1
|
Machida Y, Katsu A, De Feyter S, Tahara K. Regulating Rotational Dynamics of Co-Adsorbed Guest Molecules via Halogen Bonds in Functionalized Pores of Self-Assembled Molecular Networks at the Liquid-Solid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410652. [PMID: 39937130 PMCID: PMC11899523 DOI: 10.1002/smll.202410652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/17/2025] [Indexed: 02/13/2025]
Abstract
Understanding and controlling molecular rotation on surfaces is crucial for the development of molecular-scale artificial motors that operate at interfaces. Herein, it is reported the successful co-adsorption of guest molecules within the functionalized 2D pores of self-assembled molecular networks (SAMNs) through directional halogen bonding, as confirmed by scanning tunneling microscopy. Specifically, the porous SAMN formed by dehydrobenzo[12]annulene derivative DBA-Py with a pyridyl group at the termini of its three alkoxy chains, hosts an iodinated trigonal guest molecule, tris(4-iodophenyl)benzene (TIB), through a halogen bond between the nitrogen and iodine atoms. Within the pores, the TIB molecule exhibits rotational motion, preferentially residing at two locations. In contrast, within the pores formed by a mixture of DBA-Py and DBA-Ph, where DBA-Ph features three phenyl groups instead of pyridyl groups, the guest molecule preferentially resides in a single location. This behavior is attributed to the reduced number of energy minima within the pores owing to the decreased number of pyridyl units. Statistical analysis of the guest orientation suggests that the on-surface arrangement of DBA-Py and DBA-Ph is influenced by the guest molecule. This modular approach using functionalized pores in SAMNs provides an effective strategy for controlling molecular rotational behavior.
Collapse
Affiliation(s)
- Yoshihito Machida
- Department of Applied ChemistrySchool of Science and TechnologyMeiji University1‐1‐1 Higashimita, Tama‐kuKawasakiKanagawa214–8571Japan
| | - Akitoshi Katsu
- Department of Applied ChemistrySchool of Science and TechnologyMeiji University1‐1‐1 Higashimita, Tama‐kuKawasakiKanagawa214–8571Japan
| | - Steven De Feyter
- Division of Molecular Imaging and PhotonicsDepartment of ChemistryKU Leuven, Celestijnenlaan 200 FLeuven3001Belgium
- KU Leuven Institute for Micro- and Nanoscale IntegrationKU LeuvenLeuven3001Belgium
| | - Kazukuni Tahara
- Department of Applied ChemistrySchool of Science and TechnologyMeiji University1‐1‐1 Higashimita, Tama‐kuKawasakiKanagawa214–8571Japan
| |
Collapse
|
2
|
Ali MA, Chen F, Hu Y, Lee SL. Structural Diversity of 2D Molecular Self-Assemblies Arising from Carboxyl Groups Attached to a Molecule: An STM Study at the Liquid-Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39264220 DOI: 10.1021/acs.langmuir.4c02661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Understanding the molecular self-assembly behavior, especially at the microscopic level, sheds light on the rational design of artificial supramolecular systems at surfaces. In this work, scanning tunneling microscopy (STM) and force field simulations were utilized to explore two molecular systems where two and four carboxyl groups are symmetrically modified onto a skeleton. The two target molecules are 4,4'-(ethyne-1,2-diyl) dibenzoic acid (EBA) and 1,1'-ethynebenzene-3,3',5,5,'-tetracarboxylic acid (TCA). The former molecular assembly led to robust close packing, whereas the latter resulted in low-density arrangements that present significant adaption, namely, undergoing phase transformations upon external stimulations, e.g., sensitive to STM-polarity switching and guest molecule incorporations.
Collapse
Affiliation(s)
- Muhammad Atif Ali
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China 518060
- Institute of Microscale Optoelectronic, College of Optical Engineering, Shenzhen University, Shenzhen, Guangdong, China 518060
| | - Fang Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China 518060
| | - Yi Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China 518060
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China 518060
- Institute of Microscale Optoelectronic, College of Optical Engineering, Shenzhen University, Shenzhen, Guangdong, China 518060
| |
Collapse
|
3
|
Sato Y, De Feyter S, Tahara K. Formation of Supramolecular Heterostacks at the Liquid-Solid Interface: Impact of Symmetry Mismatching on Structural Growth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16825-16832. [PMID: 37967133 DOI: 10.1021/acs.langmuir.3c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The construction of intricate three-dimensional (3D) nanoarchitectures on surfaces through molecular self-assembly attracts attention not only from a crystal engineering viewpoint but also because of its potential in a range of applications, given the current interest in van der Waals heterostructures. We herein report the formation of porous structures on alkane buffer layers on graphite. A dehydrobenzo[12]annulene (DBA) derivative having six decyloxy chains forms hexagonal structures on n-pentacontane and n-hexacontane buffer layers through van der Waals interactions at the 1-octanoic acid/graphite interface. The structural features are very similar to those on the graphite surface, except for the slight structural distortion, which is attributed to the p2 symmetry of the buffer layer underneath. Moreover, based on the observation of small clusters of the DBA molecules, we discussed the nucleation and structural growth of the DBA network on a buffer layer. Finally, a hierarchical multicomponent structure was formed through the coadsorption of a heteromolecular cluster formed by a hydrogen-bonded isophthalic acid cyclic hexamer hosting a coronene molecule on the buffer layer. This study on supramolecular heterostacks provides insights into the construction of intricate 3D nanoarchitectures using self-assembly at interfaces.
Collapse
Affiliation(s)
- Yuta Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
4
|
Maeda M, Sato K, De Feyter S, Tahara K. Homochiral hierarchical molecular assemblies through dynamic combination of conformational states of a single chiral building block at the liquid/solid interface. NANOSCALE 2023. [PMID: 37997169 DOI: 10.1039/d3nr04042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We herein report the construction of homochiral, hierarchical self-assembled molecular networks (SAMNs) at the liquid/graphite interface using a single molecular building block, a chiral dehydrobenzo[12]annulene (cDBA) derivative with three chiral alkoxy and three hydroxy groups positioned in an alternating manner on the DBA core. The cDBA molecules form homochiral hierarchical SAMNs consisting of triangular clusters of several sizes, the size of which can be tuned by solvent polarity and solute concentration, reaching periodicities as large as 9.3 nm. We demonstrate the successful transmission of chirality information from the single molecular level to the hierarchical SAMN level, in a process that is mediated by dynamic self-sorting.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Kazuya Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
5
|
Zhang S, Cheng L, Chen C, Li J, Li X, Zhang M, Cheng F, Xiao X, Deng K, Zeng Q. Controlled Construction of an Exquisite Three-Component Co-assembly Supramolecular Structure at the Liquid-Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2153-2160. [PMID: 33527825 DOI: 10.1021/acs.langmuir.0c03387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A three-component supramolecular co-assembly structure formed at the liquid-solid interface by employing a shape-persistent π-conjugated macrocycle (16mer) and two guest molecules (COR and C60) is demonstrated. Scanning tunneling microscopy (STM) observations revealed that 16mer can serve as a versatile host molecule that can co-assemble with both COR and C60 guest molecules to form stable two-component structures, where the COR guest molecule filled in the gap between the side chains of adjacent 16mer molecules, and the C60 guest molecule entered the inner cavity of 16mer. It was found that the adding sequence of COR and C60 guest molecules is crucial to the resulting co-adsorption structure in the three-component system. To obtain the intriguing 16mer-COR-C60 three-component co-assembly structure, the 16mer and COR two-component co-assembly structure should first be constructed on a HOPG surface, followed by addition of C60. Based on the analysis of the STM results and the density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.
