1
|
Liguori A, Lorenzetti L, Bianchi G, Morini F, Gualandi C, Zucchelli A, Bestetti M, Pollicino A, Martini C, Focarete ML. Ecofriendly fabrication of organic-inorganic fibers as a template for hollow titanium oxide structures via electrospinning and magnetron sputtering. NANOSCALE 2025. [PMID: 40208072 DOI: 10.1039/d4nr04710a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A sustainable approach is proposed to prepare hollow titanium oxide nanostructures. Pullulan electrospinning is coupled with titanium magnetron sputtering to create organic-inorganic fibers. Through water solubilisation of the pullulan core, hollow titanium oxide nanostructures were obtained. The fibers were embedded in a thermoplastic matrix to form composites in which channels can be created.
Collapse
Affiliation(s)
- Anna Liguori
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, via Gobetti 85, Bologna, 40129, Italy.
| | - Luca Lorenzetti
- Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, Bologna, 40136, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna, 40136, Italy
| | - Giulia Bianchi
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, via Gobetti 85, Bologna, 40129, Italy.
| | - Federico Morini
- Politecnico di Milano, Department of Chemistry, Materials and Engineering "Giulio Natta", Milano, 20133, Italy
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, via Gobetti 85, Bologna, 40129, Italy.
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna, 40136, Italy
| | - Andrea Zucchelli
- Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, Bologna, 40136, Italy
| | - Massimiliano Bestetti
- Politecnico di Milano, Department of Chemistry, Materials and Engineering "Giulio Natta", Milano, 20133, Italy
- Tomsk Polytechnic University, The Winberg Research Center, 30 Lenin Ave., Tomsk, 634050, Russia
| | - Antonino Pollicino
- Department of Civil Engineering and Architecture, University of Catania, via S. Sofia 64, Catania, 95125, Italy
| | - Carla Martini
- Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, Bologna, 40136, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, Bologna, 40136, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, via Gobetti 85, Bologna, 40129, Italy.
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, Ozzano Emilia, 40064, Italy
| |
Collapse
|
2
|
Iqbal MZ, Riaz M, Biedermann T, Klar AS. Breathing new life into tissue engineering: exploring cutting-edge vascularization strategies for skin substitutes. Angiogenesis 2024; 27:587-621. [PMID: 38842751 PMCID: PMC11564345 DOI: 10.1007/s10456-024-09928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Tissue-engineered skin substitutes (TESS) emerged as a new therapeutic option to improve skin transplantation. However, establishing an adequate and rapid vascularization in TESS is a critical factor for their clinical application and successful engraftment in patients. Therefore, several methods have been applied to improve the vascularization of skin substitutes including (i) modifying the structural and physicochemical properties of dermal scaffolds; (ii) activating biological scaffolds with growth factor-releasing systems or gene vectors; and (iii) developing prevascularized skin substitutes by loading scaffolds with capillary-forming cells. This review provides a detailed overview of the most recent and important developments in the vascularization strategies for skin substitutes. On the one hand, we present cell-based approaches using stem cells, microvascular fragments, adipose tissue derived stromal vascular fraction, endothelial cells derived from blood and skin as well as other pro-angiogenic stimulation methods. On the other hand, we discuss how distinct 3D bioprinting techniques and microfluidics, miRNA manipulation, cell sheet engineering and photosynthetic scaffolds like GelMA, can enhance skin vascularization for clinical applications. Finally, we summarize and discuss the challenges and prospects of the currently available vascularization techniques that may serve as a steppingstone to a mainstream application of skin tissue engineering.
