1
|
Kumar S, Bora P, Roy K, M. NR, Rangappa D, Sinha D. Scalable one-pot synthesis of aminated reduced graphene oxide for high-performance supercapacitor electrodes. iScience 2025; 28:112271. [PMID: 40241746 PMCID: PMC12002661 DOI: 10.1016/j.isci.2025.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Functionalizing graphene by adding amine groups can significantly enhance its wettability and overall properties. However, traditional methods for introducing -NH2 typically require lengthy processing times, high temperatures, and pressures, which limit their suitability for large-scale production. This work presents the fastest method reported to date for synthesizing aminated reduced graphene oxide (NH2-rGO) under moderate temperatures, completing the entire process in just ∼9 h. The nitrogen content of the NH2-rGO is tunable from 2 to 6% and the material also exhibits excellent electrochemical properties. A symmetric supercapacitor based on the prepared material demonstrated a specific capacitance of 322 F g-1 at 1 A g-1, which is a 5-fold increase compared to rGO. It also delivered an impressive volumetric energy density of 48.16 Wh L-1, which is nearly seven times higher than rGO (6.89 Wh L-1). Further, NH2-rGO could also be utilized in biosensing, photovoltaics, catalysis, and as a base for further chemical modifications.
Collapse
Affiliation(s)
- Suraj Kumar
- Department of Chemistry, School of Sciences, Nagaland University, Zunheboto, Nagaland 798627, India
| | - Priyakshi Bora
- Department of Chemistry, School of Sciences, Nagaland University, Zunheboto, Nagaland 798627, India
| | - Kunal Roy
- Department of Applied Sciences (Nanotechnology), Centre for Post-Graduate Studies, Visvesvaraya Technological University, Muddenahalli, Karnataka 562101, India
| | - Navya Rani M.
- Centre for Research and Development, Nagarjuna College of Engineering and Technology, Bengaluru, Karnataka 562164, India
| | - Dinesh Rangappa
- Department of Applied Sciences (Nanotechnology), Centre for Post-Graduate Studies, Visvesvaraya Technological University, Muddenahalli, Karnataka 562101, India
| | - Dipak Sinha
- Department of Chemistry, School of Sciences, Nagaland University, Zunheboto, Nagaland 798627, India
| |
Collapse
|
2
|
Novoselova JV, Beletskii EV, Lukyanov DA, Filippova SS, Rodionova UM, Sizov VV, Alekseeva EV, Levin OV. Sterically Induced Enhancement in the Electrochemical Stability of Salen-Type Cathode Materials. Polymers (Basel) 2025; 17:178. [PMID: 39861250 PMCID: PMC11769176 DOI: 10.3390/polym17020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways. The results revealed that increased steric hindrance from methyl groups significantly reduced the degradation rate, particularly in water-containing electrolytes, by hindering water coordination to the Ni center. Among the studied polymers, the highly substituted poly[Ni(Saltmen)] exhibited superior stability with minimal capacity loss. Density functional theory (DFT) calculations further supported that steric protection around the Ni atom effectively lowers the probability of water coordination. These findings suggest that sterically enhanced NiSalen polymers may offer a promising path toward durable supercapacitor electrodes, highlighting the route of molecular engineering to enhance material stability.
Collapse
Affiliation(s)
- Julia V. Novoselova
- Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Evgenii V. Beletskii
- Laboratory of Technologies of Materials and Devices of Electrochemical Energy Sources, Federal Research Center for Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Avenue ac. Semenova, 1, Chernogolovka 142432, Russia
| | - Daniil A. Lukyanov
- Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Sofia S. Filippova
- Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Uliana M. Rodionova
- Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Vladimir V. Sizov
- Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Elena V. Alekseeva
- Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| | - Oleg V. Levin
- Department of Chemistry, St. Petersburg University, Universitetskaya nab., 7/9, Saint Petersburg 199034, Russia
| |
Collapse
|
3
|
Thakur S, Rathee N, Ray N. Electronic properties of polyaniline-graphene nanocomposites synthesized via solution mixing method. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:075702. [PMID: 39541933 DOI: 10.1088/1361-648x/ad92ec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
A key advantage of combining the exceptional properties of graphene with conducting polymers, lies in their remarkable property tunability through filler additions into polymer matrices, with synthesis routes playing a crucial role in shaping their characteristics. In this work, we examine the electronic properties of polyaniline and graphene nanocomposites synthesized via a simple solution mixing method, which offers advantages such as ease of use and efficiency. Increasing graphene content enhances nanocomposite conductivity, and a percolation effect is observed. The percolation threshold is high and is consistent with a strong role played by voids in the structure. Temperature-dependent conductivity measurements highlight three distinct conduction regimes: insulating, critical, and metallic. These findings underscore the significant influence of synthesis method and structural disorder on shaping electronic properties, paving the way for engineering multifunctional nanocomposites with exceptional versatility and performance.
Collapse
Affiliation(s)
- Soumyasuravi Thakur
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi Hauz Khas, New Delhi-110016, India
| | - Neeraj Rathee
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi Hauz Khas, New Delhi-110016, India
| | - Nirat Ray
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi Hauz Khas, New Delhi-110016, India
| |
Collapse
|
4
|
Chen T, Li H, Wang J, Jia X. Flexible All-Carbon Nanoarchitecture Built from In Situ Formation of Nanoporous Graphene Within "Skeletal-Capillary" Carbon Nanotube Networks for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1683. [PMID: 39453019 PMCID: PMC11510038 DOI: 10.3390/nano14201683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
It is difficult for carbonaceous materials to combine a large specific surface area with flexibility. Here, a flexible all-carbon nanoarchitecture based on the in situ growth of nanoporous graphene within "skeletal-capillary" carbon nanotube (CNT) networks has been achieved by a chemical vapor deposition (CVD) process. Multi-path long-range conductivity is established, and the porous graphene provides a large specific surface area for charge storage. The flexibility of the films allows them to be directly used as binder-free electrodes for supercapacitors. Since the polymeric binders are saved, the supercapacitors exhibit a higher overall storage density.
Collapse
Affiliation(s)
- Tao Chen
- State Grid Jilin Electric Power Research Institute, Changchun 130021, China
| | - Hongyan Li
- State Grid Jilin Electric Power Research Institute, Changchun 130021, China
| | - Jiaziyi Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xilai Jia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Prieto M, Yue H, Brun N, Ellis GJ, Naffakh M, Shuttleworth PS. Hydrothermal Carbonization of Biomass for Electrochemical Energy Storage: Parameters, Mechanisms, Electrochemical Performance, and the Incorporation of Transition Metal Dichalcogenide Nanoparticles. Polymers (Basel) 2024; 16:2633. [PMID: 39339098 PMCID: PMC11436248 DOI: 10.3390/polym16182633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Given the pressing climate and sustainability challenges, shifting industrial processes towards environmentally friendly practices is imperative. Among various strategies, the generation of green, flexible materials combined with efficient reutilization of biomass stands out. This review provides a comprehensive analysis of the hydrothermal carbonization (HTC) process as a sustainable approach for developing carbonaceous materials from biomass. Key parameters influencing hydrochar preparation are examined, along with the mechanisms governing hydrochar formation and pore development. Then, this review explores the application of hydrochars in supercapacitors, offering a novel comparative analysis of the electrochemical performance of various biomass-based electrodes, considering parameters such as capacitance, stability, and textural properties. Biomass-based hydrochars emerge as a promising alternative to traditional carbonaceous materials, with potential for further enhancement through the incorporation of extrinsic nanoparticles like graphene, carbon nanotubes, nanodiamonds and metal oxides. Of particular interest is the relatively unexplored use of transition metal dichalcogenides (TMDCs), with preliminary findings demonstrating highly competitive capacitances of up to 360 F/g when combined with hydrochars. This exceptional electrochemical performance, coupled with unique material properties, positions these biomass-based hydrochars interesting candidates to advance the energy industry towards a greener and more sustainable future.