Collapse
Affiliation(s)
- Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Linxiu Cheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Chen Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Jianqiao Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Xiaokang Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Xunwen Xiao
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China
- Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Kikkawa Y, Nagasaki M, Koyama E, Tsuzuki S, Fouquet T, Hiratani K. Dynamic host-guest behavior in halogen-bonded two-dimensional molecular networks investigated by scanning tunneling microscopy at the solid/liquid interface. NANOSCALE ADVANCES 2020; 2:4895-4901. [PMID: 36132910 PMCID: PMC9419264 DOI: 10.1039/d0na00616e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/20/2020] [Indexed: 06/14/2023]
Abstract
The fabrication of supramolecularly engineered two-dimensional (2D) networks using simple molecular building blocks is an effective means for studying host-guest chemistry at surfaces toward the potential application of such systems in nanoelectronics and molecular devices. In this study, halogen-bonded molecular networks were constructed by the combination of linear halogen-bond donor and acceptor ligands, and their 2D structures at the highly oriented pyrolytic graphite/1-phenyloctane interface were studied by scanning tunneling microscopy. The bi-component blend of the molecular building blocks possessing tetradecyloxy chains formed a lozenge structure via halogen bonding. Upon the introduction of an appropriate guest molecule (e.g., coronene) into the system, the 2D structure transformed into a hexagonal array, and the central pore of this array was occupied by the guest molecules. Remarkably, the halogen bonding of the original structure was maintained after the introduction of the guest molecule. Thus, the halogen-bonded molecular networks are applicable for assembling guest species on the substrate without the requirement of the conventional rigid molecular building blocks with C 3 symmetry.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Mayumi Nagasaki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Emiko Koyama
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Thierry Fouquet
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Kazuhisa Hiratani
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
7
|
John AS, Roth MW, Firlej L, Kuchta B, Charra F, Wexler C. Self-Assembled Two-Dimensional Nanoporous Crystals as Molecular Sieves: Molecular Dynamics Studies of 1,3,5-Tristyrilbenzene-C n Superstructures. J Chem Inf Model 2020; 60:2155-2168. [PMID: 32155335 DOI: 10.1021/acs.jcim.0c00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to their unique geometry complex, self-assembled nanoporous 2D molecular crystals offer a broad landscape of potential applications, ranging from adsorption and catalysis to optoelectronics, substrate processes, and future nanomachine applications. Here we report and discuss the results of extensive all-atom Molecular Dynamics (MD) investigations of self-assembled organic monolayers (SAOM) of interdigitated 1,3,5-tristyrilbenzene (TSB) molecules terminated by alkoxy peripheral chains Cn containing n carbon atoms (TSB3,5-Cn) deposited onto highly ordered pyrolytic graphite (HOPG). In vacuo structural and electronic properties of the TSB3,5-Cn molecules were initially determined using ab initio second order Møller-Plesset (MP2) calculations. The MD simulations were then used to analyze the behavior of the self-assembled superlattices, including relaxed lattice geometry (in good agreement with experimental results) and stability at ambient temperatures. We show that the intermolecular disordering of the TSB3,5-Cn monolayers arises from competition between decreased rigidity of the alkoxy chains (loss of intramolecular order) and increased stabilization with increasing chain length (afforded by interdigitation). We show that the inclusion of guest organic molecules (e.g., benzene, pyrene, coronene, hexabenzocoronene) into the nanopores (voids formed by interdigitated alkoxy chains) of the TSB3,5-Cn superlattices stabilizes the superstructure, and we highlight the importance of alkoxy chain mobility and available pore space in the dynamics of the systems and their potential application in selective adsorption.
Collapse
Affiliation(s)
- Alexander St John
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Michael W Roth
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Physics Department, Waldorf University, Forest City, Iowa 50436, United States
| | - Lucyna Firlej
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Laboratoire Charles Coulomb, CNRS-Université de Montpellier, 34090 Montpellier, France
| | - Bogdan Kuchta
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States.,Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland.,Laboratoire MADRIEL, Aix-Marseille Université-CNRS, 13007 Marseille, France
| | - Fabrice Charra
- Service de Physique de l'État Condensé (SPEC), Université Paris Saclay, CEA CNRS UMR-3680 CEA Saclay F-91191 Gif-sur-Yvette, France
| | - Carlos Wexler
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
8
|
Construction of host-guest supramolecular bilayer networks at liquid/solid interfaces by scanning tunneling microscopy. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Castriciano MA, Trapani M, Romeo A, Depalo N, Rizzi F, Fanizza E, Patanè S, Monsù Scolaro L. Influence of Magnetic Micelles on Assembly and Deposition of Porphyrin J-Aggregates. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E187. [PMID: 31973230 PMCID: PMC7074871 DOI: 10.3390/nano10020187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Clusters of superparamagnetic iron oxide nanoparticles (SPIONs) have been incorporated into the hydrophobic core of polyethylene glycol (PEG)-modified phospholipid micelles. Two different PEG-phospholipids have been selected to guarantee water solubility and provide an external corona, bearing neutral (SPIONs@PEG-micelles) or positively charged amino groups (SPIONs@NH2-PEG-micelles). Under acidic conditions and with specific mixing protocols (porphyrin first, PF, or porphyrin last, PL), the water-soluble 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin (TPPS) forms chiral J-aggregates, and in the presence of the two different types of magnetic micelles, an increase of the aggregation rates has been generally observed. In the case of the neutral SPIONs@PEG-micelles, PL protocol affords a stable nanosystem, whereas PF protocol is effective with the charged SPIONs@NH2-PEG-micelles. In both cases, chiral J-aggregates embedded into the magnetic micelles (TPPS@SPIONs@micelles) have been characterized in solution through UV/vis absorption and circular/linear dichroism. An external magnetic field allows depositing films of the TPPS@SPIONs@micelles that retain their chiroptical properties and exhibit a high degree of alignment, which is also confirmed by atomic force microscopy.
Collapse
Affiliation(s)
- Maria Angela Castriciano
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy; (M.T.); (A.R.)
| | - Mariachiara Trapani
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy; (M.T.); (A.R.)
| | - Andrea Romeo
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy; (M.T.); (A.R.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali and C.I.R.C.M.S.B., University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy
| | - Nicoletta Depalo
- CNR-IPCF, Istituto Per i Processi Chimico-Fisici, 70124 Bari, Italy; (N.D.); (F.R.); (E.F.)
| | - Federica Rizzi
- CNR-IPCF, Istituto Per i Processi Chimico-Fisici, 70124 Bari, Italy; (N.D.); (F.R.); (E.F.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Elisabetta Fanizza
- CNR-IPCF, Istituto Per i Processi Chimico-Fisici, 70124 Bari, Italy; (N.D.); (F.R.); (E.F.)
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Salvatore Patanè
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy;
| | - Luigi Monsù Scolaro
- CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy; (M.T.); (A.R.)
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali and C.I.R.C.M.S.B., University of Messina V.le F. Stagno D’Alcontres, 31 98166 Messina, Italy
| |
Collapse
|
10
|
Huan J, Zhang X, Zeng Q. Two-dimensional supramolecular crystal engineering: chirality manipulation. Phys Chem Chem Phys 2019; 21:11537-11553. [PMID: 31115407 DOI: 10.1039/c9cp02207d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two dimensional (2D) supramolecular crystal engineering, one of the most important strategies towards nanotechnology, is both a science and an industry. In the present review, the recent advances in 2D supramolecular crystal engineering through chirality manipulation on solid surfaces are summarized, with the aid of the scanning tunneling microscopy technique. On-surface chirality manipulation includes surface confined structural chirality formation, chirality transformation, chirality separation as well as chirality elimination, by using component exchange and different external stimuli. Under this principle, host-guest supramolecular interactions, solvent induction, temperature regulation and STM-tip driven orientation control and reorientation effects under equilibrium or out-of-equilibrium conditions, towards the generation of the best-adapted chiral or achiral 2D nanostructures, are mainly described and highlighted. Future challenges and opportunities in this exciting area are also then discussed.
