| | - Richard J. Nichols
- Department of Chemistry, University of Liverpool, Crown St, Liverpool, L69 7ZD, United Kingdom
| | - Colin J. Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, United Kingdom
| | - Paul J. Low
- School
of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Perth, Washington 6009, Australia
| |
Collapse
|
21
|
|
22
|
de la Llave E, Herrera SE, Adam C, Méndez De Leo LP, Calvo EJ, Williams FJ. Molecular and electronic structure of osmium complexes confined to Au(111) surfaces using a self-assembled molecular bridge. J Chem Phys 2015; 143:184703. [PMID: 26567676 DOI: 10.1063/1.4935364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.
Collapse
Affiliation(s)
- Ezequiel de la Llave
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Santiago E Herrera
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Catherine Adam
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Lucila P Méndez De Leo
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Ernesto J Calvo
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Federico J Williams
- INQUIMAE-CONICET, Departamento de Química Inorgánica, Analítica y Química-Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
23
|
Osorio HM, Catarelli S, Cea P, Gluyas JBG, Hartl F, Higgins SJ, Leary E, Low PJ, Martín S, Nichols RJ, Tory J, Ulstrup J, Vezzoli A, Milan DC, Zeng Q. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling. J Am Chem Soc 2015; 137:14319-28. [DOI: 10.1021/jacs.5b08431] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Henrry M. Osorio
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Samantha Catarelli
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Pilar Cea
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto
de Nanociencia de Aragón (INA) and Laboratorio de microscopias
avanzadas (LMA), edificio i+d Campus Rio Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain
| | - Josef B. G. Gluyas
- School
of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - František Hartl
- Department
of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, U.K
| | - Simon J. Higgins
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Edmund Leary
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Paul J. Low
- School
of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia
| | - Santiago Martín
- Departamento
de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto
de Ciencias de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Richard J. Nichols
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Joanne Tory
- Department
of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, U.K
| | - Jens Ulstrup
- Department
of Chemistry and NanoDTU, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
| | - Andrea Vezzoli
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - David C. Milan
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Qiang Zeng
- Department
of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, U.K
| |
Collapse
|
24
|
Medvedev IG. Effect of the band structure of the electrodes on the non-adiabatic electron tunneling through a one-level redox molecule. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2015.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
|
26
|
New redox-active layer create via epoxy–amine reaction – The base of genosensor for the detection of specific DNA and RNA sequences of avian influenza virus H5N1. Biosens Bioelectron 2015; 65:427-34. [DOI: 10.1016/j.bios.2014.10.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/14/2014] [Accepted: 10/29/2014] [Indexed: 02/01/2023]
|
27
|
Medvedev IG. Effect of the asymmetry of the coupling of the redox molecule to the electrodes in the one-level electrochemical bridged tunneling contact on the Coulomb blockade and the operation of molecular transistor. J Chem Phys 2014; 141:124706. [DOI: 10.1063/1.4895895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
28
|
Artés JM, López-Martínez M, Díez-Pérez I, Sanz F, Gorostiza P. Nanoscale charge transfer in redox proteins and DNA: Towards biomolecular electronics. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.05.089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Arielly R, Vadai M, Kardash D, Noy G, Selzer Y. Real-Time Detection of Redox Events in Molecular Junctions. J Am Chem Soc 2014; 136:2674-80. [DOI: 10.1021/ja412668f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rani Arielly
- School
of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Vadai
- School
of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dina Kardash
- School
of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gilad Noy
- School
of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoram Selzer
- School
of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
30
|
Inkpen MS, White AJP, Albrecht T, Long NJ. Avoiding problem reactions at the ferrocenyl-alkyne motif: a convenient synthesis of model, redox-active complexes for molecular electronics. Dalton Trans 2014; 43:15287-90. [DOI: 10.1039/c4dt02359e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A much improved route to 1,1′-bis(arylethynyl)ferrocenes comprising accessible thiolates on the aryl ring is reported. Unanticipated reactions between AcCl, TBAF–BBr3 and ferrocenyl-alkynes are also discussed, offering a rationale for previous synthetic difficulties.