Collapse
Affiliation(s)
- Manuel Prieto
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Hangbo Yue
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Nicolas Brun
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Gary J Ellis
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Mohammed Naffakh
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
| | - Peter S Shuttleworth
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| |
Collapse
|
6
|
Xu S, Shen C, Peng Z, Wu J, Chen Z, Zhang X, Ji N, Jian M, Wu M, Gao X, Zhang J. Direct Growth of Vertical Graphene on Fiber Electrodes and Its Application in Alternating Current Line-Filtering Capacitors. ACS NANO 2024; 18:24154-24161. [PMID: 39163167 DOI: 10.1021/acsnano.4c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Fiber-shaped electrochemical capacitors (FSECs) have garnered substantial attention to emerging portable, flexible, and wearable electronic devices. However, achieving high electronic and ionic conductivity in fiber electrodes while maintaining a large specific surface area is still a challenge for enhancing the capacitance and rapid response of FSECs. Here, we present an electric-field-assisted cold-wall plasma-enhanced chemical vapor (EFCW-PECVD) method for direct growth of vertical graphene (VG) on fiber electrodes, which is incorporated in the FSECs. The customized reactor mainly consists of two radio frequency coils: one for plasma generation and the other for substrate heating. Precise temperature control can be achieved by adjusting the conductive plates and the applied power. With induction heating, only the substrate is heated to above 500 °C within just 5 min, maintaining a low temperature in the gas phase for the growth of VG with a high quality. Using this method, VG was easily grown on metallic fibers. The VG-coated titanium fibers for FSECs exhibit an ultrahigh rate performance and quick ion transport, enabling the conversion of an alternating current signal to a direct current signal and demonstrating outstanding filtering capabilities.
Collapse
Affiliation(s)
- Shichen Xu
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Chao Shen
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Zhisheng Peng
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiandong Wu
- College of Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhuo Chen
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Xinyu Zhang
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Nannan Ji
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Mingmao Wu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Xin Gao
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Jin Zhang
- Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| |
Collapse
|
7
|
Rahman Khan MM, Chakraborty N. Conducting Polymer-Based Gel Materials: Synthesis, Morphology, Thermal Properties, and Applications in Supercapacitors. Gels 2024; 10:553. [PMID: 39330155 PMCID: PMC11431190 DOI: 10.3390/gels10090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Despite the numerous ongoing research studies in the area of conducting polymer-based electrode materials for supercapacitors, the implementation has been inadequate for commercialization. Further understanding is required for the design and synthesis of suitable materials like conducting polymer-based gels as electrode materials for supercapacitor applications. Among the polymers, conductive polymer gels (CPGs) have generated great curiosity for their use as supercapacitors, owing to their attractive qualities like integrated 3D porous nanostructures, softness features, very good conductivity, greater pseudo capacitance, and environmental friendliness. In this review, we describe the current progress on the synthesis of CPGs for supercapacitor applications along with their morphological behaviors and thermal properties. We clearly explain the synthesis approaches and related phenomena, including electrochemical approaches for supercapacitors, especially their potential applications as supercapacitors based on these materials. Focus is also given to the recent advances of CPG-based electrodes for supercapacitors, and the electrochemical performances of CP-based promising composites with CNT, graphene oxides, and metal oxides is discussed. This review may provide an extensive reference for forthcoming insights into CPG-based supercapacitors for large-scale applications.
Collapse
Affiliation(s)
- Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University-1342, Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nilave Chakraborty
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
8
|
Baruah A, Newar R, Das S, Kalita N, Nath M, Ghosh P, Chinnam S, Sarma H, Narayan M. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors. DISCOVER NANO 2024; 19:103. [PMID: 38884869 PMCID: PMC11183028 DOI: 10.1186/s11671-024-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.
Collapse
Affiliation(s)
- Arabinda Baruah
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Rachita Newar
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Saikat Das
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Nitul Kalita
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Masood Nath
- University of Technology and Applied Sciences, Muscat, Oman
| | - Priya Ghosh
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Autonomous Institution, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Hemen Sarma
- Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, UTEP, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
9
|
Barhoi A, Mahto B, Ali H, Hussain S. Glutathione-Mediated Synthesis of WO 3 Nanostructures with Controllable Morphology/Phase for Energy Storage, Photoconductivity, and Photocatalytic Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10070-10084. [PMID: 38701115 DOI: 10.1021/acs.langmuir.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Developing an improved synthesis method that controls the morphology and crystal phase remains a substantial challenge. Herein, we report phase and morphology-controlled hydrothermal synthesis of tungsten oxides by varying acid concentration and utilizing glutathione (GSH) as a structural directing agent, together with the exploration of their applications in supercapacitors, photoconductivity, and photocatalysis. Orthorhombic hydrated tungsten oxide (WO3·0.33H2O) with nonuniform block and plate-like morphology was obtained at 3 M hydrochloric acid (HCl). In contrast, nonhydrated monoclinic tungsten oxide (WO3) with smaller rectangular blocks was obtained at 6 M HCl. Further, the addition of GSH results in an increase in the surface area of the materials along with a narrowing of the band gap. Moreover, it plays a pivotal role in regulating the morphology through oriented attachments, Ostwald ripening, and the self-assembly of WO3 nuclei. GHTO and GTO polymorphs showed pseudocapacitive behavior with the highest specific capacitances of 450 and 300 F g-1 at 0.5 A g-1, maintaining 94 and 92% retention stability, respectively, over 1000 cycles at 2 A g-1. Also, the synthesized materials displayed favorable photoconductivity under light irradiation, implying potential utilization in photovoltaic applications. Moreover, these materials exhibited remarkable photocatalytic performance in the degradation of methylene blue (MB) dye, establishing themselves as highly effective photocatalysts. Therefore, nanostructured tungsten oxide showcases its versatility, rendering it an appealing candidate for energy storage, photovoltaic systems, and photocatalysis.
Collapse
Affiliation(s)
- Ashok Barhoi
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801103, India
| | - Bhagirath Mahto
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801103, India
| | - Haider Ali
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801103, India
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801103, India
| |
Collapse
|
10
|
Shaheen Shah S, Oladepo S, Ali Ehsan M, Iali W, Alenaizan A, Nahid Siddiqui M, Oyama M, Al-Betar AR, Aziz MA. Recent Progress in Polyaniline and its Composites for Supercapacitors. CHEM REC 2024; 24:e202300105. [PMID: 37222655 DOI: 10.1002/tcr.202300105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI's poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Sulayman Oladepo
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Wissam Iali
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Asem Alenaizan
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Nahid Siddiqui
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Abdul-Rahman Al-Betar
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
- K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
11
|
Kaur A, Madhvi, Sud D. Gel‐Type Natural Polymers as Electroconductive Materials. SUSTAINABLE MATERIALS FOR ELECTROCHEMICAL CAPACITORS 2023:133-166. [DOI: 10.1002/9781394167104.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Nawaz S, Khan Y, Khalid S, Malik MA, Siddiq M. Molybdenum disulfide (MoS 2) along with graphene nanoplatelets (GNPs) utilized to enhance the capacitance of conducting polymers (PANI and PPy). RSC Adv 2023; 13:28785-28797. [PMID: 37790101 PMCID: PMC10543645 DOI: 10.1039/d3ra04153k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
Hybrid composites of molybdenum disulfide (MoS2), graphene nanoplatelets (GNPs) and polyaniline (PANI)/polypyrrole (PPy) have been synthesized as cost-effective electrode materials for supercapacitors. We have produced MoS2 from molybdenum dithiocarbamate by a melt method in an inert environment and then used a liquid exfoliation method to form its composite with graphene nanoplatelets (GNPs) and polymers (PANI and PPy). The MoS2 melt/GNP ratio in the resultant composites was 1 : 3 and the polymer was 10% by wt. of the original composite. XRD (X-ray diffraction analysis) confirmed the formation of MoS2 and SEM (scanning electron microscopy) revealed the morphology of the synthesized materials. The electrochemical charge storage performance of the synthesized composite materials was assessed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCCD) measurements. Resultant composites showed enhanced electrochemical performances (specific capacitance = 236.23 F g-1, energy density = 64.31 W h kg-1 and power density = 3858.42 W kg-1 for MoS2 melt 5 mPP at a current density of 0.57 A g-1 and had 91.87% capacitance retention after 10 000 charge-discharge cycles) as compared to the produced MoS2; thus, they can be utilized as electrode materials for supercapacitors.