Collapse
Affiliation(s)
- Jinwen Huan
- Business School of Hohai University, #8 West Focheng Road, Jiangning District, Nanjing, Jiangsu 210098, P. R. China
| | | | | |
Collapse
|
11
|
Zhang SQ, Cheng LX, Gong ZL, Duan WB, Tu B, Zhong YW, Zeng QD. Temperature-Triggered Self-Assembled Structural Transformation: From Pure Hydrogen-Bonding Quadrilateral Nanonetwork to Trihexagonal Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6571-6577. [PMID: 31002519 DOI: 10.1021/acs.langmuir.9b00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Adequate control over the structures of molecular building blocks plays an important role in the fabrication of desired supramolecular nanostructures at interfaces. In this study, the formation of a pure hydrogen-bonding co-assembly supramolecular nanonetwork on a highly oriented pyrolytic graphite surface was demonstrated by means of a scanning tunneling microscope. The thermal annealing process was conducted to monitor the temperature-triggered structural transformation of the self-assembled nanonetwork. On the basis of the single-molecule-level resolution scanning tunneling microscopy images, together with the density functional theory calculations, the formation mechanisms of the formed nanoarrays were proposed. The results have great significance with regard to controlled construction of complex nanostructures on the surface.
Collapse
Affiliation(s)
- Si-Qi Zhang
- Department of Chemistry, School of Science , Beijing Jiaotong University , Beijing 100044 , P. R. China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Lin-Xiu Cheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
- Center of Materials Science and Optoelectonics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Wu-Biao Duan
- Department of Chemistry, School of Science , Beijing Jiaotong University , Beijing 100044 , P. R. China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Qing-Dao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing 100190 , P. R. China
- Center of Materials Science and Optoelectonics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
12
|
Xie L, Ding Y, Wang X, Xu W. Chlorine-assisted fabrication of hybrid supramolecular structures via electrostatic interactions. Phys Chem Chem Phys 2019; 21:9357-9361. [PMID: 30994662 DOI: 10.1039/c9cp01046g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular self-assembly is a spontaneous process relying on non-covalent intermolecular interactions. Among them, electrostatic interactions generated by organic molecules interacting with alkali metals and/or halogens play an important role in structural formation. Herein, we choose cytosine and NaCl as a model system and, from the interplay of STM imaging and DFT calculations, a hybrid network composed of both metal-organic and pure organic motifs interlinked by Cl ions via electrostatic interactions is observed on the Au(111) surface. Moreover, the occasionally missing Cl ions in connections are accompanied by the absence of adjacent organic motifs resulting in defects of the network. This study successfully demonstrates the generality of salt providing both cations and anions simultaneously in the modulation of the structure and provides fundamental knowledge on the formation of hybrid structures as well as the function of halogens in affecting the self-assembly process.
Collapse
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
| | | | | | | |
Collapse
|
13
|
Wang J, Wang LM, Lu C, Yan HJ, Wang SX, Wang D. Formation of multicomponent 2D assemblies of C 2v-symmetric terphenyl tetracarboxylic acid at the solid/liquid interface: recognition, selection, and transformation. RSC Adv 2019; 9:11659-11663. [PMID: 35516988 PMCID: PMC9063306 DOI: 10.1039/c9ra01493d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
We report on the two-dimensional self-assembly of C2v-symmetric [1,1′:3′,1′′-terphenyl]-3,3′′,5,5′′-tetracarboxylic acid (TPTA) at the solid/liquid interface by using scanning tunneling microscopy (STM). Two kinds of different self-assembly structure, i.e. a close-packed and porous rosette structure, are formed by TPTA molecules through intermolecular hydrogen bonds. When adding coronene (COR) as a guest into the TPTA assembly, structural transformation from a densely packed row structure to a rosette network structure is observed. It was found that two kinds of cavities with different sizes in the rosette network structure can be used to realize the selective co-adsorption of guest molecules with appropriate shape and size. Three-component 2D host–guest structures were successfully constructed by using 1,2,3,4,5,6-hexakis(4-bromophenyl)benzene (HBPBE) and copper phthalocyanine (CuPc) as guest molecules. The formation process of multicomponent 2D assemblies of C2v-symmetric terphenyl tetracarboxylic acid on a surface.![]()
Collapse
Affiliation(s)
- Jie Wang
- College of Environmental and Chemical Engineering, Dalian Jiaotong University Dalian 116028 P. R. China .,CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| | - Li-Mei Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| | - Cheng Lu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| | - Hui-Juan Yan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| | - Shao-Xu Wang
- College of Environmental and Chemical Engineering, Dalian Jiaotong University Dalian 116028 P. R. China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research and Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China +86 10 82616935
| |
Collapse
|
14
|
Kikkawa Y, Nagasaki M, Koyama E, Tsuzuki S, Hiratani K. Hexagonal array formation by intermolecular halogen bonding using a binary blend of linear building blocks: STM study. Chem Commun (Camb) 2019; 55:3955-3958. [PMID: 30874258 DOI: 10.1039/c9cc00532c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hexagonal arrays were fabricated via intermolecular halogen bonding between two linear molecular building blocks in a bicomponent blend. The substitution position of the pyridine N atom involved in the halogen bond plays an important role in the formation of the hexagonal structures.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Mayumi Nagasaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Emiko Koyama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kazuhisa Hiratani
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
15
|
Ferreira Q, Delfino CL, Morgado J, Alcácer L. Bottom-Up Self-Assembled Supramolecular Structures Built by STM at the Solid/Liquid Interface. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E382. [PMID: 30691079 PMCID: PMC6384807 DOI: 10.3390/ma12030382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/21/2023]
Abstract
One of the lines of research on organic devices is focused on their miniaturization to obtain denser and faster electronic circuits. The challenge is to build devices adding atom by atom or molecule by molecule until the desired structures are achieved. To do this job, techniques able to see and manipulate matter at this scale are needed. Scanning tunneling microscopy (STM) has been the selected technique by scientists to develop smart and functional unimolecular devices. This review article compiles the latest developments in this field giving examples of supramolecular systems monitored and fabricated at the molecular scale by bottom-up approaches using STM at the solid/liquid interface.
Collapse
Affiliation(s)
- Quirina Ferreira
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Catarina L Delfino
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Department of Bioengineering , Instituto Superior Técnico, University of Lisbon, Av.Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Luís Alcácer
- Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
16
|
Cui D, Ebrahimi M, Macleod JM, Rosei F. Template-Driven Dense Packing of Pentagonal Molecules in Monolayer Films. NANO LETTERS 2018; 18:7570-7575. [PMID: 30403353 DOI: 10.1021/acs.nanolett.8b03126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The integration of molecules with irregular shape into a long-range, dense and periodic lattice represents a unique challenge for the fabrication of engineered molecular scale architectures. The tiling of pentagonal molecules on a two-dimensional (2D) plane can be used as a proof-of-principle investigation to overcome this problem because basic geometry dictates that a 2D surface cannot be filled with a periodic arrangement of pentagons, a fundamental limitation that suggests that pentagonal molecules may not be suitable as building blocks for dense films. However, here we show that the 2D covalent organic framework (COF) known as COF-1 can direct the growth of pentagonal guest molecules as dense crystalline films at the solution/solid interface. We find that the pentagonal molecule corannulene adsorbs at two different sites on the COF-1 lattice, and that multiple molecules can adsorb into well-defined clusters patterned by the COF. Two types of these dense periodic packing motifs lead to a five-fold symmetry reduction compatible with translational symmetry, one of which gives an unprecedented high molecular density of 2.12 molecules/nm2.