Collapse
Affiliation(s)
- M Zohaib Iqbal
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mahrukh Riaz
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Koga T, Nakashima S, Tsumori F. Replicating biological 3D root and hyphal networks in transparent glass chips. Sci Rep 2024; 14:21128. [PMID: 39256469 PMCID: PMC11387748 DOI: 10.1038/s41598-024-72333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024] Open
Abstract
Replicating the complex 3D microvascular architectures found in biological systems is a critical challenge in tissue engineering and other fields requiring efficient mass transport. Conventional microfabrication techniques often face limitations in creating extensive hierarchical networks, especially within bulk materials. Here, we report a versatile bioinspired approach to generate optimized 3D microvascular networks within transparent glass matrix by transcribing the natural growth patterns of plants and fungi. Plant seeds or fungal spores are first cultivated on nanoparticle-based culture media. Subsequent heat treatment removes the biological species while sintering the surrounding compound into a solidified chip with replica root/hyphal architectures as open microchannels. A diverse range of architectures, including the hierarchical branching of plant roots and the intricate networks formed by fungal hyphae, can be faithfully replicated. The resultant glass microvascular networks exhibit high chemical and thermal stability, enabling applications under harsh conditions. Fluid flow experiments validate the functionalities of the fabricated channels. By co-cultivating plants and fungi, hierarchical multi-scale architectures mimicking natural vascular systems are achieved. This bioinspired manufacturing technique leverages autonomous biological growth for architectural optimization, offering a complementary approach to existing microfabrication methods. The transparent nature of the glass chips allows for direct optical inspection, potentially facilitating integration with imaging components. This versatile platform holds promise for various engineering applications, such as microreactors, heat exchangers, and advanced filtration systems.
Collapse
Affiliation(s)
- Tetsuro Koga
- Department of Aeronautics and Astronautics, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shota Nakashima
- Department of Aeronautics and Astronautics, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fujio Tsumori
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Kaniuk E, Lechowska-Liszka A, Gajek M, Nikodem A, Ścisłowska-Czarnecka A, Rapacz-Kmita A, Stodolak-Zych E. Correlation between porosity and physicochemical and biological properties of electrospinning PLA/PVA membranes for skin regeneration. BIOMATERIALS ADVANCES 2023; 152:213506. [PMID: 37364396 DOI: 10.1016/j.bioadv.2023.213506] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Electrospinning is an increasingly popular technique for obtaining scaffolds for skin regeneration. However, electrospun scaffolds may also have some disadvantages, as the densely packed fibers in the scaffold structure can limit the penetration of skin cells into the inner part of the material. Such a dense arrangement of fibers can cause the cells to treat the 3D material as 2D one, and thus cause them to accumulate only on the upper surface. In this study, bi-polymer scaffolds made of polylactide (PLA) and polyvinyl alcohol (PVA) electrospun in a sequential or a concurrent system were investigated in a different PLA:PVA ratio (2:1 and 1:1). The properties of six types of model materials were investigated and compared i.e.; the initial materials electrospun by the sequential (PLA/PVA, 2PLA/PVA) and the concurrent system (PLA||PVA) and the same materials with removed PVA fibers (PLA/rPVA, 2PLA/rPVA, PLA||rPVA). The fiber models were intended to increase the porosity and coherent structure parameters of the scaffolds. The applied treatment involving the removal of PVA nanofibers increased the size of interfibrous pores formed between the PLA fibers. Ultimately, the porosity of the PLA/PVA scaffolds increased from 78 % to 99 %, and the time of water absorption decreased from 516 to 2 s. The change in wettability was induced by a synergistic effect of decrease in roughness after washing out and the presence of residual PVA fibers. The chemical analysis carried out confirmed the presence of PVA residues on the PLA fibers (FTIR-ATR study). In vitro studies were performed on human keratinocytes (HaKaT) and macrophages (RAW264.7), for which penetration into the inner part of the PLAIIPVA scaffold was observed. The new proposed approach, which allows the removal of PVA fibers from the bicomponent material, allows to obtain a scaffold with increased porosity, and thus better permeability for cells and nutrients.