Collapse
Affiliation(s)
- Saima Nawaz
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
- Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Yaqoob Khan
- Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Sadia Khalid
- Nanoscience and Technology Department, National Centre for Physics, QAU Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Mohammad Azad Malik
- Department of Chemistry, University of Zululand Private Bag X1001 KwaDlangezwa 3880 South Africa +44 7403781143
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
| |
Collapse
|
13
|
Afzal AM, Awais M, Yasmeen A, Iqbal MW, Mumtaz S, Ouladsmane M, Usman M. Exploring the redox characteristics of porous ZnCoS@rGO grown on nickel foam as a high-performance electrode for energy storage applications. RSC Adv 2023; 13:21236-21248. [PMID: 37456536 PMCID: PMC10339282 DOI: 10.1039/d3ra02792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
A supercapattery is a device that combines the properties of batteries and supercapacitors, such as power density and energy density. A binary composite (zinc cobalt sulfide) and rGO are synthesized using a simple hydrothermal method and modified Hummers' method. A notable specific capacity (Cs) of 1254 C g-1 is obtained in the ZnCoS@rGO case, which is higher than individual Cs of ZnS (975 C g-1) and CoS (400 C g-1). For the asymmetric (ASC) device (ZnCoS@rGO//PANI@AC), the PANI-doped activated carbon and ZnCoS@rGO are used as the cathode and anode respectively. A high Cm of 141 C g-1 is achieved at 1.4 A g-1. The ASC is exhibited an extraordinary energy density of 45 W h kg-1 with a power density 5000 W kg-1 at 1.4 A g-1. To check the stability of the device, the ASC device is measured for 2000 charging/discharging cycles. The device showed improved coulombic efficiency of 94%. These findings confirmed that the two-dimensional materials provide the opportunities to design battery and supercapacitor hybrid devices.
Collapse
Affiliation(s)
- Amir Muhammad Afzal
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Muhammad Awais
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | - Aneeqa Yasmeen
- Department of Physics, Riphah International University, Campus Lahore Pakistan
| | | | - Sohail Mumtaz
- Department of Electrical and Biological Physics, Kwangwoon University Seoul 01897 Korea
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Muhammad Usman
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University Xuzhou P. R. China
| |
Collapse
|
14
|
Ismail KBM, Arun Kumar M, Mahalingam S, Kim J, Atchudan R. Recent Advances in Molybdenum Disulfide and Its Nanocomposites for Energy Applications: Challenges and Development. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4471. [PMID: 37374654 DOI: 10.3390/ma16124471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Energy storage and conversion are critical components of modern energy systems, enabling the integration of renewable energy sources and the optimization of energy use. These technologies play a key role in reducing greenhouse gas emissions and promoting sustainable development. Supercapacitors play a vital role in the development of energy storage systems due to their high power density, long life cycles, high stability, low manufacturing cost, fast charging-discharging capability and eco-friendly. Molybdenum disulfide (MoS2) has emerged as a promising material for supercapacitor electrodes due to its high surface area, excellent electrical conductivity, and good stability. Its unique layered structure also allows for efficient ion transport and storage, making it a potential candidate for high-performance energy storage devices. Additionally, research efforts have focused on improving synthesis methods and developing novel device architectures to enhance the performance of MoS2-based devices. This review article on MoS2 and MoS2-based nanocomposites provides a comprehensive overview of the recent advancements in the synthesis, properties, and applications of MoS2 and its nanocomposites in the field of supercapacitors. This article also highlights the challenges and future directions in this rapidly growing field.
Collapse
Affiliation(s)
- Kamal Batcha Mohamed Ismail
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
- Department of Electronics and Communication Engineering, Agni College of Technology, Chennai 600130, Tamil Nadu, India
| | - Manoharan Arun Kumar
- Department of Electrical, Electronics and Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM), Bengaluru 561203, Karnataka, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
15
|
Kothandam G, Singh G, Guan X, Lee JM, Ramadass K, Joseph S, Benzigar M, Karakoti A, Yi J, Kumar P, Vinu A. Recent Advances in Carbon-Based Electrodes for Energy Storage and Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301045. [PMID: 37096838 PMCID: PMC10288283 DOI: 10.1002/advs.202301045] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Carbon-based nanomaterials, including graphene, fullerenes, and carbon nanotubes, are attracting significant attention as promising materials for next-generation energy storage and conversion applications. They possess unique physicochemical properties, such as structural stability and flexibility, high porosity, and tunable physicochemical features, which render them well suited in these hot research fields. Technological advances at atomic and electronic levels are crucial for developing more efficient and durable devices. This comprehensive review provides a state-of-the-art overview of these advanced carbon-based nanomaterials for various energy storage and conversion applications, focusing on supercapacitors, lithium as well as sodium-ion batteries, and hydrogen evolution reactions. Particular emphasis is placed on the strategies employed to enhance performance through nonmetallic elemental doping of N, B, S, and P in either individual doping or codoping, as well as structural modifications such as the creation of defect sites, edge functionalization, and inter-layer distance manipulation, aiming to provide the general guidelines for designing these devices by the above approaches to achieve optimal performance. Furthermore, this review delves into the challenges and future prospects for the advancement of carbon-based electrodes in energy storage and conversion.
Collapse
Affiliation(s)
- Gopalakrishnan Kothandam
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Jang Mee Lee
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Stalin Joseph
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Mercy Benzigar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| |
Collapse
|
16
|
Ayvazoğlu BŞ, Ceylan M, Turan AAI, Yılmaz EB. Biodegradable Polycaprolactone Fibers with Silica Aerogel and Nanosilver Particles Produce a Coagulation Effect. Polymers (Basel) 2023; 15:polym15092022. [PMID: 37177170 PMCID: PMC10180577 DOI: 10.3390/polym15092022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Poly-ε-caprolactone (PCL) is a biodegradable aliphatic polyester that can be used in the field of biomaterials. Electrospinning is the name given to the process of producing micro and nanoscale fibers using electrostatically charged polymeric solutions under certain conditions. Almost all synthetic and naturally occurring polymers can undergo electrospinning using suitable solvents or mixtures prepared in certain proportions. In this study, silica aerogels were obtained by the sol-gel method. PCL-silica aerogel fibers were synthesized by adding 0.5, 1, 2, and 4% ratios in the PCL solution. Blood contact analysis was performed on the produced fibers with UV-VIS. According to the results obtained, 0.5, 1, 2, and 4% nano-silver were added to the fiber-containing 4% aerogel. Then, SEM-EDS and FTIR analyses were performed on all fibers produced. Antimicrobial tests were performed on fibers containing nano-silver. As a result, high-performance blood coagulation fibers were developed using PCL with aerogel, and an antimicrobial effect was achieved with nano-silver particles. It is thought that the designed surface will be preferred in wound dressing and biomaterial in tissue engineering, as it provides a high amount of cell adhesion with a small amount of blood and contains antimicrobial properties.
