1
|
Aktas B, Ozgun A, Kilickap BD, Garipcan B. Cell adhesion molecule immobilized gold surfaces for enhanced neuron-electrode interfaces. J Biomed Mater Res B Appl Biomater 2024; 112:e35310. [PMID: 37950592 DOI: 10.1002/jbm.b.35310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/24/2023] [Accepted: 07/31/2023] [Indexed: 11/12/2023]
Abstract
To provide a long-term solution for increasing the biocompatibility of neuroprosthetics, approaches to reduce the side effects of invasive neuro-implantable devices are still in need of improvement. Physical, chemical, and bioactive design aspects of the biomaterials are proven to be important for providing proper cell-to-cell, cell-to-material interactions. Particularly, modification of implant surfaces with bioactive cues, especially cell adhesion molecules (CAMs) that capitalize on native neural adhesion mechanisms, are promising candidates in favor of providing efficient interfaces. Within this concept, this study utilized specific CAMs, namely N-Cadherin (Neural cadherin, N-Cad) and neural cell adhesion molecule (NCAM), to enhance neuron-electrode contact by mimicking the cell-to-ECM interactions for improving the survival of cells and promoting neurite outgrowth. For this purpose, representative gold electrode surfaces were modified with N-Cadherin, NCAM, and the mixture (1:1) of these molecules. Modifications were characterized, and the effect of surface modification on both differentiated and undifferentiated neuroblastoma SH-SY5Y cell lines were compared. The findings demonstrated the successful modification of these molecules which subsequently exhibited biocompatible properties as evidenced by the cell viability results. In cell culture experiments, the CAMs displayed promising results in promoting neurite outgrowth compared to conventional poly-l-lysine coated surfaces, especially NCAM and N-Cad/NCAM modified surfaces clearly showed significant improvement. Overall, this optimized approach is expected to provide an insight into the action mechanisms of cells against the local environment and advance processes for the fabrication of alternative neural interfaces.
Collapse
Affiliation(s)
- Bengu Aktas
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
2
|
Kolarikova M, Hosikova B, Dilenko H, Barton-Tomankova K, Valkova L, Bajgar R, Malina L, Kolarova H. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Med Res Rev 2023. [PMID: 36757198 DOI: 10.1002/med.21935] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023]
Abstract
Photodynamic therapy is an alternative treatment mainly for cancer but also for bacterial infections. This treatment dates back to 1900 when a German medical school graduate Oscar Raab found a photodynamic effect while doing research for his doctoral dissertation with Professor Hermann von Tappeiner. Unexpectedly, Raab revealed that the toxicity of acridine on paramecium depends on the intensity of light in his laboratory. Photodynamic therapy is therefore based on the administration of a photosensitizer with subsequent light irradiation within the absorption maxima of this substance followed by reactive oxygen species formation and finally cell death. Although this treatment is not a novelty, there is an endeavor for various modifications to the therapy. For example, selectivity and efficiency of the photosensitizer, as well as irradiation with various types of light sources are still being modified to improve final results of the photodynamic therapy. The main aim of this review is to summarize anticancer and antibacterial modifications, namely various compounds, approaches, and techniques, to enhance the effectiveness of photodynamic therapy.
Collapse
Affiliation(s)
- Marketa Kolarikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hosikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Barton-Tomankova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Valkova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukas Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
3
|
Biocompatible and Electroconductive Nanocomposite Scaffolds with Improved Piezoelectric Response for Bone Tissue Engineering. INT J POLYM SCI 2022. [DOI: 10.1155/2022/4521937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electroactive scaffolds are relatively new tools in tissue engineering that open new avenue in repairing damaged soft and hard tissues. These scaffolds can induce electrical signaling while providing an ECM-like microenvironment. However, low biocompatibility and lack of biodegradability of piezoelectric and conductive polymers limits their clinical translation. In the current study, we have developed highly biocompatible, electroconductive nanofibrous scaffolds based on poly-L-lactic acid/polyaniline/carbon nanotube (PLLA/polyaniline/CNT). Physical and chemical properties of fabricated scaffolds were tested using various techniques. Biological characteristics of the scaffolds are also examined to check cellular attachment as well as differentiation of cultured (progenitor) cells. Scaffolds were optimized to direct osteogenic differentiation of mesenchymal stem cells. Such scaffolds can offer new strategies for the regeneration of damaged/lost bone.