Collapse
Affiliation(s)
- Ewa Kaniuk
- AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, Poland
| | | | - Marcin Gajek
- AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, Poland
| | - Anna Nikodem
- Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego st., Wrocław, Poland
| | | | - Alicja Rapacz-Kmita
- AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, Poland
| | - Ewa Stodolak-Zych
- AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, Poland.
| |
Collapse
|
5
|
Molco M, Keilin A, Lunken A, Ziv Sharabani S, Chkhaidze M, Edelstein-Pardo N, Reuveni T, Sitt A. Controlling Nano-to-Microscale Multilevel Architecture in Polymeric Microfibers through Polymerization-Induced Spontaneous Phase Separation. Polymers (Basel) 2023; 15:polym15112537. [PMID: 37299336 DOI: 10.3390/polym15112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Hierarchically structured polymeric fibers, composed of structural nanoscale motifs that assemble into a microscale fiber are frequently found in natural fibers including cellulose and silk. The creation of synthetic fibers with nano-to-microscale hierarchical structures represents a promising avenue for the development of novel fabrics with distinctive physical, chemical, and mechanical characteristics. In this work, we introduce a novel approach for creating polyamine-based core-sheath microfibers with controlled hierarchical architectures. This approach involves a polymerization-induced spontaneous phase separation and subsequent chemical fixation. Through the use of various polyamines, the phase separation process can be manipulated to produce fibers with diverse porous core architectures, ranging from densely packed nanospheres to segmented "bamboo-stem" morphology. Moreover, the nitrogen-rich surface of the core enables both the chemisorption of heavy metals and the physisorption of proteins and enzymes. Our method offers a new set of tools for the production of polymeric fibers with novel hierarchical morphologies, which has a high potential for a wide range of applications such as filtering, separation, and catalysis.
Collapse
Affiliation(s)
- Maya Molco
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Keilin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adira Lunken
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shiran Ziv Sharabani
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mark Chkhaidze
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nicole Edelstein-Pardo
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tomer Reuveni
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Sitt
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Chen J, Zhang D, Wu LP, Zhao M. Current Strategies for Engineered Vascular Grafts and Vascularized Tissue Engineering. Polymers (Basel) 2023; 15:polym15092015. [PMID: 37177162 PMCID: PMC10181238 DOI: 10.3390/polym15092015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Blood vessels not only transport oxygen and nutrients to each organ, but also play an important role in the regulation of tissue regeneration. Impaired or occluded vessels can result in ischemia, tissue necrosis, or even life-threatening events. Bioengineered vascular grafts have become a promising alternative treatment for damaged or occlusive vessels. Large-scale tubular grafts, which can match arteries, arterioles, and venules, as well as meso- and microscale vasculature to alleviate ischemia or prevascularized engineered tissues, have been developed. In this review, materials and techniques for engineering tubular scaffolds and vasculature at all levels are discussed. Examples of vascularized tissue engineering in bone, peripheral nerves, and the heart are also provided. Finally, the current challenges are discussed and the perspectives on future developments in biofunctional engineered vessels are delineated.