Collapse
Affiliation(s)
| | - Muhammet Ceylan
- Graduate School of Natural and Applied Sciences, Istanbul Ticaret University, 34840 Istanbul, Turkey
| | - Aybüke A Isbir Turan
- Institute of Forensic Sciences, Turkish National Police Academy, 06834 Ankara, Turkey
| | - Elif Burcu Yılmaz
- Graduate School of Natural and Applied Sciences, Istanbul Ticaret University, 34840 Istanbul, Turkey
| |
Collapse
|
17
|
Kim J, Ryu JH, Jang M, Park S, Kim M, Lee KH, Choi S, Yoon Y, Jung HK, Lee SS, An KS. One-Dimensional π-d Conjugated Coordination Polymer Intercalated MXene Compound for High-Performance Supercapacitor Electrode. SMALL METHODS 2023; 7:e2201539. [PMID: 36825664 DOI: 10.1002/smtd.202201539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Indexed: 06/18/2023]
Abstract
MXenes possess the characteristics required for high-performance supercapacitors, such as high metallic conductivity and electrochemical activity, but their full potential remains unrealized owing to their tendency to self-restack when fabricated into an electrode. Designing an MXene interlayer with an effective intercalant has, therefore, become an important criterion to alleviate the restacking issue while also synergistically interact with MXene to further improve its electrochemical activity. This study reports the intercalation of 1D π-d conjugated coordination polymer (Ni-BTA) within the Ti3 C2 Tx nanosheet for the fabrication of a highly efficient supercapacitor electrode. Ni-BTA, which consists of a nickel center and 1,2,4,5-benzenetetramine (BTA) organic chain, is uniformly intercalated by direct synthesis on the abundant oxygen terminals on the Ti3 C2 Tx nanosheet surface. The intercalated Ni-BTA acts as an effective charge carrier transportation pathway through its 1D stretched delocalized π-d electrons while participating in pseudocapacitive activity with the Ni centers. As a result, the Ni-BTA/MXene film exhibits excellent rate performance and a gravimetric specific capacitance of 264.4 F g-1 at 5 mV s-1 . This magnitude is retained up to 94.6% after 10 000 cycles. The present study provides insights into the design of MXene interlayers for the fabrication of highly robust and stable supercapacitors.
Collapse
Affiliation(s)
- Jin Kim
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Ji Hyung Ryu
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Moonjeong Jang
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Seungyoung Park
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Minsu Kim
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Kyo Haeng Lee
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Seohyun Choi
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yeoheung Yoon
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Ha-Kyun Jung
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Sun Sook Lee
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Ki-Seok An
- Thin Film Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
18
|
Rani R, Biswas A, Ahammed R, Purkait T, Kundu A, Sarkar S, Raturi M, De Sarkar A, Dey RS, Hazra KS. Engineering Catalytically Active Sites by Sculpting Artificial Edges on MoS 2 Basal Plane for Dinitrogen Reduction at a Low Overpotential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206357. [PMID: 36942916 DOI: 10.1002/smll.202206357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Engineering catalytically active sites have been a challenge so far and often relies on optimization of synthesis routes, which can at most provide quantitative enhancement of active facets, however, cannot provide control over choosing orientation, geometry and spatial distribution of the active sites. Artificially sculpting catalytically active sites via laser-etching technique can provide a new prospect in this field and offer a new species of nanocatalyst for achieving superior selectivity and attaining maximum yield via absolute control over defining their location and geometry of every active site at a nanoscale precision. In this work, a controlled protocol of artificial surface engineering is shown by focused laser irradiation on pristine MoS2 flakes, which are confirmed as catalytic sites by electrodeposition of AuNPs. The preferential Au deposited catalytic sites are found to be electrochemically active for nitrogen adsorption and its subsequent reduction due to the S-vacancies rather than Mo-vacancy, as advocated by DFT analysis. The catalytic performance of Au-NR/MoS2 shows a high yield rate of ammonia (11.43 × 10-8 mol s-1 cm-2 ) at a potential as low as -0.1 V versus RHE and a notable Faradaic efficiency of 13.79% during the electrochemical nitrogen reduction in 0.1 m HCl.
Collapse
Affiliation(s)
- Renu Rani
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Ashmita Biswas
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Raihan Ahammed
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Taniya Purkait
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Anirban Kundu
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Subhajit Sarkar
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Mamta Raturi
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Abir De Sarkar
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Ramendra Sundar Dey
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| | - Kiran Shankar Hazra
- Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 140306, India
| |
Collapse
|
19
|
Chu X, Yang W, Li H. Recent advances in polyaniline-based micro-supercapacitors. MATERIALS HORIZONS 2023; 10:670-697. [PMID: 36598367 DOI: 10.1039/d2mh01345b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The rapid development of the Internet of Things (IoTs) and proliferation of wearable electronics have significantly stimulated the pursuit of distributed power supply systems that are small and light. Accordingly, micro-supercapacitors (MSCs) have recently attracted tremendous research interest due to their high power density, good energy density, long cycling life, and rapid charge/discharge rate delivered in a limited volume and area. As an emerging class of electrochemical energy storage devices, MSCs using polyaniline (PANI) electrodes are envisaged to bridge the gap between carbonaceous MSCs and micro-batteries, leading to a high power density together with improved energy density. However, despite the intensive development of PANI-based MSCs in the past few decades, a comprehensive review focusing on the chemical properties and synthesis of PANI, working mechanisms, design principles, and electrochemical performances of MSCs is lacking. Thus, herein, we summarize the recent advances in PANI-based MSCs using a wide range of electrode materials. Firstly, the fundamentals of MSCs are outlined including their working principle, device design, fabrication technology, and performance metrics. Then, the working principle and synthesis methods of PANI are discussed. Afterward, MSCs based on various PANI materials including pure PANI, PANI hydrogel, and PANI composites are discussed in detail. Lastly, concluding remarks and perspectives on their future development are presented. This review can present new ideas and give rise to new opportunities for the design of high-performance miniaturized PANI-based MSCs that underpin the sustainable prosperity of the approaching IoTs era.