Collapse
Affiliation(s)
| | | | - Tim Albrecht
- Department of Chemistry
- Imperial College London
- London SW7 2AZ, UK
| | - Nicholas J. Long
- Department of Chemistry
- Imperial College London
- London SW7 2AZ, UK
| |
Collapse
|
31
|
Baghernejad M, Manrique DZ, Li C, Pope T, Zhumaev U, Pobelov I, Moreno-García P, Kaliginedi V, Huang C, Hong W, Lambert C, Wandlowski T. Highly-effective gating of single-molecule junctions: an electrochemical approach. Chem Commun (Camb) 2014; 50:15975-8. [DOI: 10.1039/c4cc06519k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report an electrochemical gating approach with ∼100% efficiency to tune the conductance of single-molecule 4,4′-bipyridine junctions.
Collapse
Affiliation(s)
- Masoud Baghernejad
- Department of Chemistry and Biochemistry
- University of Bern
- Bern, Switzerland
| | | | - Chen Li
- Department of Chemistry and Biochemistry
- University of Bern
- Bern, Switzerland
| | - Thomas Pope
- Department of Physics
- Lancaster University
- Lancaster LA1 4YB, United Kingdom
| | - Ulmas Zhumaev
- Department of Chemistry and Biochemistry
- University of Bern
- Bern, Switzerland
| | - Ilya Pobelov
- Department of Chemistry and Biochemistry
- University of Bern
- Bern, Switzerland
| | | | | | - Cancan Huang
- Department of Chemistry and Biochemistry
- University of Bern
- Bern, Switzerland
| | - Wenjing Hong
- Department of Chemistry and Biochemistry
- University of Bern
- Bern, Switzerland
| | - Colin Lambert
- Department of Physics
- Lancaster University
- Lancaster LA1 4YB, United Kingdom
| | - Thomas Wandlowski
- Department of Chemistry and Biochemistry
- University of Bern
- Bern, Switzerland
| |
Collapse
|
32
|
Inkpen MS, Albrecht T, Long NJ. Branched Redox-Active Complexes for the Study of Novel Charge Transport Processes. Organometallics 2013. [DOI: 10.1021/om400595n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael S. Inkpen
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Tim Albrecht
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Nicholas J. Long
- Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
33
|
Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex. Nat Commun 2013; 4:2121. [DOI: 10.1038/ncomms3121] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 06/06/2013] [Indexed: 01/11/2023] Open
|
34
|
Salvatore P, Zeng D, Karlsen KK, Chi Q, Wengel J, Ulstrup J. Electrochemistry of single metalloprotein and DNA-based molecules at Au(111) electrode surfaces. Chemphyschem 2013; 14:2101-11. [PMID: 23788363 DOI: 10.1002/cphc.201300299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Indexed: 11/10/2022]
Abstract
We have briefly overviewed recent efforts in the electrochemistry of single transition metal complex, redox metalloprotein, and redox-marked oligonucleotide (ON) molecules. We have particularly studied self-assembled molecular monolayers (SAMs) of several 5'-C6-SH single- (ss) and double-strand (ds) ONs immobilized on Au(111) electrode surfaces via Au-S bond formation, using a combination of nucleic acid chemistry, electrochemistry and electrochemically controlled scanning tunnelling microscopy (in situ STM). Ds ONs stabilized by multiply charged cations and locked nucleic acid (LNA) monomers have been primary targets, with a view on stabilizing the ds-ONs and improving voltammetric signals of intercalating electrochemical redox probes. Voltammetric signals of the intercalator anthraquinone monosulfonate (AQMS) at ds-DNA/Au(111) surfaces diluted by mercaptohexanol are significantly sharpened and more robust in the presence than in the absence of [Co(NH3)6](3+). AQMS also displays robust Faradaic voltammetric signals specific to the ds form on binding to similar LNA/Au(111) surfaces, but this signal only evolves after successive voltammetric scanning into negative potential ranges. Triply charged spermidine (Spd) invokes itself a strong voltammetric signal, which is specific to the ds form and fully matched sequences. This signal is of non-Faradaic, capacitive origin but appears in the same potential range as the Faradaic AQMS signal. In situ STM shows that molecular scale structures of the size of Spd-stabilized ds-ONs are densely packed over the Au(111) surface in potential ranges around the capacitive peak potential.