Collapse
Affiliation(s)
- Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Di Zhang
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Laboratory of Computational Biomedicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
7
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
8
|
Shang Y, Zeng J, Xie Z, Sasaki N, Matsusaki M. Effect of Extracellular Matrix Density and Cell Number on Blood Capillary Formation in Three-dimensional Tissue. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Zhengtian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoko Sasaki
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Brilloni A, Poli F, Spina GE, Samorì C, Guidi E, Gualandi C, Maisuradze M, Giorgetti M, Soavi F. Easy recovery of Li-ion cathode powders by the use of water-processable binders. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
El Choufi N, Mustapha S, Tehrani B A, Grady BP. An Overview of Self-Healable Polymers and Recent Advances in the Field. Macromol Rapid Commun 2022; 43:e2200164. [PMID: 35478422 DOI: 10.1002/marc.202200164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Indexed: 12/23/2022]
Abstract
The search for materials with better performance, longer service life, lower environmental impact, and lower overall cost is at the forefront of polymer science and material engineering. This has led to the development of self-healing polymers with a range of healing mechanisms including capsular-based, vascular, and intrinsic self-healing polymers. The development of self-healable systems has been inspired by the healing of biological systems such as skin wound healing and broken bone reconstruction. The goal of using self-healing polymers in various applications is to extend the service life of polymers without the need for replacement or human intervention especially in restricted access areas such as underwater/underground piping where inspection, intervention, and maintenance are very difficult. Through an industrial and scholarly lens, this paper provides (a) an overview of self-healing polymers, (b) classification of different self-healing polymers and polymer-based composites, (c) mechanical, thermal, and electrical analysis characterization, (d) applications in coating, composites, and electronics, (e) modeling and simulation, and (f) recent development in the past 20 years . This review highlights the importance of healable polymers for an economically and environmentally sustainable future, the most recent advances in the field, and current limitations in fabrication, manufacturing, and performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nadim El Choufi
- Chemical Engineering Department, American University of Beirut, Lebanon
| | - Samir Mustapha
- Mechanical Engineering Department, American University of Beirut, Lebanon
| | - Ali Tehrani B
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Brian P Grady
- School of Chemical, Biological and, Materials Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
11
|
Chaudhary K, Kandasubramanian B. Self-Healing Nanofibers for Engineering Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kritika Chaudhary
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, 411025, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, 411025, India
| |
Collapse
|
12
|
Liguori A, Pandini S, Rinoldi C, Zaccheroni N, Pierini F, Focarete ML, Gualandi C. Thermo-active Smart Electrospun Nanofibers. Macromol Rapid Commun 2021; 43:e2100694. [PMID: 34962002 DOI: 10.1002/marc.202100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Indexed: 11/10/2022]
Abstract
The recent burst of research on smart materials is a clear evidence of the growing interest of the scientific community, industry, and society in the field. The exploitation of the great potential of stimuli-responsive materials for sensing, actuation, logic, and control applications is favored and supported by new manufacturing technologies, such as electrospinning, that allows to endow smart materials with micro- and nano-structuration, thus opening up additional and unprecedented prospects. In this wide and lively scenario, this article systematically reviews the current advances in the development of thermo-active electrospun fibers and textiles, sorting them, according to their response to the thermal stimulus. Hence, several platforms including thermo-responsive systems, shape memory polymers, thermo-optically responsive systems, phase change materials, thermoelectric materials, and pyroelectric materials, have been described and critically discussed. The difference in active species and outputs of the aforementioned categories has been highlighted, evidencing the transversal nature of temperature stimulus. Moreover, the potential of novel thermo-active materials has been pointed out, revealing how their development could take to utmost interesting achievements. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Liguori
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Stefano Pandini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Chiara Rinoldi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Filippo Pierini
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and INSTM UdR of Bologna, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| |
Collapse
|
13
|
Malekkhouyan R, Neisiany RE, Khorasani SN, Das O, Berto F, Ramakrishna S. The influence of size and healing content on the performance of extrinsic self‐healing coatings. J Appl Polym Sci 2021. [DOI: 10.1002/app.49964] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Roya Malekkhouyan
- Department of Chemical Engineering Isfahan University of Technology Isfahan Iran
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering Hakim Sabzevari University Sabzevar Iran
| | | | - Oisik Das
- Department of Engineering Sciences and Mathematics Luleå University of Technology Luleå Sweden
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering Norwegian University of Science and Technology NTNU Trondheim Norway
| | - Seeram Ramakrishna
- Department of Mechanical Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
14
|
Li S, Wang K, Jiang X, Hu Q, Zhang C, Wang B. Rapid Fabrication of Ready-to-Use Gelatin Scaffolds with Prevascular Networks Using Alginate Hollow Fibers as Sacrificial Templates. ACS Biomater Sci Eng 2020; 6:2297-2311. [PMID: 33455307 DOI: 10.1021/acsbiomaterials.9b01834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we developed a facile manufacturing method for interconnected prevascular networks using calcium chloride (CaCl2) cross-linked alginate hollow fibers as sacrificial templates. The resulting network can be used to deliver oxygen and nutrients and remove waste for embedded cells in large-volume gelatin scaffolds during in vitro culturing. The sacrificial templates were printed by customized coaxial nozzles and embedded in scaffolds made of a mixture of gelatin, microbial transglutaminase (mTG), and sodium citrate. During the cross-linking of gelatin and mTG, the sacrificial templates started to dissolve from the scaffold-template interface due to the presence of the sodium citrate in the gelatin. The embedded sacrificial templates were completely dissolved without any postprocessing, and the designed prevascular networks successfully retained their geometries and dimensions. No residue of the template was observed at the scaffold-template interface after dissolution, which promoted cell adhesion. This manufacturing method has a high degree of freedom in templates' geometry, which was demonstrated by fabricating prevascular networks with various designs, including grid, branched, and dendritic networks. The effects of hollow fiber size and sodium citrate concentration on the dissolution time were analyzed. Human umbilical vein endothelial cells were injected into the aforementioned networks and formed a confluent endothelial cell monolayer with high viability during the culture process. The results suggest great promise to rapidly build large-scale ready-to-use gelatin scaffolds with prevascular networks for the applications in tissue engineering.