Collapse
Affiliation(s)
- Xiang Chu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China.
| | - Hong Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
20
|
Joshi A, Tomar AK, Kumar D, Kumar A, Singh G, Sharma RK. Synergistic Incorporation of Fe and Co into Nickel Boride/NiCoHydroxide Nanosheets to Tune Voltage Plateau and Charge Storage in Supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
21
|
Hounkanrin SE, Guo Z, Luo J. Microwave-synthesized Bismuth Oxide/Activated Carbon felt composite as electrode for ultra-high supercapacitors performance. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Karmakar S, Taqy S, Droopad R, Trivedi RK, Chakraborty B, Haque A. Highly Stable Electrochemical Supercapacitor Performance of Self-Assembled Ferromagnetic Q-Carbon. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8305-8318. [PMID: 36735879 DOI: 10.1021/acsami.2c20202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Novel phase Q-carbon thin films exhibit some intriguing features and have been explored for various potential applications. Herein, we report the growth of different Q-carbon structures (i.e., filaments, clusters, and microdots) by varying the laser energy density from 0.5 to 1.0 J/cm2 during pulsed laser annealing of amorphous diamond-like carbon films with different sp3-sp2 carbon compositions. These unique nano- and microstructures of Q-carbon demonstrate exceptionally stable electrochemical performance by cyclic voltammetry, galvanostatic charging-discharging, and electrochemical impedance spectroscopy for energy applications. The temperature-dependent magnetic studies (magnetization vs magnetic field and temperature) reveal the ferromagnetic nature of the Q-carbon microdots. The saturation magnetization and coercive field values decrease from 132 to 14 emu/cc and 155 to 92 Oe by increasing the temperature from 2 to 300 K, respectively. The electrochemical performances of Q-carbon filament, cluster, and microdot thin-film supercapacitors were investigated by two-electrode configurations, and the highest areal specific capacitance of ∼156 mF/cm2 was observed at a current density of 0.15 mA/cm2 in the Q-carbon microdot thin film. The Q-carbon microdot electrodes demonstrate an exceptional capacitance retention performance of ∼97.2% and Coulombic efficiency of ∼96.5% after 3000 cycles due to their expectational reversibility in the charging-discharging process. The kinetic feature of the ion diffusion associated with the charge storage property is also investigated, and small changes in equivalent series resistance of ∼9.5% and contact resistance of ∼9.1% confirm outstanding stability with active charge kinetics during the stability test. A high areal power density of ∼5.84 W/cm2 was obtained at an areal energy density of ∼0.058 W h/cm2 for the Q-carbon microdot structure. The theoretical quantum capacitance was obtained at ∼400 mF/cm2 by density functional theory calculation, which gives an idea about the overall capacitance value. The obtained areal specific capacitance, power density, and impressive long-term cyclic stability of Q-carbon thin-film microdot electrodes endorse substantial promise in high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Subrata Karmakar
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
| | - Saif Taqy
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
| | - Ravi Droopad
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
- Materials Science, Engineering & Commercialization Program, Texas State University, San Marcos, Texas78666, United States
| | - Ravi Kumar Trivedi
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Brahmananda Chakraborty
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - Ariful Haque
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
- Materials Science, Engineering & Commercialization Program, Texas State University, San Marcos, Texas78666, United States
| |
Collapse
|
23
|
Wang P, Shao F, Li B, Su Y, Yang Z, Hu N, Zhang Y. Molecular-level uniform graphene/polyaniline composite film for flexible supercapacitors with high-areal capacitance. NANOTECHNOLOGY 2023; 34:175401. [PMID: 36689767 DOI: 10.1088/1361-6528/acb556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
To increase the specific capacitance of supercapacitors, polyaniline (PANI) has been chosen as additive electrode material for the pseudocapacitive performance. Here, we synthesize a molecular-level uniform reduced graphene oxide/PANI (rGO/PANI) composite film with high flexibility and conductivity via self-assembly and specific thermal reduction, which performs great potential in flexible supercapacitors with high areal capacitance. Particularly, the electrode of rGO/PANI-42.9% exhibits a high specific areal capacitance (1826 mF cm-2at 0.2 mA cm-2), and it also presents a good cycling stability (it remains 76% of its initial capacitance after 10 500 cycles). Moreover, the specific gravimetric capacitance of rGO/PANI-33.3% reaches up to 256.4 F g-1at 0.2 A g-1, showing greatly enhanced performance compared with the pure rGO electrode (183 F g-1). The results of various characteristic analysis demonstrate that electrochemical performance of the as-prepared rGO/PANI film is closely associated with the uniform distribution of PANI in rGO/PANI composite. Overall, our reported method is convenient and environmental-friendly, and could be beneficial for the development of high-performance capacitive energy storage materials.
Collapse
Affiliation(s)
- Peiyao Wang
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, People's Republic of China
| | - Feng Shao
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, People's Republic of China
| | - Bin Li
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, People's Republic of China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, People's Republic of China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, People's Republic of China
| | - Yafei Zhang
- Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD., Shanghai, 200240, People's Republic of China
| |
Collapse
|
24
|
Abutalip M, Zhigerbayeva G, Kanzhigitova D, Askar P, Yeszhan Y, Pham TT, Adilov S, Luque R, Nuraje N. Strategic Synthesis of 2D and 3D Conducting Polymers and Derived Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208864. [PMID: 36398432 DOI: 10.1002/adma.202208864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In recent decades, there has been a great deal of interest in conducting polymers due to their broad applications. At the same time, various synthetic techniques have been developed to produce various nanostructures of the conducting polymers with their fascinating properties. However, the techniques for the manufacture of 2D nanosheets are either complex or expensive. No comprehensive approach for constructing 2D and 3D materials or their composites has been documented. Herein, a simple and scalable synthetic protocol is reported for the design of 2D, 3D, and related conducting polymer nanocomposites by interface manipulation in a bicontinuous microemulsion system. In this method, diverse bicontinuous thin layers of oil and water are employed to produce 2D nanosheets of conducting polymers. For the fabrication of 3D polypyrrole (PPY) and their composites, specially designed linkers of the monomers are applied to lock the 3D networks of the conducting polymers and their composites. The technique can be extended to the fabrication of most conducting polymer composites, being cost-effective and easily scalable. The optimum electrical conductivity obtained for 2D PPY nanosheets is 219 S cm-1 , the highest literature value reported to date to the best of knowledge.
Collapse
Affiliation(s)
- Munziya Abutalip
- Department of Chemical & Materials Engineering, School of Engineering & Digital Science, Nazarbayev University, Astana, 010000, Kazakhstan
- Lab of Renewable Energy Systems & Materials Science, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Guldana Zhigerbayeva
- Department of Chemical & Materials Engineering, School of Engineering & Digital Science, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Dana Kanzhigitova
- Department of Chemical & Materials Engineering, School of Engineering & Digital Science, Nazarbayev University, Astana, 010000, Kazakhstan
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
| | - Perizat Askar
- Department of Chemical & Materials Engineering, School of Engineering & Digital Science, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Yelriza Yeszhan
- Department of Chemical & Materials Engineering, School of Engineering & Digital Science, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Tri Thanh Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Salimgerey Adilov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., Moscow, 117198, Russian Federation
| | - Nurxat Nuraje
- Department of Chemical & Materials Engineering, School of Engineering & Digital Science, Nazarbayev University, Astana, 010000, Kazakhstan
- Lab of Renewable Energy Systems & Materials Science, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
25
|
Idris AO, Akanji SP, Orimolade BO, Olorundare FOG, Azizi S, Mamba B, Maaza M. Using Nanomaterials as Excellent Immobilisation Layer for Biosensor Design. BIOSENSORS 2023; 13:bios13020192. [PMID: 36831958 PMCID: PMC9953865 DOI: 10.3390/bios13020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/28/2023]
Abstract
The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials-graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots-and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. Furthermore, we also discuss the origin of the synthesis of some nanomaterials, the challenges associated with the use of those nanomaterials and the chemistry behind their incorporation with other materials for biosensor design. The last section covers the prospects for the development and application of the highlighted nanomaterials.