Collapse
Affiliation(s)
- Daling Cui
- Centre Énergie, Matériaux et Télécommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Maryam Ebrahimi
- Centre Énergie, Matériaux et Télécommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
- Physics Department E20 , Technical University of Munich James-Franck-Strasse1 , D-85748 Garching , Germany
| | - Jennifer M Macleod
- Centre Énergie, Matériaux et Télécommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
- School of Chemistry, Physics, and Mechanical Engineering , Queensland University of Technology , Brisbane , 4000 QLD Australia
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
- Institute of Fundamental and Frontier Science , University of Electronic Science and Technology of China , Chengdu 610054 People's Republic of China
| |
Collapse
|
17
|
Xing P, Phua SZF, Wei X, Zhao Y. Programmable Multicomponent Self-Assembly Based on Aromatic Amino Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805175. [PMID: 30302837 DOI: 10.1002/adma.201805175] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Indexed: 06/08/2023]
Abstract
Construction of integrated self-assembly with ordered structures from two or more organic building blocks is currently a challenge, since it suffers from intrinsic systematic complexity and diverse competitive pathways. Here, it is reported that aromatic amino acid building units can be incorporated into two- or three-component coassembly driven primarily by hydrogen bonding interactions without the assistance of metal-ligand and macrocycle-based host-guest interactions. The key strategy is to employ a C3 -symmetric molecule with alternative hydrogen bonding donor/acceptor sites that are able to bind either carboxylic acid or pyridine appended building units. Aromatic amino acids, C3 -symmetric compound, and bipyridine unit constitute a unique ternary mutual binding system, where three coassembly pathways including two pairwise formations and one ternary combination are unveiled, giving rise to two- and three-component self-assemblies with ordered structures, respectively. The pathway complexity lies in the structural parameter of aromatic amino acids, which can be programmable by controlling substituents at the α-position of amino acids.
Collapse
Affiliation(s)
- Pengyao Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xuan Wei
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
18
|
Cui D, MacLeod JM, Rosei F. Probing functional self-assembled molecular architectures with solution/solid scanning tunnelling microscopy. Chem Commun (Camb) 2018; 54:10527-10539. [PMID: 30079923 DOI: 10.1039/c8cc04341h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past two decades, solution/solid STM has made clear contributions to our fundamental understanding of the thermodynamic and kinetic processes that occur in molecular self-assembly at surfaces. As the field matures, we provide an overview of how solution/solid STM is emerging as a tool to elucidate and guide the use of self-assembled molecular systems in practical applications, focusing on small molecule device engineering, molecular recognition and sensing and electronic modification of 2D materials.
Collapse
Affiliation(s)
- Daling Cui
- INRS-Energy, Materials and Telecommunications and Center for Self-Assembled Chemical Structures, Varennes, Quebec J3X 1S2, Canada.
| | | | | |
Collapse
|
19
|
Goronzy DP, Ebrahimi M, Rosei F, Fang Y, De Feyter S, Tait SL, Wang C, Beton PH, Wee ATS, Weiss PS, Perepichka DF. Supramolecular Assemblies on Surfaces: Nanopatterning, Functionality, and Reactivity. ACS NANO 2018; 12:7445-7481. [PMID: 30010321 DOI: 10.1021/acsnano.8b03513] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding how molecules interact to form large-scale hierarchical structures on surfaces holds promise for building designer nanoscale constructs with defined chemical and physical properties. Here, we describe early advances in this field and highlight upcoming opportunities and challenges. Both direct intermolecular interactions and those that are mediated by coordinated metal centers or substrates are discussed. These interactions can be additive, but they can also interfere with each other, leading to new assemblies in which electrical potentials vary at distances much larger than those of typical chemical interactions. Earlier spectroscopic and surface measurements have provided partial information on such interfacial effects. In the interim, scanning probe microscopies have assumed defining roles in the field of molecular organization on surfaces, delivering deeper understanding of interactions, structures, and local potentials. Self-assembly is a key strategy to form extended structures on surfaces, advancing nanolithography into the chemical dimension and providing simultaneous control at multiple scales. In parallel, the emergence of graphene and the resulting impetus to explore 2D materials have broadened the field, as surface-confined reactions of molecular building blocks provide access to such materials as 2D polymers and graphene nanoribbons. In this Review, we describe recent advances and point out promising directions that will lead to even greater and more robust capabilities to exploit designer surfaces.
Collapse
Affiliation(s)
- Dominic P Goronzy
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Maryam Ebrahimi
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
| | - Federico Rosei
- INRS Centre for Energy, Materials and Telecommunications , 1650 Boul. Lionel Boulet , Varennes , Quebec J3X 1S2 , Canada
- Institute for Fundamental and Frontier Science , University of Electronic Science and Technology of China , Chengdu 610054 , P.R. China
| | - Yuan Fang
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| | - Steven De Feyter
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium
| | - Steven L Tait
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Chen Wang
- National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Peter H Beton
- School of Physics & Astronomy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Andrew T S Wee
- Department of Physics , National University of Singapore , 117542 Singapore
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Dmitrii F Perepichka
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry , McGill University , Montreal H3A 0B8 , Canada
| |
Collapse
|
20
|
Varady MJ, Knox CK, Cabalo JB, Bringuier SA, Pearl TP, Lambeth RH, Mantooth BA. Molecular dynamics study of competing hydrogen bonding interactions in multicomponent diffusion in polyurethanes. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Zhang C, Xie L, Ding Y, Yuan C, Xu W. Hierarchical formation of Fe-9eG supramolecular networks via flexible coordination bonds. Phys Chem Chem Phys 2018; 20:3694-3698. [PMID: 29345265 DOI: 10.1039/c7cp08278a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From the interplay between high-resolution scanning tunneling microscopy imaging/manipulations and density functional theory calculations, we display the hierarchical formation of supramolecular networks by codeposition of 9eG molecules and Fe atoms on Au(111) based on the flexible coordination bonds (the adaptability and versatility in the coordination modes). In the first step, homochiral islands composed of homochiral G4Fe2 motifs are formed; and then in the second step, thermal treatment results in the transformation into the porous networks composed of heterochiral G4Fe2 motifs with the ratio of the components being constant. In situ STM manipulations and the coexistence of some other heterochiral G4Fe2 motifs and clusters also show the flexibility of the coordination bonds involved. These studies may provide a fundamental understanding of the regulations of multilevel supramolecular structures and shed light on the formation of designed supramolecular nanostructures.
Collapse
Affiliation(s)
- Chi Zhang
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China.
| | | | | | | | | |
Collapse
|
22
|
Teyssandier J, Feyter SD, Mali KS. Host-guest chemistry in two-dimensional supramolecular networks. Chem Commun (Camb) 2018; 52:11465-11487. [PMID: 27709179 DOI: 10.1039/c6cc05256h] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanoporous supramolecular networks physisorbed on solid surfaces have been extensively used to immobilize a variety of guest molecules. Host-guest chemistry in such two-dimensional (2D) porous networks is a rapidly expanding field due to potential applications in separation technology, catalysis and nanoscale patterning. Diverse structural topologies with high crystallinity have been obtained to capture molecular guests of different sizes and shapes. A range of non-covalent forces such as hydrogen bonds, van der Waals interactions, coordinate bonds have been employed to assemble the host networks. Recent years have witnessed a surge in the activity in this field with the implementation of rational design strategies for realizing controlled and selective guest capture. In this feature article, we review the development in the field of surface-supported host-guest chemistry as studied by scanning tunneling microscopy (STM). Typical host-guest architectures studied on solid surfaces, both under ambient conditions at the solution-solid interface as well as those formed at the ultrahigh vacuum (UHV)-solid interface, are described. We focus on isoreticular host networks, hosts functionalized pores and dynamic host-guest systems that respond to external stimuli.
Collapse
Affiliation(s)
- Joan Teyssandier
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B3001 Leuven, Belgium.
| |
Collapse
|
23
|
Destoop I, Minoia A, Ivasenko O, Noguchi A, Tahara K, Tobe Y, Lazzaroni R, De Feyter S. Transfer of chiral information from a chiral solvent to a two-dimensional network. Faraday Discuss 2017; 204:215-231. [PMID: 28840217 DOI: 10.1039/c7fd00103g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral induction in self-assembled monolayers has garnered considerable attention in the recent past, not only due to its importance in chiral resolution and enantioselective heterogeneous catalysis but also because of its relevance to the origin of homochirality in life. Here, we demonstrate the emergence of homochirality in a supramolecular low-density network formed by achiral molecules at the interface of a chiral solvent and an atomically-flat achiral substrate. We focus on the impact of structure and functionality of the adsorbate and the chiral solvent on the chiral induction efficiency in self-assembled physisorbed monolayers, as revealed by scanning tunneling microscopy. Different induction mechanisms are proposed and evaluated, with the assistance of advanced molecular modeling simulations.