Collapse
Affiliation(s)
- Shuai Li
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xuzhou Jiang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China
| | - Chuck Zhang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ben Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Wang Z, Mithieux SM, Weiss AS. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv Healthc Mater 2019; 8:e1900742. [PMID: 31402593 DOI: 10.1002/adhm.201900742] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Impaired or damaged blood vessels can occur at all levels in the hierarchy of vascular systems from large vasculatures such as arteries and veins to meso- and microvasculatures such as arterioles, venules, and capillary networks. Vascular tissue engineering has become a promising approach for fabricating small-diameter vascular grafts for occlusive arteries. Vascularized tissue engineering aims to fabricate meso- and microvasculatures for the prevascularization of engineered tissues and organs. The ideal small-diameter vascular graft is biocompatible, bridgeable, and mechanically robust to maintain patency while promoting tissue remodeling. The desirable fabricated meso- and microvasculatures should rapidly integrate with the host blood vessels and allow nutrient and waste exchange throughout the construct after implantation. A number of techniques used, including engineering-based and cell-based approaches, to fabricate these synthetic vasculatures are herein explored, as well as the techniques developed to fabricate hierarchical structures that comprise multiple levels of vasculature.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Suzanne M. Mithieux
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
- Bosch Institute University of Sydney NSW 2006 Australia
- Sydney Nano Institute University of Sydney NSW 2006 Australia
| |
Collapse
|
16
|
Ameer JM, Pr AK, Kasoju N. Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. J Funct Biomater 2019; 10:E30. [PMID: 31324062 PMCID: PMC6787600 DOI: 10.3390/jfb10030030] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering aims to develop artificial human tissues by culturing cells on a scaffold in the presence of biochemical cues. Properties of scaffold such as architecture and composition highly influence the overall cell response. Electrospinning has emerged as one of the most affordable, versatile, and successful approaches to develop nonwoven nano/microscale fibrous scaffolds whose structural features resemble that of the native extracellular matrix. However, dense packing of the fibers leads to small-sized pores which obstruct cell infiltration and therefore is a major limitation for their use in tissue engineering applications. To this end, a variety of approaches have been investigated to enhance the pore properties of the electrospun scaffolds. In this review, we collect state-of-the-art modification methods and summarize them into six classes as follows: approaches focused on optimization of packing density by (a) conventional setup, (b) sequential or co-electrospinning setups, (c) involving sacrificial elements, (d) using special collectors, (e) post-production processing, and (f) other specialized methods. Overall, this review covers historical as well as latest methodologies in the field and therefore acts as a quick reference for those interested in electrospinning matrices for tissue engineering and beyond.