Collapse
Affiliation(s)
- Azeez Olayiwola Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Seyi Philemon Akanji
- Petroleum Engineering, School of Engineering Department, Edith Cowan University, 270 Joondalup Drive, Perth, WA 6027, Australia
| | - Benjamin O. Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | | | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| | - Bhekie Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, Johannesburg 1709, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, South Africa
| |
Collapse
|
26
|
Smaisim GF, Abed AM, Al-Madhhachi H, Hadrawi SK, Al-Khateeb HMM, Kianfar E. Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: a Review. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Chen X, Cao H, He Y, Zhou Q, Li Z, Wang W, He Y, Tao G, Hou C. Advanced functional nanofibers: strategies to improve performance and expand functions. FRONTIERS OF OPTOELECTRONICS 2022; 15:50. [PMID: 36567731 PMCID: PMC9761053 DOI: 10.1007/s12200-022-00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 05/07/2023]
Abstract
Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work. Graphical abstract
Collapse
Affiliation(s)
- Xinyu Chen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Honghao Cao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, 02139 USA
| | - Yue He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Qili Zhou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Zhangcheng Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Wen Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yu He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Chong Hou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518063 China
| |
Collapse
|
28
|
Polyaniline Anchoring Environment Facilitates Highly Efficient CO2 Electroreduction of Cobalt Phthalocyanine over a Wide Potential Window. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Zhang H, Cao D, Cheng X, Guan R, Zhou C. Amide salt pyrolysis fabrication of graphene nanosheets with multi-excitation single color emission. J Colloid Interface Sci 2022; 627:671-680. [PMID: 35878459 DOI: 10.1016/j.jcis.2022.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 01/31/2023]
Abstract
A novel and simple approach of using amide salt pyrolysis to produce photoluminescent (multi-excitation and single color emission) graphene nanosheets (GNs) with a thickness of <1 nm and a diameter of about 100-200 nm is described herein. It has characteristics of high water solubility, low toxicity, easy manufacturing, etc., and has potential application prospects in analytical chemistry and biomedicine.
Collapse
Affiliation(s)
- Hao Zhang
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiao Cheng
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
| | - Ruifang Guan
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Chuanjian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
30
|
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Nnamdi Azikiwe University, Faculty of Engineering, Awka, Nigeria
| |
Collapse
|
31
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
32
|
Tan H, Navik R, Liu Z, Xiang Q, Zhao Y. Preparation of high load carbon fiber/graphene/bacterial cellulose/polyaniline electrodes facilitated by plasma towards high capacitive supercapacitors. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Gudkov MV, Stolyarova DY, Shiyanova KA, Mel’nikov VP. Polymer Composites with Graphene and Its Derivatives as Functional Materials of the Future. POLYMER SCIENCE SERIES C 2022. [DOI: 10.1134/s1811238222010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Cui X, Guo J, Araby S, Abbassi F, Zhang C, Diaby AL, Meng Q. Porous polyvinyl alcohol/graphene oxide composite film for strain sensing and energy-storage applications. NANOTECHNOLOGY 2022; 33:415701. [PMID: 35732160 DOI: 10.1088/1361-6528/ac7b35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, a flexible porous polyvinyl alcohol (PVA)/graphene oxide (GO) composite film was developed and tested for flexible strain sensing and energy-storage applications. Morphology and mechanical properties were studied; tensile strength and Young's modulus increased by 225% and 86.88%, respectively, at 0.5 wt% GO. The PVA/GO film possesses exceptional sensing ability to various mechanical strains, such as tension, compression, bending, and torsion. For example, the gauge factor of the PVA/GO film as a tensile-strain sensor was measured as 2.46 (246%). Under compression loads, the PVA/GO composite film showed piezoresistive and capacitive strain-sensing characteristics. Under 5 kPa of compression load, the relative resistance increased by 81% with a 100 msec response time; the relative capacitance increased by 160% with a 120 msec response time. The PVA/GO strain sensor exhibited high durability and reliability over 20 × 103cycles of tensile strain and bending at 3.33 Hz. Moreover, the PVA/GO composite film showed good electrochemical properties due to its porous structure; the maximum capacitance was 124.7 F g-1at 0.5 wt% GO. After 20 × 103charging-discharging cycles, the capacitance retention rate was 94.45%, representing high stable capacitance performance. The results show that electrically conductive porous PVA nanocomposite films are promising candidates for strain sensing and energy-storage devices.
Collapse
Affiliation(s)
- Xu Cui
- College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Jia Guo
- College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | - Sherif Araby
- Department of Mechanical and Aerospace Engineering, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
- Department of Mechanical Engineering, Faculty of Engineering, Benha University, Benha, Egypt
| | - Fethi Abbassi
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Chunyan Zhang
- College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| | | | - Qingshi Meng
- College of Civil Aviation, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, People's Republic of China
| |
Collapse
|
35
|
Zheng Z, Zhao Y, Ye Z, Hu J, Wang H. Electrically conductive porous MXene-polymer composites with ultralow percolation threshold via Pickering high internal phase emulsion templating strategy. J Colloid Interface Sci 2022; 618:290-299. [PMID: 35344882 DOI: 10.1016/j.jcis.2022.03.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
HYPOTHESIS Constructing a segregated network in electrically conductive polymer composites (ECPCs) is an effective method to lower the electrical percolation threshold. The segregated network structure can be formed naturally via polymerizing Pickering high internal phase emulsions (HIPEs) because solid particles are assembled at water-oil interfaces. However, most Pickering stabilizers show poor electrical conductivity. In this work, we propose a facile method to prepare lightweight ECPCs with well-controlled segregated structure via Ti3C2Tx-stabilized HIPE templating. EXPERIMENTS Hydrophilic Ti3C2Tx flakes are delicately hydrophobized with a double-chain cation surfactant. The morphology of Ti3C2Tx flakes is investigated by transmission electron microscopy (TEM) and atom force microscopy (AFM). The surface properties of modified Ti3C2Tx are characterized by zeta potential and water contact angle tests. The stability of Ti3C2Tx-stabilized emulsions, and the structure of prepared ECPCs are systematically investigated. FINDINGS Surface modified Ti3C2Tx flakes are used to stabilize water-in-oil (w/o) HIPEs for the first time. After the polymerization of continuous oil phase, ECPCs are successfully prepared with closed-cell porous structure. The pore size and size distribution of porous composites can be tailored by varying the content of Ti3C2Tx flakes. The Ti3C2Tx flakes are mainly immobilized at the water-oil interface and eventually form the segregated network in composites. Combining the unique segregated network and the outstanding metallic conductivity of Ti3C2Tx, the prepared porous polymer composites exhibit good conductivity even with ultralow Ti3C2Tx content of 0.016 vol%.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yongliang Zhao
- Shanghai Dilato Materials Co., Ltd, Shanghai 200433, China
| | - Zhangfan Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jianhua Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
36
|
Recent Trends in Carbon Nanotube Electrodes for Flexible Supercapacitors: A Review of Smart Energy Storage Device Assembly and Performance. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In order to upgrade existing electronic technology, we need simultaneously to advance power supply devices to match emerging requirements. Owing to the rapidly growing wearable and portable electronics markets, the demand to develop flexible energy storage devices is among the top priorities for humankind. Flexible supercapacitors (FSCs) have attracted tremendous attention, owing to their unrivaled electrochemical performances, long cyclability and mechanical flexibility. Carbon nanotubes (CNTs), long recognized for their mechanical toughness, with an elastic strain limit of up to 20%, are regarded as potential candidates for FSC electrodes. Along with excellent mechanical properties, high electrical conductivity, and large surface area, their assemblage adaptability from one-dimensional fibers to two-dimensional films to three-dimensional sponges makes CNTs attractive. In this review, we have summarized various assemblies of CNT structures, and their involvement in various device configurations of FSCs. Furthermore, to present a clear scenario of recent developments, we discuss the electrochemical performance of fabricated flexible devices of different CNT structures and their composites, including additional properties such as compressibility and stretchability. Additionally, the drawbacks and benefits of the study and further potential scopes are distinctly emphasized for future researchers.