Collapse
Affiliation(s)
- Princia Salvatore
- Department of Chemistry, Kemitorvet, Building 207, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
35
|
Halpin Y, Logtenberg H, Cleary L, Schenk S, Schulz M, Draksharapu A, Browne WR, Vos JG. An Electrochemical and Raman Spectroscopy Study of the Surface Behaviour of Mononuclear Ruthenium and Osmium Polypyridyl Complexes Based on Pyridyl‐ and Thiophene‐Based Linkers. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yvonne Halpin
- Solar Energy Conversion SRC, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, Fax: +353‐1‐7005503
| | - Hella Logtenberg
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, http://www.rug.nl/stratingh,
| | - Laura Cleary
- Solar Energy Conversion SRC, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, Fax: +353‐1‐7005503
| | - Stephan Schenk
- BASF SE, Material Physics and Analytics, Carl‐Bosch‐Str. 38, 67056 Ludwigshafen, Germany
| | - Martin Schulz
- Pharmaceutical Radiochemistry, Technical University, Munich, Walther‐Meißner‐Str. 3, 85748 Garching, Germany
| | - Apparao Draksharapu
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, http://www.rug.nl/stratingh,
| | - Wesley R. Browne
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, http://www.rug.nl/stratingh,
| | - Johannes G. Vos
- Solar Energy Conversion SRC, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, Fax: +353‐1‐7005503
| |
Collapse
|
36
|
Hansen AG, Salvatore P, Karlsen KK, Nichols RJ, Wengel J, Ulstrup J. Electrochemistry and in situ scanning tunnelling microscopy of pure and redox-marked DNA- and UNA-based oligonucleotides on Au(111)-electrode surfaces. Phys Chem Chem Phys 2013; 15:776-86. [PMID: 23073185 DOI: 10.1039/c2cp42351k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied adsorption and electrochemical electron transfer of several 13- and 15-base DNA and UNA (unlocked nucleic acids) oligonucleotides (ONs) linked to Au(111)-electrode surfaces via a 5'-C6-SH group using cyclic voltammetry (CV) and scanning tunnelling microscopy in aqueous buffer under electrochemical potential control (in situ STM). 2,2',6',2''-Terpyridine (terpy) onto which the transition metal ions Fe(2+/3+), Os(2+/3+) and Ru(2+/3+) could be coordinated after UNA monolayer formation was attached to UNA via a flexible linker. The metal centres offer CV probes and in situ STM contrast markers, and the flexible UNA/linker a potential binder for intercalation. CV of pure and mercaptohexanol diluted ON monolayers displayed reductive desorption signals but also, presumably capacitive, signals at higher potentials. Distinct voltammetric signals arise on metal binding. Those from Ru-binding are by far the strongest and in accord with multiple site Ru-attachment. In situ STM disclosed molecular scale features in varying coverage on addition of the metal ions. The Ru-derivatives showed a bias voltage dependent broad maximum in the tunnelling current-overpotential correlation which could be correlated with theoretical frames for condensed matter conductivity of redox molecules. Together the data suggest that Ru-units are bound to both terpy and the UNA-DNA backbone.
Collapse
Affiliation(s)
- Allan G Hansen
- Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
37
|
Electrochemistry and time dependent DFT study of a (vinylenedithio)-TTF derivative in different oxidation states. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Rudnev AV, Yoshida K, Wandlowski T. Electrochemical characterization of self-assembled ferrocene-terminated alkanethiol monolayers on low-index gold single crystal electrodes. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.09.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Schramm A, Stroh C, Dössel K, Lukas M, Fischer M, Schramm F, Fuhr O, Löhneysen HV, Mayor M. Tripodal MIIIComplexes on Au(111) Surfaces: Towards Molecular “Lunar Modules”. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200928] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Shiotsuka M, Kondo H, Inomata T, Sako K, Masuda H. Electrochemical and Photophysical Study in Solution and on Ruthenium(II) Polypyridyl Complexes Containing Thiophenylethynylphenanthrolines Self-assembled on Gold Surfaces. CHEM LETT 2012. [DOI: 10.1246/cl.2012.1417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Hiroshi Kondo
- Graduate School of Engineering, Nagoya Institute of Technology
| | | | - Katsuya Sako
- Graduate School of Engineering, Nagoya Institute of Technology
| | - Hideki Masuda
- Graduate School of Engineering, Nagoya Institute of Technology
| |
Collapse
|
41
|
Kay NJ, Higgins SJ, Jeppesen JO, Leary E, Lycoops J, Ulstrup J, Nichols RJ. Single-Molecule Electrochemical Gating in Ionic Liquids. J Am Chem Soc 2012; 134:16817-26. [DOI: 10.1021/ja307407e] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicola J. Kay
- Department of Chemistry, Donnan
and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Simon J. Higgins
- Department of Chemistry, Donnan
and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Jan O. Jeppesen
- Department of Physics, Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Edmund Leary
- Department of Chemistry, Donnan
and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Jess Lycoops
- Department of Physics, Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jens Ulstrup
- Department of Chemistry and NanoDTU, Technical University of Denmark, DK2800 Kgs. Lyngby,
Denmark
| | - Richard J. Nichols
- Department of Chemistry, Donnan
and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, U.K
| |
Collapse
|
42
|
Artés JM, Díez-Pérez I, Gorostiza P. Transistor-like behavior of single metalloprotein junctions. NANO LETTERS 2012; 12:2679-2684. [PMID: 21973084 DOI: 10.1021/nl2028969] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Single protein junctions consisting of azurin bridged between a gold substrate and the probe of an electrochemical tunneling microscope (ECSTM) have been obtained by two independent methods that allowed statistical analysis over a large number of measured junctions. Conductance measurements yield (7.3 ± 1.5) × 10(-6)G(0) in agreement with reported estimates using other techniques. Redox gating of the protein with an on/off ratio of 20 was demonstrated and constitutes a proof-of-principle of a single redox protein field-effect transistor.