Collapse
Affiliation(s)
- Jimna Mohamed Ameer
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Anil Kumar Pr
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | - Naresh Kasoju
- Division of Tissue Culture, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India.
| |
Collapse
|
17
|
Li S, Wang K, Hu Q, Zhang C, Wang B. Direct-write and sacrifice-based techniques for vasculatures. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109936. [PMID: 31500055 DOI: 10.1016/j.msec.2019.109936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/22/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
Abstract
Fabricating biomimetic vasculatures is considered one of the greatest challenges in tissue regeneration due to their complex structures across various length scales. Many strategies have been investigated on how to fabricate tissue-engineering vasculatures (TEVs), including vascular-like and vascularized structures that can replace their native counterparts. The advancement of additive manufacturing (AM) technologies has enabled a wide range of fabrication techniques that can directly-write TEVs with complex and delicate structures. Meanwhile, sacrifice-based techniques, which rely on the removal of encapsulated sacrificial templates to form desired cavity-like structures, have also been widely studied. This review will specifically focus on the two most promising methods in these recently developed technologies, which are the direct-write method and the sacrifice-based method. The performance, advantages, and shortcomings of each technique are analyzed and compared. In the discussion, we list current challenges in this field and present our vision of next-generation TEVs technologies. Perspectives on future research in this field are given at the end.
Collapse
Affiliation(s)
- Shuai Li
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China.
| | - Chuck Zhang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ben Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA; H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
18
|
Pierini F, Nakielski P, Urbanek O, Pawłowska S, Lanzi M, De Sio L, Kowalewski TA. Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies. Biomacromolecules 2018; 19:4147-4167. [DOI: 10.1021/acs.biomac.8b01138] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | - Massimiliano Lanzi
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum-University of Bologna, 40136 Bologna, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| | | |
Collapse
|
19
|
Rifaie-Graham O, Apebende EA, Bast LK, Bruns N. Self-Reporting Fiber-Reinforced Composites That Mimic the Ability of Biological Materials to Sense and Report Damage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705483. [PMID: 29573286 DOI: 10.1002/adma.201705483] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Sensing of damage, deformation, and mechanical forces is of vital importance in many applications of fiber-reinforced polymer composites, as it allows the structural health and integrity of composite components to be monitored and microdamage to be detected before it leads to catastrophic material failure. Bioinspired and biomimetic approaches to self-sensing and self-reporting materials are reviewed. Examples include bruising coatings and bleeding composites based on dye-filled microcapsules, hollow fibers, and vascular networks. Force-induced changes in color, fluorescence, or luminescence are achieved by mechanochromic epoxy resins, or by mechanophores and force-responsive proteins located at the interface of glass/carbon fibers and polymers. Composites can also feel strain, stress, and damage through embedded optical and electrical sensors, such as fiber Bragg grating sensors, or by resistance measurements of dispersed carbon fibers and carbon nanotubes. Bioinspired composites with the ability to show autonomously if and where they have been damaged lead to a multitude of opportunities for aerospace, automotive, civil engineering, and wind-turbine applications. They range from safety features for the detection of barely visible impact damage, to the real-time monitoring of deformation of load-bearing components.