Collapse
|
37
|
Nawaz S, Khan Y, Abdelmohsen SAM, Khalid S, Björk EM, Rasheed MA, Siddiq M. Polyaniline inside the pores of high surface area mesoporous silicon as composite electrode material for supercapacitors. RSC Adv 2022; 12:17228-17236. [PMID: 35755593 PMCID: PMC9185315 DOI: 10.1039/d2ra01829b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Mesoporous silicon (mSi) obtained by the magnesiothermic reduction of mesoporous silica was used to deposit polyaniline (PANI) in its pores, the composite was tested for its charge storage application for high performance supercapacitor electrodes. The mesoporous silica as confirmed by Small Angle X-ray Scattering (SAXS) has a Brunauer-Emmett-Teller (BET) surface area of 724 m2g-1 and mean pore size of 5 nm. After magnesiothermic reduction to mSi, the BET surface area is reduced to 348 m2g-1 but the mesoporousity is retained with a mean pore size of 10 nm. The BET surface area of mesoporous silicon is among the highest for porous silicon prepared/reduced from silica. In situ polymerization of PANI inside the pores of mSi was achieved by controlling the polymerization conditions. As a supercapacitor electrode, the mSi-PANI composite exhibits better charge storage performance as compared to pure PANI and mesoporous silica-PANI composite electrodes. Enhanced electrochemical performance of the mSi-PANI composite is attributed to the high surface mesoporous morphology of mSi with a network structure containing abundant mesopores enwrapped by an electrochemically permeable polyaniline matrix.
Collapse
Affiliation(s)
- Saima Nawaz
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
- Nanoscience and Technology Department, National Centre for Physics QAU Campus, Shahdra Valley Road Islamabad 45320 Pakistan +92 512077389 +92 3455235423
| | - Yaqoob Khan
- Nanoscience and Technology Department, National Centre for Physics QAU Campus, Shahdra Valley Road Islamabad 45320 Pakistan +92 512077389 +92 3455235423
| | - Shaimaa A M Abdelmohsen
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11681 Saudi Arabia
| | - Sadia Khalid
- Nanoscience and Technology Department, National Centre for Physics QAU Campus, Shahdra Valley Road Islamabad 45320 Pakistan +92 512077389 +92 3455235423
| | - Emma M Björk
- Nanostructured Materials, Department of Physics, Chemistry and Biology (IFM), Linköping University SE-581 83 Linköping Sweden
| | - Muhammad Asim Rasheed
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad 45650 Pakistan
| | - M Siddiq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan +92 5190642147
| |
Collapse
|
38
|
Das R, Zeng W, Asci C, Del-Rio-Ruiz R, Sonkusale S. Recent progress in electrospun nanomaterials for wearables. APL Bioeng 2022; 6:021505. [PMID: 35783456 PMCID: PMC9249212 DOI: 10.1063/5.0088136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Wearables have garnered significant attention in recent years not only as consumer electronics for entertainment, communications, and commerce but also for real-time continuous health monitoring. This has been spurred by advances in flexible sensors, transistors, energy storage, and harvesting devices to replace the traditional, bulky, and rigid electronic devices. However, engineering smart wearables that can seamlessly integrate with the human body is a daunting task. Some of the key material attributes that are challenging to meet are skin conformability, breathability, and biocompatibility while providing tunability of its mechanical, electrical, and chemical properties. Electrospinning has emerged as a versatile platform that can potentially address these challenges by fabricating nanofibers with tunable properties from a polymer base. In this article, we review advances in wearable electronic devices and systems that are developed using electrospinning. We cover various applications in multiple fields including healthcare, biomedicine, and energy. We review the ability to tune the electrical, physiochemical, and mechanical properties of the nanofibers underlying these applications and illustrate strategies that enable integration of these nanofibers with human skin.
Collapse
Affiliation(s)
- Riddha Das
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Cihan Asci
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, 200 Boston Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
39
|
Shin N, Kim M, Ha J, Kim YT, Choi J. Flexible anodic SnO2 nanoporous structures uniformly coated with polyaniline as a binder-free anode for lithium ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Noormohammadi E, Poli F, Durante C, Lunardon M, Sanjabi S, Soavi F. Electrodeposition of Cobalt‐Copper Oxides decorated with conductive polymer for supercapacitor electrodes with high stability. ChemElectroChem 2022. [DOI: 10.1002/celc.202200102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eshagh Noormohammadi
- Tarbiat Modares University Faculty of Engineering materials and mining engineering Jalal AleAhmad Nasr 14115-111 Tehran IRAN (ISLAMIC REPUBLIC OF)
| | - Federico Poli
- University of Bologna Department of Chemistry Giacomo Ciamician: Universita degli Studi di Bologna Dipartimento di Chimica Giacomo Ciamician Chemistry ITALY
| | - Christian Durante
- University of Padova: Universita degli Studi di Padova Chemical sciences ITALY
| | - Marco Lunardon
- University of Padova: Universita degli Studi di Padova chemical sciences ITALY
| | - Sohrab Sanjabi
- Tarbiat Modares University material and mining engineering IRAN (ISLAMIC REPUBLIC OF)
| | - Francesca Soavi
- Universita degli Studi di Bologna Via San Giacomo 7 … Bologna ITALY
| |
Collapse
|
41
|
Zou Y, Chen Z, Guo X, Peng Z, Yu C, Zhong W. Mechanically Robust and Elastic Graphene/Aramid Nanofiber/Polyaniline Nanotube Aerogels for Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17858-17868. [PMID: 35390255 DOI: 10.1021/acsami.2c02538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The preparation of graphene-based aerogels with excellent mechanical strength, elasticity, and compressibility is still a challenge. Herein, we demonstrate a robust, elastic, and lightweight graphene/aramid nanofiber/polyaniline nanotube (rGO/ANF/PANIT) aerogel that is prepared by mixing graphene oxide (GO), ANF, and PANIT dispersions, followed by thermal treatment at 90 °C, freeze-drying, and a low-temperature annealing process. The PANIT bonds the graphene sheets tightly, benefitting the formation of composite gels. The ANF tightly interconnects the graphene sheets and further reinforces the composite network framework significantly, hence endowing rGO/ANF/PANIT composite aerogels with robust mechanical property. The prepared aerogels present a low density of ∼12 mg cm-3, high conductivity, good resilience, and high compressibility. The rGO/ANF/PANIT aerogels as pressure sensors exhibit a high sensitivity of 1.73 kPa-1, low detection limit (40 Pa), wide detection range, and excellent compressive cycle stability, highlighting the promising applications in pressure-sensitive electrical devices, including medical health detection, wearable electronics, and intelligent packaging fields.
Collapse
Affiliation(s)
- Yubo Zou
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Zeyu Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xu Guo
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhiyuan Peng
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chuying Yu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| | - Wenbin Zhong
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
42
|
V. M V, U. M K, Alex S, T. S X. Microsphere rGO/MnO2 composites as electrode materials for high-performance symmetric supercapacitors synthesized by reflux reaction. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Electrochemical behavior of polydiphenylamine-2-carboxylic acid and its hybrid nanocomposites with single-walled carbon nanotubes on anodized graphite foil in lithium aprotic electrolyte. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Wang DC, Yu HY, Ouyang Z, Qi D, Zhou Y, Ju A, Li Z, Cao Y. Chain-ring covalently interconnected cellulose nanofiber/MWCNT aerogel for supercapacitors and sensors. NANOSCALE 2022; 14:5163-5173. [PMID: 35312742 DOI: 10.1039/d2nr00030j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bending multi-walled carbon nanotubes (MWCNTs) into rings and structuring them into aerogels is difficult. In this study, cellulose nanofiber (CNF)-MWCNT composite fibers with chain-ring structures were prepared by covalently interconnecting carboxylated CNF and aminated MWCNT by dehydration condensation, solving the problems of the formation of MWCNT aerogels and their phase separation during the compounding process and providing CNF-based aerogels with electrical conductivity. The covalently interconnected aerogels (CAs) had hierarchical porous structures with mechanical resilience and chain-ring fibers, which drove the CNF and MWCNT to form a continuous homogeneous network resulting in a high compression resistance of 269.02 kPa. The CA-based flexible all-solid-state supercapacitor had a quality specific capacitance of 114.8 F g-1, a capacitance retention rate of 94.78% and a Coulomb efficiency of 100%. The CA-based flexible sensor can sense different pressures with a stable response for 1000 cycles. This first study of pulling and bending MWCNT through CNF is expected to inspire more applications of MWCNTs in the fields of flexible supercapacitors and sensors.