Collapse
Affiliation(s)
- Juan M Artés
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, Barcelona 08028 Spain
| | | | | |
Collapse
|
43
|
Abstract
The quantum-mechanical tunnelling effect allows charge transport across nanometre-scale gaps between conducting electrodes. Application of a voltage between these electrodes leads to a measurable tunnelling current, which is highly sensitive to the gap size, the voltage applied and the medium in the gap. Applied to liquid environments, this offers interesting prospects of using tunnelling currents as a sensitive tool to study fundamental interfacial processes, to probe chemical reactions at the single-molecule level and to analyse the composition of biopolymers such as DNA, RNA or proteins. This offers the possibility of a new class of sensor devices with unique capabilities.
Collapse
Affiliation(s)
- T Albrecht
- Imperial College London, Department of Chemistry, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
44
|
Sedghi G, Esdaile LJ, Anderson HL, Martin S, Bethell D, Higgins SJ, Nichols RJ. Comparison of the conductance of three types of porphyrin-based molecular wires: β,meso,β-fused tapes, meso-Butadiyne-linked and twisted meso-meso linked oligomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:653-7. [PMID: 22083901 DOI: 10.1002/adma.201103109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/15/2011] [Indexed: 05/04/2023]
Abstract
The length dependence of charge transport is evaluated in three families of porphyrin-based wires. Planar edge-fused tapes and alkyne-linked oligomers mediate efficient charge transport with exceptionally shallow distance dependence, whereas the conductances of the twisted singly linked chains decrease steeply with increasing oligomer length. The planar tapes are more conjugated than the alkyne-linked oligomers, but these two types of wires have similar conductance attenuation factors.
Collapse
Affiliation(s)
- Gita Sedghi
- Chemistry Department, University of Liverpool, Liverpool L69 7ZD, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Molecular electronic junction transport: some pathways and some ideas. Top Curr Chem (Cham) 2011. [PMID: 21915776 DOI: 10.1007/128_2011_227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
When a single molecule, or a collection of molecules, is placed between two electrodes and voltage is applied, one has a molecular transport junction. We discuss such junctions, their properties, their description, and some of their applications. The discussion is qualitative rather than quantitative, and focuses on mechanism, structure/function relations, regimes and mechanisms of transport, some molecular regularities, and some substantial challenges facing the field. Because there are many regimes and mechanisms in transport junctions, we will discuss time scales, geometries, and inelastic scattering methods for trying to determine the properties of molecules within these junctions. Finally, we discuss some device applications, some outstanding problems, and some future directions.