Collapse
Affiliation(s)
- Iris Destoop
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B 3001, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hu Y, Miao K, Xu L, Zha B, Long M, Miao X, Deng W. Two side chains, three supramolecules: exploration of fluorenone derivatives towards crystal engineering. Phys Chem Chem Phys 2017; 19:19205-19216. [PMID: 28702598 DOI: 10.1039/c7cp03894a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural diversity obtained through two-dimensional molecular self-assembly induced by the chain length effect has gained immense attention, not only because of its significance in crystal engineering but also for its potential application in nanoscience and nanotechnology. Three kinds of fluorenone derivative, named F-C7C7, F-C14C7, and F-C14C14, were synthesized and used for systematic exploration of their crystalline difference. At first, scanning electron microscopy and X-ray powder diffraction were performed to investigate their differences in morphology and three-dimensional crystal structure. Then scanning tunneling microscopy experiments were conducted to compare the self-assembled monolayers. Moreover, different solvents were used to repeatedly investigate the occurrence of structural diversity. F-C7C7 could not self-assemble into a stable monolayer on the graphite surface under ambient conditions due to its weak molecule-substrate interaction. F-C14C7 was observed to self-assemble into twist, plier-like, octamer-curve, and random structures in 1-octanoic acid, 1-phenyloctane, n-tetradecane, and dichloromethane, respectively. However, when the same solvents were used and at similar concentrations, the F-C14C14 molecules were arranged into interval, mixed, linear, and plier-like configurations. These self-assembled nanopatterns formed under the driving forces of dipole-dipole interactions, hydrogen bonds, and chain-chain, molecule-substrate, and molecule-solvent van der Waals interactions. Furthermore, from the viewpoint of thermal analysis, differential scanning calorimetry, as well as polarized optical microscopy, was performed to further elucidate the difference between these three compounds in the solid and liquid crystal states. The present system is believed to provide understanding of how the chain length effect induces different crystalline properties, and to open up the possibility of fabricating diverse self-assembled networks for crystal engineering.
Collapse
Affiliation(s)
- Yi Hu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Kai Miao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Li Xu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Bao Zha
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Mengying Long
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xinrui Miao
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wenli Deng
- College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
25
|
Li J, Wang Z, Deepak FL. In Situ Atomic-Scale Observation of Droplet Coalescence Driven Nucleation and Growth at Liquid/Solid Interfaces. ACS NANO 2017; 11:5590-5597. [PMID: 28538094 DOI: 10.1021/acsnano.7b00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unraveling dynamical processes of liquid droplets at liquid/solid interfaces and the interfacial ordering is critical to understanding solidification, liquid-phase epitaxial growth, wetting, liquid-phase joining, crystal growth, and lubrication processes, all of which are linked to different important applications in material science. In this work, we observe direct in situ atomic-scale behavior of Bi droplets segregated on SrBi2Ta2O9 by using aberration-corrected transmission electron microscopy and demonstrate ordered interface and surface structures for the droplets on the oxide at the atomic scale and unravel a nucleation mechanism involving droplet coalescence at the liquid/solid interface. We identify a critical diameter of the formed nanocrystal in stabilizing the crystalline phase and reveal lattice-induced fast crystallization of the droplet at the initial stage of the coalescence of the nanocrystal with the droplet. Further sequential observations show the stepped coalescence and growth mechanism of the nanocrystals at the atomic scale. These results offer insights into the dynamic process at liquid/solid interfaces, which may have implications for many functionalities of materials and their applications.
Collapse
Affiliation(s)
- Junjie Li
- Department of Advanced Electron Microscopy, Imaging and Spectroscopy, International Iberian Nanotechnology Laboratory (INL) , Avenida Mestre Jose Veiga, Braga 4715-330, Portugal
| | - Zhongchang Wang
- Advanced Institute for Materials Research, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Francis Leonard Deepak
- Department of Advanced Electron Microscopy, Imaging and Spectroscopy, International Iberian Nanotechnology Laboratory (INL) , Avenida Mestre Jose Veiga, Braga 4715-330, Portugal
| |
Collapse
|
26
|
Iritani K, Tahara K, De Feyter S, Tobe Y. Host-Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid-Solid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4601-4618. [PMID: 28206764 DOI: 10.1021/acs.langmuir.7b00083] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C6 to C20. Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host-guest chemistry in integrated nanoporous space that is modified for specific purposes.
Collapse
Affiliation(s)
- Kohei Iritani
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
- Department of Applied Chemistry, School of Science and Technology, Meiji University , Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven - University of Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
27
|
Xie L, Zhang C, Ding Y, Xu W. Structural Transformation and Stabilization of Metal-Organic Motifs Induced by Halogen Doping. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| |
Collapse
|
28
|
Xie L, Zhang C, Ding Y, Xu W. Structural Transformation and Stabilization of Metal-Organic Motifs Induced by Halogen Doping. Angew Chem Int Ed Engl 2017; 56:5077-5081. [DOI: 10.1002/anie.201702589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Xie
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Chi Zhang
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Yuanqi Ding
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| | - Wei Xu
- Interdisciplinary Materials Research Center, Tongji-Aarhus Joint Research Center for Nanostructures and Functional Nanomaterials; College of Materials Science and Engineering; Tongji University; Shanghai 201804 P.R. China
| |
Collapse
|
29
|
Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes. Nat Commun 2017; 8:14717. [PMID: 28281557 PMCID: PMC5353715 DOI: 10.1038/ncomms14717] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/24/2017] [Indexed: 11/22/2022] Open
Abstract
Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. Controlling the self-assembly of oligothiophene complexes that are used in multi-functional thin films can be challenging. Here the authors show a hierarchy of non-covalent interactions for robust self-assembly that orders Saturn-like complexes of fullerenes with oligothiophene macrocycles.
Collapse
|
30
|
Bouju X, Mattioli C, Franc G, Pujol A, Gourdon A. Bicomponent Supramolecular Architectures at the Vacuum–Solid Interface. Chem Rev 2017; 117:1407-1444. [DOI: 10.1021/acs.chemrev.6b00389] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xavier Bouju
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | | | - Grégory Franc
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Adeline Pujol
- Université de Toulouse, UPS, CNRS, CEMES, 118 route de Narbonne, 31062 Toulouse, France
| | - André Gourdon
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| |
Collapse
|
31
|
Velpula G, Takeda T, Adisoejoso J, Inukai K, Tahara K, Mali KS, Tobe Y, De Feyter S. On the formation of concentric 2D multicomponent assemblies at the solution–solid interface. Chem Commun (Camb) 2017; 53:1108-1111. [DOI: 10.1039/c6cc09188a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report on the design and fabrication of a four-component supramolecular network consisting of three concentric shells around a central guest.
Collapse
Affiliation(s)
- Gangamallaiah Velpula
- Division of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven-University of Leuven
- B-3001 Leuven
- Belgium
| | - Takashi Takeda
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Jinne Adisoejoso
- Division of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven-University of Leuven
- B-3001 Leuven
- Belgium
| | - Koji Inukai
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Kazukuni Tahara
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Kunal S. Mali
- Division of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven-University of Leuven
- B-3001 Leuven
- Belgium
| | - Yoshito Tobe
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
- Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics
- Department of Chemistry
- KU Leuven-University of Leuven
- B-3001 Leuven
- Belgium
| |
Collapse
|
32
|
Li SY, Chen T, Yue JY, Wang D, Wan LJ. Switching the surface homochiral assembly by surface host–guest chemistry. Chem Commun (Camb) 2017; 53:11095-11098. [DOI: 10.1039/c7cc06291e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface chirality could be switched by host–guest chemistry.