Collapse
Affiliation(s)
- Omar Rifaie-Graham
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Edward A Apebende
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Livia K Bast
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
20
|
Li S, Zhang HG, Li DD, Wu JP, Sun CY, Hu QX. Characterization of Engineered Scaffolds with Spatial Prevascularized Networks for Bulk Tissue Regeneration. ACS Biomater Sci Eng 2017; 3:2493-2501. [DOI: 10.1021/acsbiomaterials.7b00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shuai Li
- Rapid
Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
| | - Hai-Guang Zhang
- Rapid
Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
- Shanghai
Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
- National
Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China
| | - Dong-Dong Li
- Rapid
Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
| | - Jian-Ping Wu
- Rapid
Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
| | - Cheng-Yan Sun
- Rapid
Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
| | - Qing-Xi Hu
- Rapid
Manufacturing Engineering Center, Shanghai University, Shanghai 200444, China
- Shanghai
Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200072, China
- National
Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai 200444, China
| |
Collapse
|
21
|
Kumar P, Ul Islam T, Majumder M, Gandhi PS. A scalable, lithography-less fabrication process for generating a bio-inspired, multi-scale channel network in polymers. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa763b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Xia T, Huang B, Ni S, Gao L, Wang J, Wang J, Chen A, Zhu S, Wang B, Li G, Zhu S, Li X. The combination of db-cAMP and ChABC with poly(propylene carbonate) microfibers promote axonal regenerative sprouting and functional recovery after spinal cord hemisection injury. Biomed Pharmacother 2016; 86:354-362. [PMID: 28011383 DOI: 10.1016/j.biopha.2016.12.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/27/2022] Open
Abstract
This study describes the use of poly(propylene carbonate) (PPC) electrospun microfibres impregnated with a combination of dibutyryl cyclic adenosine monophosphate (db-cAMP) and chondroitinase ABC (ChABC) in the treatment of right-side hemisected spinal cord injury (SCI). Release of db-cAMP and/or ChABC from the microfibres was assessed in vitro using high-performance liquid chromatography (HPLC). Drug-impregnated microfibres were implanted into the hemisected thoracic spinal cord of rats, and treatment was evaluated using functional recovery examinations and immunohistochemistry. Our results demonstrated that the microfibres containing db-cAMP and/or ChABC displayed a stable and prolonged release of each agent. Sustained delivery of db-cAMP and/or ChABC was found to promote axonal regenerative sprouting, functional recovery, and reduced glial scar formation when compared to untreated control animals. The combination of both db-cAMP and ChABC was determined to be more effective than using either drug alone in the treatment of SCI. These findings demonstrate the feasibility of using PPC electrospun microfibres for multi-drug combination therapy in SCI.
Collapse
Affiliation(s)
- Tongliang Xia
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Lei Gao
- Jiyang County People's Hospital of Shandong Provence, 9# Xinyuan Street, Jinyang County, Jinan, 251400, PR China
| | - Jiangang Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China; Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Shaowei Zhu
- Department of Neurology, Qilu Hospital of Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Benlin Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Shugan Zhu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University, 107# Wenhua Xi Road, Jinan, 250012, PR China.
| |
Collapse
|
23
|
Doan TQ, Leslie LS, Kim SY, Bhargava R, White SR, Sottos NR. Characterization of core-shell microstructure and self-healing performance of electrospun fiber coatings. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.10.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Cittadella Vigodarzere G, Mantero S. Skeletal muscle tissue engineering: strategies for volumetric constructs. Front Physiol 2014; 5:362. [PMID: 25295011 PMCID: PMC4170101 DOI: 10.3389/fphys.2014.00362] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/03/2014] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle tissue is characterized by high metabolic requirements, defined structure and high regenerative potential. As such, it constitutes an appealing platform for tissue engineering to address volumetric defects, as proven by recent works in this field. Several issues common to all engineered constructs constrain the variety of tissues that can be realized in vitro, principal among them the lack of a vascular system and the absence of reliable cell sources; as it is, the only successful tissue engineering constructs are not characterized by active function, present limited cellular survival at implantation and possess low metabolic requirements. Recently, functionally competent constructs have been engineered, with vascular structures supporting their metabolic requirements. In addition to the use of biochemical cues, physical means, mechanical stimulation and the application of electric tension have proven effective in stimulating the differentiation of cells and the maturation of the constructs; while the use of co-cultures provided fine control of cellular developments through paracrine activity. This review will provide a brief analysis of some of the most promising improvements in the field, with particular attention to the techniques that could prove easily transferable to other branches of tissue engineering.
Collapse
Affiliation(s)
| | - Sara Mantero
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano Milano, Italy
| |
Collapse
|
25
|
Guo T, Zhou Z, Guo H, Xiao G, Tang X, Peng M. Toughening of epoxy resin with functionalized core-sheath structured PAN/SBS electrospun fibers. J Appl Polym Sci 2014. [DOI: 10.1002/app.41119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tanghua Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhi Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Honglei Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Guohua Xiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xinglei Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Mao Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|