Collapse
|
46
|
Medvedev IG. A theory of molecular transistor based on the two-center electrochemical bridged tunneling contact. Chem Phys 2011. [DOI: 10.1016/j.chemphys.2011.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Zhou XS, Liu L, Fortgang P, Lefevre AS, Serra-Muns A, Raouafi N, Amatore C, Mao BW, Maisonhaute E, Schöllhorn B. Do Molecular Conductances Correlate with Electrochemical Rate Constants? Experimental Insights. J Am Chem Soc 2011; 133:7509-16. [DOI: 10.1021/ja201042h] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Shun Zhou
- Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
- Chemistry Department and State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- UMR CNRS 8640 Pasteur, Ecole Normale Supérieure, Université Pierre et Marie Curie − Paris 06, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Ling Liu
- Chemistry Department and State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Philippe Fortgang
- UMR CNRS 8640 Pasteur, Ecole Normale Supérieure, Université Pierre et Marie Curie − Paris 06, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Anne-Sophie Lefevre
- UMR CNRS 8640 Pasteur, Ecole Normale Supérieure, Université Pierre et Marie Curie − Paris 06, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Anna Serra-Muns
- UMR CNRS 8640 Pasteur, Ecole Normale Supérieure, Université Pierre et Marie Curie − Paris 06, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Noureddine Raouafi
- UMR CNRS 8640 Pasteur, Ecole Normale Supérieure, Université Pierre et Marie Curie − Paris 06, 24 rue Lhomond, 75231 Paris Cedex 05, France
- Laboratoire de Chimie Analytique et d’Electrochimie, Département de Chimie, Faculté des Sciences de Tunis, Université El-Manar, 2092 Tunis El-Manar, Tunisia
| | - Christian Amatore
- UMR CNRS 8640 Pasteur, Ecole Normale Supérieure, Université Pierre et Marie Curie − Paris 06, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Bing-Wei Mao
- Chemistry Department and State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Emmanuel Maisonhaute
- UMR CNRS 8640 Pasteur, Ecole Normale Supérieure, Université Pierre et Marie Curie − Paris 06, 24 rue Lhomond, 75231 Paris Cedex 05, France
- LISE-Laboratoire Interfaces et Systèmes Electrochimiques, UPR 15 du CNRS, Université Pierre et Marie Curie − Paris 06, Case Courrier no. 133, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Bernd Schöllhorn
- UMR CNRS 8640 Pasteur, Ecole Normale Supérieure, Université Pierre et Marie Curie − Paris 06, 24 rue Lhomond, 75231 Paris Cedex 05, France
- Laboratoire d’Electrochimie Moléculaire, Université Paris Diderot – Paris 07, CNRS UMR 7591, 15 rue Jean-Antoine de Baïf, Bat. Lavoisier, 75013 Paris, France
| |
Collapse
|
48
|
Song H, Reed MA, Lee T. Single molecule electronic devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:1583-1608. [PMID: 21290434 DOI: 10.1002/adma.201004291] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Indexed: 05/30/2023]
Abstract
Single molecule electronic devices in which individual molecules are utilized as active electronic components constitute a promising approach for the ultimate miniaturization and integration of electronic devices in nanotechnology through the bottom-up strategy. Thus, the ability to understand, control, and exploit charge transport at the level of single molecules has become a long-standing desire of scientists and engineers from different disciplines for various potential device applications. Indeed, a study on charge transport through single molecules attached to metallic electrodes is a very challenging task, but rapid advances have been made in recent years. This review article focuses on experimental aspects of electronic devices made with single molecules, with a primary focus on the characterization and manipulation of charge transport in this regime.
Collapse
Affiliation(s)
- Hyunwook Song
- Department of Materials Science and Engineering, Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | |
Collapse
|
49
|
Li ZL. Theoretical Study on Electronic Transport Properties of Oligothiophene Molecular Devices. CHINESE J CHEM PHYS 2011. [DOI: 10.1088/1674-0068/24/02/194-198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Zhang J, Riskin M, Tel-Vered R, Tian H, Willner I. Optically activated uptake and release of Cu2+ or Ag+ ions by or from a photoisomerizable monolayer-modified electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1380-1386. [PMID: 21128610 DOI: 10.1021/la1040807] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Di-(N-butanoic acid-1,8-naphthalimide)-piperazine dithienylethene was covalently linked to a cysteamine monolayer associated with a Au surface to yield a photoisomerizable monolayer composed of the open or closed dithienylcyclopentene isomers (3a or 3b), respectively. Electrochemical and XPS analyses reveal that the association of metal ions to the monolayer is controlled by its photoisomerization state. We find that Cu(2+) ions reveal a high affinity for the open (3a) monolayer state, K(a) = 4.6 × 10(5) M(-1), whereas the closed monolayer state (3b) exhibits a substantially lower binding affinity for Cu(2+), K(a) = 4.1 × 10(4) M(-1). Similarly, Ag(+) ions bind strongly to the 3a monolayer state but lack binding affinity for the 3b state. The reversible photoinduced binding and dissociation of the metal ions (Cu(2+) or Ag(+)) with respect to the photoisomerizable monolayer are demonstrated, and the systems may be used for the photochemically controlled uptake and release of polluting ions. Furthermore, we demonstrate that the photoinduced reversible binding and dissociation of the metal ions to and from the photoisomerizable electrode control the wettability properties of the surface.
Collapse
Affiliation(s)
- Junji Zhang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|