Collapse
Affiliation(s)
- Shu-Ying Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
- P. R. China
| | - Ting Chen
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
- P. R. China
| | - Jie-Yu Yue
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
- P. R. China
| | - Dong Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
- P. R. China
| | - Li-Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology
- Institute of Chemistry
- Chinese Academy of Sciences (CAS)
- Beijing 100190
- P. R. China
| |
Collapse
|
33
|
Tobe Y, Tahara K, De Feyter S. Adaptive Building Blocks Consisting of Rigid Triangular Core and Flexible Alkoxy Chains for Self-Assembly at Liquid/Solid Interfaces. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2016. [DOI: 10.1246/bcsj.20160214] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Tahara K, Nakatani K, Iritani K, De Feyter S, Tobe Y. Periodic Functionalization of Surface-Confined Pores in a Two-Dimensional Porous Network Using a Tailored Molecular Building Block. ACS NANO 2016; 10:2113-2120. [PMID: 26838957 DOI: 10.1021/acsnano.5b06483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present here the periodic functionalization of a two-dimensional (2D) porous molecular network using a tailored molecular building block. For this purpose, a dehydrobenzo[12]annulene (DBA) derivative, 1-isoDBA, having an isophthalic acid unit connected by an azobenzene linker to a C12 alkyl chain and five C14 chains, was designed and synthesized. After the optimization of monolayer preparation conditions at the 1,2,4-trichlorobezene (TCB)/graphite interface, scanning tunneling microscopy (STM) observation of the self-assembled monolayer of 1-isoDBA revealed the formation of extended domains of a porous honeycomb-type molecular network, which consists of periodically located nanowells each functionalized by a cyclic hexamer of hydrogen-bonded isophthalic acid units and those without functional groups. This result demonstrates that the present strategy based on precise molecular design is a viable route to site-specific functionalization of surface-confined nanowells. The nanowells of different size can be used for guest coadsorption of different guests, coronene COR and hexakis[4-(phenylethynyl)phenylethynyl]benzene HPEPEB, whose size and shape match the respective nanowells. STM observation of a ternary mixture (1-isoDBA/COR/HPEPEB) at the TCB/graphite interface revealed the site-selective immobilization of the two different guest molecules at the respective nanowells, producing a highly ordered three-component 2D structure.
Collapse
Affiliation(s)
- Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
- PRESTO, Japan Science and Technology Agency (JST) , Toyonaka, Osaka 560-8531, Japan
| | - Kenta Nakatani
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Kohei Iritani
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven , Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
35
|
Kunkel DA, Hooper J, Bradley B, Schlueter L, Rasmussen T, Costa P, Beniwal S, Ducharme S, Zurek E, Enders A. 2D Cocrystallization from H-Bonded Organic Ferroelectrics. J Phys Chem Lett 2016; 7:435-440. [PMID: 26750982 DOI: 10.1021/acs.jpclett.5b02472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The synthesis of 2D H-bonded cocrystals from the room-temperature ferroelectric organics croconic acid (CA) and 3-hydroxyphenalenone (3-HPLN) is demonstrated through self-assembly on a substrate under ultrahigh vacuum. 2D cocrystal polymorphs of varied stoichiometry were identified with scanning tunneling microscopy, and one of the observed structural building blocks consists of two CA and two 3-HPLN molecules. Computational analysis with density functional theory confirmed that the experimental (CA)2(3-HPLN)2 tetramers are lower in energy than single-component structures due to the ability of the tetramers to pack efficiently in two dimensions, the promotion of favorable electrostatic interactions between tetramers, and the optimal number of intermolecular hydrogen bonds. The structures investigated, especially the experimentally found tetrameric building blocks, are not polar. However, it is demonstrated computationally that cocrystallization can, in principle, result in heterogeneous structures with dipole moments that exceed those of homogeneous structures and that 2D structures with select stoichiometries could favor metastable polar structures.
Collapse
Affiliation(s)
- Donna A Kunkel
- Department of Physics and Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
| | - James Hooper
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University , 30-060 Krakow, Poland
| | - Benjamin Bradley
- Department of Physics and Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
| | - Lisa Schlueter
- Department of Physics, California State University at San Bernardino , San Bernardino, California 92407, United States
| | - Tom Rasmussen
- Department of Physics and Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
| | - Paulo Costa
- Department of Physics and Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
| | - Sumit Beniwal
- Department of Physics and Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
| | - Stephen Ducharme
- Department of Physics and Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska , Lincoln, Nebraska 68588-0298, United States
| | - Eva Zurek
- Department of Chemistry, State University of New York at Buffalo , Buffalo, New York 14260-3000, United States
| | - Axel Enders
- Department of Physics and Astronomy, University of Nebraska , Lincoln, Nebraska 68588-0299, United States
- Nebraska Center for Materials and Nanoscience, University of Nebraska , Lincoln, Nebraska 68588-0298, United States
| |
Collapse
|
36
|
Mayoral MJ, Bilbao N, González‐Rodríguez D. Hydrogen-Bonded Macrocyclic Supramolecular Systems in Solution and on Surfaces. ChemistryOpen 2016; 5:10-32. [PMID: 27308207 PMCID: PMC4906493 DOI: 10.1002/open.201500171] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/23/2022] Open
Abstract
Cyclization into closed assemblies is the most recurrent approach to realize the noncovalent synthesis of discrete, well-defined nanostructures. This review article particularly focuses on the noncovalent synthesis of monocyclic hydrogen-bonded systems that are self-assembled from a single molecule with two binding-sites. Taking advantage of intramolecular binding events, which are favored with respect to intermolecular binding in solution, can afford quantitative amounts of a given supramolecular species under thermodynamic control. The size of the assembly depends on geometric issues such as the monomer structure and the directionality of the binding interaction, whereas the fidelity achieved relies largely on structural preorganization, low degrees of conformational flexibility, and templating effects. Here, we discuss several examples described in the literature in which cycles of different sizes, from dimers to hexamers, are studied by diverse solution or surface characterization techniques.
Collapse
Affiliation(s)
- María J. Mayoral
- Nanostructured Molecular Systems and Materials GroupDepartamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
| | - Nerea Bilbao
- Nanostructured Molecular Systems and Materials GroupDepartamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
| | - David González‐Rodríguez
- Nanostructured Molecular Systems and Materials GroupDepartamento de Química OrgánicaFacultad de CienciasUniversidad Autónoma de Madrid28049MadridSpain
| |
Collapse
|
37
|
Sun L, Narimatsu T, Tsuchiya S, Tanaka T, Li P, Hayamizu Y. Water stability of self-assembled peptide nanostructures for sequential formation of two-dimensional interstitial patterns on layered materials. RSC Adv 2016. [DOI: 10.1039/c6ra21244a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Sequential-assembly of LEY and GrBP5 peptides on a graphite surface.
Collapse
Affiliation(s)
- Linhao Sun
- School of Materials Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | - Takuma Narimatsu
- School of Materials Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | - Shohei Tsuchiya
- School of Materials Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | - Tomohiro Tanaka
- School of Materials Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | - Peiying Li
- School of Materials Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| | - Yuhei Hayamizu
- School of Materials Science and Engineering
- Tokyo Institute of Technology
- Tokyo 152-8550
- Japan
| |
Collapse
|
38
|
Nuermaimaiti A, S-Falk V, Cramer JL, Svane KL, Hammer B, Gothelf KV, Linderoth TR. Selection of conformational states in surface self-assembly for a molecule with eight possible pairs of surface enantiomers. Chem Commun (Camb) 2016; 52:14023-14026. [DOI: 10.1039/c6cc06876f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral adsorption of a complex molecule with as many as eight possible pairs of surface enantiomers is investigated by STM and the selection of enantiomers is understood by statistical analysis and DFT modelling.