Collapse
Affiliation(s)
- Duan-Chao Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, China.
- Hangzhou Global Scientific and Technological Innovation Center, Stoddart Institute of Melcular Science, Department of Chemistry, Zhejiang University, China
| | - Hou-Yong Yu
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, China.
| | - Zhaofeng Ouyang
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, China.
| | - Dongming Qi
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, China.
| | - Ying Zhou
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, China.
| | - Anqi Ju
- College of Materials Science and Engineering & State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, China
| | - Ziheng Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, China.
| | - Yiwen Cao
- National Engineering Lab for Textile Fiber Materials & Processing Technology, College of Textile Science and Engineering, Zhejiang Sci-Tech University, China.
| |
Collapse
|
45
|
Carbon nanofibers derived from cellulose via molten-salt method as supercapacitor electrode. Int J Biol Macromol 2022; 207:541-548. [PMID: 35296438 DOI: 10.1016/j.ijbiomac.2022.03.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023]
Abstract
Carbon nanofibers (CNFs) have been paid much attention as supercapacitor electrode due to outstanding chemical stability, high electron transfer rate and large specific surface area. However, the preparation process of CNFs is always stalemated in electrospinning, heat stabilization and carbonization. The problems of solvent pollution in the electrospinning process, complex process and high energy consumption in conventional carbonization process can't be solved. Herein, CNFs have been innovatively prepared from nanofibrillated cellulose by the molten-salt method (NaCl/NaOH). Molten salt penetrates between the fibers, separates and activates the fibers. The obtained carbon nanofibers remain developed branching structures and have a large specific surface area (899 m2 g-1). The electrical properties are tested in a symmetrical two-electrode system. The specific capacitance is 150 F g-1 at the current density of 1 A g-1. Low equivalent series resistance (1.13 Ω) indicates that it has high electrode conductivity. This study has taken into account energy conservation, environmental protection, recyclability and simplified preparation process, which has a very far-reaching significance for the industrial production of CNFs.
Collapse
|
46
|
Hepel M. Advances in micro‐supercapacitors (MSCs) with high energy density and fast charge‐discharge capabilities for flexible bioelectronic devices—A review. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Maria Hepel
- Department of Chemistry State University of New York at Potsdam Potsdam New York USA
| |
Collapse
|
47
|
Iqbal K, Ishaq MA, Ahmad A, Ali MD, Zeeshan T, Tahir W, Aslam A, Amami M, Farhat IB, Ahmed SB, Abdelhak J. Fabrication and characterizations of hybrid materials based on polyaniline, metal oxide, and graphene nano-platelets for supercapacitor electrodes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Najam T, Shah SSA, Peng L, Javed MS, Imran M, Zhao MQ, Tsiakaras P. Synthesis and nano-engineering of MXenes for energy conversion and storage applications: Recent advances and perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214339] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Leve ZD, Iwuoha EI, Ross N. The Synergistic Properties and Gas Sensing Performance of Functionalized Graphene-Based Sensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1326. [PMID: 35207867 PMCID: PMC8877958 DOI: 10.3390/ma15041326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
The detection of toxic gases has long been a priority in industrial manufacturing, environmental monitoring, medical diagnosis, and national defense. The importance of gas sensing is not only of high benefit to such industries but also to the daily lives of people. Graphene-based gas sensors have elicited a lot of interest recently, due to the excellent physical properties of graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO). Graphene oxide and rGO have been shown to offer large surface areas that extend their active sites for adsorbing gas molecules, thereby improving the sensitivity of the sensor. There are several literature reports on the promising functionalization of GO and rGO surfaces with metal oxide, for enhanced performance with regard to selectivity and sensitivity in gas sensing. These synthetic and functionalization methods provide the ideal combination/s required for enhanced gas sensors. In this review, the functionalization of graphene, synthesis of heterostructured nanohybrids, and the assessment of their collaborative performance towards gas-sensing applications are discussed.
Collapse
Affiliation(s)
| | | | - Natasha Ross
- SensorLab, Chemistry Department, University of the Western Cape, Cape Town 7535, South Africa; (Z.D.L.); (E.I.I.)
| |
Collapse
|
50
|
Majumder P, Gangopadhyay R. Evolution of graphene oxide (GO)-based nanohybrid materials with diverse compositions: an overview. RSC Adv 2022; 12:5686-5719. [PMID: 35425552 PMCID: PMC8981679 DOI: 10.1039/d1ra06731a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
The discovery of the 2D nanostructure of graphene was in fact the beginning of a new generation of materials. Graphene itself, its oxidized form graphene oxide (GO), the reduced form of GO (RGO) and their numerous composites are associates of this generation. Out of this spectrum of materials, the development of GO and related hybrid materials has been reviewed in the present article. GO can be functionalized with metals (Ag and Mg) and metal oxides (CuO, MgO, Fe2O3, Ag2O, etc.) nanoparticles (NPs), organic ligands (chitosan and EDTA) and can also be dispersed in different polymeric matrices (PVA, PMMA, PPy, and PAn). All these combinations give rise to nanohybrid materials with improved functionality. An updated report on the chronological development of such nanohybrid materials of diverse nature has been delivered in the present context. Modifications in synthesis methodologies as well as performances and applications of individual materials are addressed accordingly. The functional properties of GO were synergistically modified by photoactive semiconductor NPs; as a result, the GO-MO hybrids acquired excellent photocatalytic ability and were able to degrade a large variety of organic dyes (MB, RhB, MO, MR, etc.) and pathogens. The large surface area of GO was successfully complemented by the NPs so that high and selective adsorption capacity towards metal ions and organic molecules as well as improved charge separation properties could be achieved. As a result, GO-MO hybrids have been considered effective materials in water purification, energy storage and antibacterial applications. GO-MO hybrids with magnetic particles have exhibited selective destruction of cancerous cells and controlled drug release properties, extremely important in the pharmaceutical field. Chitosan and EDTA-modified GO could form 3D network-like structures with strong efficiency in removing heavy metal ions and organic pollutants. GO as a filler enhanced the strength, flexibility and functional properties of common polymers, such as PVA and PVC, to a large extent while, GO-CP composites with polyaniline and polypyrrole are considered suitable for the fabrication of biosensors, supercapacitors, and MEMS as well as efficient photothermal therapy agents. In summary, GO-based hybrids with inorganic and organic counterparts have been designed, the unique properties of which are exploited in versatile fields of applications.
Collapse
Affiliation(s)
- Pampi Majumder
- A/515, H. B. Town, Purbayan, Sodepur Kolkata 700110 West Bengal India
| | - Rupali Gangopadhyay
- Department of Chemistry, Sister Nivedita University Action Area I, DG Block, 1/2, New Town Kolkata 700156 West Bengal India
| |
Collapse
|