Collapse
Affiliation(s)
- A. Nuermaimaiti
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Aarhus C
- Denmark
| | - V. S-Falk
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Aarhus C
- Denmark
| | - J. L. Cramer
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Aarhus C
- Denmark
| | - K. L. Svane
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Aarhus C
- Denmark
- Department of Physics and Astronomy
| | - B. Hammer
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Aarhus C
- Denmark
- Department of Physics and Astronomy
| | - K. V. Gothelf
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Aarhus C
- Denmark
- Center for DNA nanotechnology (CDNA) and Department of Chemistry
| | - T. R. Linderoth
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- Aarhus C
- Denmark
- Department of Physics and Astronomy
| |
Collapse
|
39
|
Tahara K, Kaneko K, Katayama K, Itano S, Nguyen CH, Amorim DDD, De Feyter S, Tobe Y. Formation of Multicomponent Star Structures at the Liquid/Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7032-7040. [PMID: 26061362 DOI: 10.1021/acs.langmuir.5b01507] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To demonstrate key roles of multiple interactions between multiple components and multiple phases in the formation of an uncommon self-assembling pattern, we present here the construction of a porous hexagonal star (h-star) structure using a trigonal molecular building block at the liquid/solid interface. For this purpose, self-assembly of hexaalkoxy-substituted dehydrobenzo[12]annulene derivatives DBA-OCns was investigated at the tetradecane/graphite interface by means of scanning tunneling microscopy (STM). Monolayer structures were significantly influenced by coadsorbed tetradecane molecules depending on the alkyl chains length (C13-C16) of DBA-OCn. However, none of DBA-OCn molecules formed the expected trigonal complexes, indicating that an additional driving force is necessary for the formation of the trigonal complex and its assembly into the h-star structure. As a first approach, we employed the "guest induced structural change" for the formation of the h-star structure. In the presence of two guest molecules, nonsubstituted DBA and hexakis(phenylethynyl)benzene which fit the respective pores, an h-star structure was formed by DBA-OC15 at the tetradecane/graphite interface. Moreover, a tetradecane molecule was coadsorbed between a pair of alkyl chains of DBA-OC15, thereby blocking the interdigitation of the alkyl chain pairs. Therefore, the h-star structure results from the self-assembly of the four molecular components including the solvent molecule. The second approach is based on aggregation of perfluoroalkyl chains via fluorophilicity of DBA-F, in which the perfluoroalkyl groups are substituted at the end of three alkyl chains of DBA-OCn via p-phenylene linkers. A trigonal complex consisting of DBA-F and three tetradecane molecules formed an h-star structure, in which the perfluoroalkyl groups that orient into the alkane solution phase aggregated at the hexagonal pore via fluorophilicity. The present result provides useful insight into the design and control of complex molecular self-assembly at the liquid/solid interface.
Collapse
Affiliation(s)
- Kazukuni Tahara
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kyohei Kaneko
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Keisuke Katayama
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shintaro Itano
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Chi Huan Nguyen
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Deborah D D Amorim
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Steven De Feyter
- ‡Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Yoshito Tobe
- †Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
40
|
Ghijsens E, Cao H, Noguchi A, Ivasenko O, Fang Y, Tahara K, Tobe Y, De Feyter S. Towards enantioselective adsorption in surface-confined nanoporous systems. Chem Commun (Camb) 2015; 51:4766-9. [PMID: 25531923 DOI: 10.1039/c4cc08826c] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of chiral molecules in surface-confined chiral porous networks shows pronounced selectivity, as a result of complementary host-guest interactions.
Collapse
Affiliation(s)
- Elke Ghijsens
- KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Park KW, Adisoejoso J, Plas J, Hong J, Müllen K, De Feyter S. Self-assembly behavior of alkylated isophthalic acids revisited: concentration in control and guest-induced phase transformation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:15206-11. [PMID: 25419987 DOI: 10.1021/la5040849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The engineering of two-dimensional crystals by physisorption-based molecular self-assembly at the liquid-solid interface is a powerful method to functionalize and nanostructure surfaces. The formation of high-symmetry networks from low-symmetry building blocks is a particularly important target. Alkylated isophthalic acid (ISA) derivatives are early test systems, and it was demonstrated that to produce a so-called porous hexagonal packing of plane group p6, i.e., a regular array of nanowells, either short alkyl chains or the introduction of bulky groups within the chains were mandatory. After all, the van der Waals interactions between adjacent alkyl chains or alkyl chains and the surface would dominate the ideal hydrogen bonding between the carboxyl groups, and therefore, a close-packed lamella structure (plane group p2) was uniquely observed. In this contribution, we show two versatile approaches to circumvent this problem, which are based on well-known principles: the "concentration in control" and the "guest-induced transformation" methods. The successful application of these methods makes ISA suitable building blocks to engineer a porous pattern, in which the distance between the pores can be tuned with nanometer precision.
Collapse
Affiliation(s)
- Kwang-Won Park
- Division of Molecular Imaging and Photonics, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Cui K, Schlütter F, Ivasenko O, Kivala M, Schwab MG, Lee SL, Mertens SFL, Tahara K, Tobe Y, Müllen K, Mali KS, De Feyter S. Multicomponent self-assembly with a shape-persistent N-heterotriangulene macrocycle on Au(111). Chemistry 2014; 21:1652-9. [PMID: 25413370 DOI: 10.1002/chem.201405305] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 11/06/2022]
Abstract
Multicomponent network formation by using a shape-persistent macrocycle (MC6) at the interface between an organic liquid and Au(111) surface is demonstrated. MC6 serves as a versatile building block that can be coadsorbed with a variety of organic molecules based on different types of noncovalent interactions at the liquid-solid interface. Scanning tunneling microscopy (STM) reveals the formation of crystalline bicomponent networks upon codeposition of MC6 with aromatic molecules, such as fullerene (C60) and coronene. Tetracyanoquinodimethane, on the other hand, was found to induce disorder into the MC6 networks by adsorbing on the rim of the macrocycle. Immobilization of MC6 itself was studied in two different noncovalently assembled host networks. MC6 assumed a rather passive role as a guest and simply occupied the host cavities in one network, whereas it induced a structural transition in the other. Finally, the central cavity of MC6 was used to capture C60 in a complex three-component system. Precise immobilization of organic molecules at discrete locations within multicomponent networks, as demonstrated here, constitutes an important step towards bottom-up fabrication of functional surface-based nanostructures.
Collapse
Affiliation(s)
- Kang Cui
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, 3001 Leuven (Belgium)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bellec A, Arrigoni C, Douillard L, Fiorini-Debuisschert C, Mathevet F, Kreher D, Attias AJ, Charra F. Formation of hydroxyl-functionalized stilbenoid molecular sieves at the liquid/solid interface on top of a 1-decanol monolayer. NANOTECHNOLOGY 2014; 25:435604. [PMID: 25297935 DOI: 10.1088/0957-4484/25/43/435604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Specific molecular tectons can be designed to form molecular sieves through self-assembly at the solid-liquid interface. After demonstrating a model tecton bearing apolar alkyl chains, we then focus on a modified structure involving asymmetric functionalization of some alkyl chains with polar hydroxyl groups in order to get chemical selectivity in the sieving. As the formation of supramolecular self-assembled networks strongly depends on molecule-molecule, molecule-substrate and molecule-solvent interactions, we compared the tectons' self-assembly on graphite for two types of solvent. We demonstrate the possibility to create hydroxylated stilbenoid molecular sieves by using 1-decanol as a solvent. Interestingly, with this solvent, the porous network is developed on top of a 1-decanol monolayer.
Collapse
Affiliation(s)
- Amandine Bellec
- Nanophotonics Laboratory, Service de Physique de l'État Condensé, IRAMIS, CEA, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hu F, Gong Y, Zhang X, Xue J, Liu B, Lu T, Deng K, Duan W, Zeng Q, Wang C. Temperature-induced transitions of self-assembled phthalocyanine molecular nanoarrays at the solid-liquid interface: from randomness to order. NANOSCALE 2014; 6:4243-4249. [PMID: 24608185 DOI: 10.1039/c3nr06320h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A promising approach to create functional nanoarrays is supramolecular self-assembly at liquid-solid interfaces. In the present investigation, we report on the self-assembly of phthalocyanine arrays using triphenylene-2,6,10-tricarboxylic acid (H₃TTCA) as a molecular nanotemplate. Five different metastable arrays are achieved in the study, including a thermodynamically stable configuration. Scanning tunneling microscopy (STM) measurements and density function theory (DFT) calculations are utilized to reveal the formation mechanism of the molecular nanoarrays. In general, the transformation process of nanoarrays is regulated by the synergies of a template effect and thermodynamic balance.
Collapse
Affiliation(s)
- Fangyun Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Centre for Nanoscience and Technology, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cao L, Xu L, Zhao D, Tahara K, Tobe Y, De Feyter S, Lei S. Efficient molecular recognition based on nonspecific van der Waals interaction at the solid/liquid interface. Chem Commun (Camb) 2014; 50:11946-9. [DOI: 10.1039/c4cc03658a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A surprising recognition phenomenon based on van der Waals interactions was observed, which proves that the design of the supramolecular assembly from its building blocks represents a highly promising and general strategy.
Collapse
Affiliation(s)
- Lili Cao
- Key Laboratory of Microsystems and Microstructures Manufacturing
- Ministry of Education
- Harbin Institute of Technology
- Harbin, People's Republic of China
| | - Lirong Xu
- Key Laboratory of Microsystems and Microstructures Manufacturing
- Ministry of Education
- Harbin Institute of Technology
- Harbin, People's Republic of China
| | - Dahui Zhao
- Department of Applied Chemistry and the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education
- College of Chemistry
- Peking University
- Beijing 100871, China
| | - Kazukuni Tahara
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka, Japan
| | - Yoshito Tobe
- Division of Frontier Materials Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka, Japan
| | - Steven De Feyter
- Division of Molecular and Nanomaterials
- Department of Chemistry
- KU Leuven – University of Leuven
- 3001 Leuven, Belgium
| | - Shengbin Lei
- Key Laboratory of Microsystems and Microstructures Manufacturing
- Ministry of Education
- Harbin Institute of Technology
- Harbin, People's Republic of China
| |
Collapse
|
46
|
Kikkawa Y, Ishitsuka M, Kashiwada A, Tsuzuki S, Hiratani K. Bicomponent blend-directed amplification of the alkyl chain effect on the 2D structures. Chem Commun (Camb) 2014; 50:13146-9. [DOI: 10.1039/c4cc04624b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 2D structures of bicomponent blends in isobutenyl compounds were observed by using scanning tunneling microscopy at the solid/liquid interface. Amplification of the alkyl chain effect was found on the 2D structures.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba, Japan
| | - Manami Ishitsuka
- Department of Applied Molecular Chemistry
- College of Industrial Technology
- Nihon University
- Narashino, Japan
| | - Ayumi Kashiwada
- Department of Applied Molecular Chemistry
- College of Industrial Technology
- Nihon University
- Narashino, Japan
| | - Seiji Tsuzuki
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba, Japan
| | - Kazuhisa Hiratani
- National Institute of Advanced Industrial Science and Technology (AIST)
- Tsukuba, Japan
| |
Collapse
|
47
|
Li B, Tahara K, Adisoejoso J, Vanderlinden W, Mali KS, De Gendt S, Tobe Y, De Feyter S. Self-assembled air-stable supramolecular porous networks on graphene. ACS NANO 2013; 7:10764-10772. [PMID: 24206021 DOI: 10.1021/nn4039047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Functionalization and modification of graphene at the nanometer scale is desirable for many applications. Supramolecular assembly offers an attractive approach in this regard, as many organic molecules form well-defined patterns on surfaces such as graphite via physisorption. Here we show that ordered porous supramolecular networks with different pore sizes can be readily fabricated on different graphene substrates via self-assembly of dehydrobenzo[12]annulene (DBA) derivatives at the interface between graphene and an organic liquid. Molecular resolution scanning tunneling microscopy (STM) and atomic force microscopy (AFM) investigations reveal that the extended honeycomb networks are highly flexible and that they follow the topological features of the graphene surface without any discontinuity, irrespective of the step-edges present in the substrate underneath. We also demonstrate the stability of these networks under liquid as well as ambient air conditions. The robust yet flexible DBA network adsorbed on graphene surface is a unique platform for further functionalization and modification of graphene. Identical network formation irrespective of the substrate supporting the graphene layer and the level of surface roughness illustrates the versatility of these building blocks.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven-University of Leuven , Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Xue Y, Kim MK, Pašková T, Zimmt MB. Odd or even? Monolayer domain size depends on diyne position in alkadiynylanthracenes. J Phys Chem B 2013; 117:15856-65. [PMID: 24063583 DOI: 10.1021/jp4084376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1,5-(Alkadiynyl)anthracenes self-assemble single component and multicomponent monolayers at the solution-HOPG interface. An alkadiynyl chain's kinked shape constrains the molecular structures with which it can close-pack. This affords rudimentary molecular recognition that has been used to direct self-assembly of 1-D patterned, multicomponent monolayers. The unit cell building blocks of single- and multicomponent alkadiynylanthracene monolayers repeat with high fidelity for 100s of nanometers along the side chain direction. Unit cell repeat fidelity along the orthogonal, anthracene column direction of the monolayer depends on diyne location within the side chain; even-position diyne side chains produce high fidelity of unit cell repeats and wider domain widths along the anthracene columns, whereas odd-position diyne side chains produce more frequent domain interfaces that disrupt the anthracene columns. Alkadiynylanthracene monolayers may be viewed as stacks of 1-D molecular tapes. 1-D tape molecular composition, sequence, and intratape side chain alignment are dictated by shape complementarity of the kinked alkadiynyl side chains. Stacking alignments of adjacent 1-D tapes are controlled by shape matching of tape peripheries and determine repeat fidelity along the anthracene columns. Tapes stacked with a constant intertape alignment comprise crystalline domains that repeat along the anthracene columns. The 1-D tapes formed by anthracenes with odd-position diynes have triangle wave peripheries that close-pack in multiple stacking alignments. This reduces unit cell repeat fidelity and decreases the widths of crystalline domains along the anthracene columns. Even-position diyne side chains form 1-D tapes with trapezoid wave peripheries that close-pack in only one stacking alignment. This generates higher stacking fidelity, larger domain widths, and fewer domain interfaces along the anthracene columns of even-position diyne monolayers. Even- and odd-position diyne monolayers exhibit comparable densities of interfaces between enantiotopic domains and between domains aligned along different graphite symmetry axes. These interfaces likely arise through collisions of independently nucleated/growing domains and persist for lack of kinetically competent pathways that interconvert or merge the domains.
Collapse
Affiliation(s)
- Yi Xue
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | | | | | | |
Collapse
|
49
|
Mali KS, De Feyter S. Principles of molecular assemblies leading to molecular nanostructures. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120304. [PMID: 24000356 DOI: 10.1098/rsta.2012.0304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Self-assembled physisorbed monolayers consist of regular two-dimensional arrays of molecules. Two-dimensional self-assembly of organic and metal-organic building blocks is a widely used strategy for nanoscale functionalization of surfaces. These supramolecular nanostructures are typically sustained by weak non-covalent forces such as van der Waals, electrostatic, metal-ligand, dipole-dipole and hydrogen bonding interactions. A wide variety of structurally very diverse monolayers have been fabricated under ambient conditions at the liquid-solid and air-solid interface or under ultra-high-vacuum (UHV) conditions at the UHV-solid interface. The outcome of the molecular self-assembly process depends on a variety of factors such as the nature of functional groups present on assembling molecules, the type of solvent, the temperature at which the molecules assemble and the concentration of the building blocks. The objective of this review is to provide a brief account of the progress in understanding various parameters affecting two-dimensional molecular self-assembly through illustration of some key examples from contemporary literature.
Collapse
Affiliation(s)
- Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan, 200 F, 3001 Leuven, Belgium
| | | |
Collapse
|
50
|
Zhang X, Zeng Q, Wang C. Host-guest supramolecular chemistry at solid-liquid interface: An important strategy for preparing two-dimensional functional nanostructures. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4975-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|