Collapse
|
4
|
Dong H, Wang K, Zhou D, Ito Y, Hu L, Zhang Z, Zhu X. Enrichment and immobilization of semiconducting single-walled carbon nanotubes by dopamine functionalized conjugated polymer. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Matsumoto K, Ueno K, Hirotani J, Ohno Y, Omachi H. Fabrication of Carbon Nanotube Thin Films for Flexible Transistors by Using a Cross-Linked Amine Polymer. Chemistry 2020; 26:6118-6121. [PMID: 32080906 DOI: 10.1002/chem.202000228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Indexed: 11/10/2022]
Abstract
Owing to their remarkable properties, single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) are expected to be used in various flexible electronics applications. To fabricate SWCNT channel layers for TFTs, solution-based film formation on a self-assembled monolayer (SAM) covered with amino groups is commonly used. However, this method uses highly oxidized surfaces, which is not suitable for flexible polymeric substrates. In this work, a solution-based SWCNT film fabrication using methoxycarbonyl polyallylamine (Moc-PAA) is reported. The NH2 -terminated surface of the cross-linked Moc-PAA layer enables the formation of highly dense and uniform SWCNT networks on both rigid and flexible substrates. TFTs that use the fabricated SWCNT thin film exhibited excellent performance with small variations. The presented simple method to access SWCNT thin film accelerates the realization of flexible nanoelectronics.
Collapse
Affiliation(s)
- Kaisei Matsumoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kazuki Ueno
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Jun Hirotani
- Department of Electronics, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yutaka Ohno
- Department of Electronics, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.,Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Haruka Omachi
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
6
|
Wang K, Dong H, Zhou D, Ito Y, Hu L, Zhang Z, Zhu X. Facile Fabrication of Semiconducting Single-Walled Carbon Nanotubes Patterns on Flexible Substrate Based on a Photoimmobilization Technique. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8722-8729. [PMID: 31994380 DOI: 10.1021/acsami.9b21142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have attracted significant attention due to their outstanding properties. For their wide applications in electronics and optoelectronics, pure semiconducting SWCNTs (s-SWCNTs) and their precise placement are preconditions. Recent advances have focused on developing effective strategies to separate s-SWCNTs from raw SWCNTs, a mixture of metallic and semiconducting nanotubes, and deposit s-SWCNTs on target substrates. Herein, a polyfluorene-based alternative copolymer (PFBP) containing the benzophenone group was employed. PFBP achieved higher yield for s-SWCNTs than the well-studied poly(9,9-dioctylfluorene) through solution process. Subsequently, the dispersed s-SWCNTs were immobilized on a flexible polyethylene terephthalate in a facile manner by the photoreactive benzophenone group upon exposure to UV irradiation, and chemically robust patterns were fabricated from micro to macro scales through photomasks. Our method accomplished by utilizing photoimmobilization is a simple cleaning procedure and an important step forward in pitch scaling for further applications of conjugated polymer wrapped s-SWCNTs.
Collapse
Affiliation(s)
- Kang Wang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 215123 Suzhou , China
| | - Hao Dong
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 215123 Suzhou , China
| | - Di Zhou
- Jiangsu Key Laboratory of Advanced Functional Materials, School of Chemistry and Material Engineering , Changshu Institute of Technology , Changshu , Jiangsu 215500 , China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Lihua Hu
- Analysis and Testing Center , Soochow University , Suzhou 215123 , China
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 215123 Suzhou , China
| | - Xiulin Zhu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 215123 Suzhou , China
| |
Collapse
|
7
|
Kumar B, Falk AL, Afzali A, Tulevski GS, Oida S, Han SJ, Hannon JB. Spatially Selective, High-Density Placement of Polyfluorene-Sorted Semiconducting Carbon Nanotubes in Organic Solvents. ACS NANO 2017; 11:7697-7701. [PMID: 28749135 DOI: 10.1021/acsnano.7b00088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
High-performance logic based on carbon nanotubes (CNTs) requires high-density arrays of selectively placed semiconducting CNTs. Although polymer-wrapping methods can allow CNTs to be sorted to a >99.9% semiconducting purity, patterning these polymer-wrapped CNTs is an outstanding problem. We report the directed self-assembly of polymer-coated semiconducting CNTs using self-assembled monolayers that bind CNTs into arrays of patterned trenches. We demonstrate that CNTs can be placed into 100 nm wide HfO2 trenches with an electrical connection yield as high as 90% and into 50 nm wide trenches with a yield as high as 70%. Our directed self-assembly method is an important step forward in pitch scaling.
Collapse
Affiliation(s)
- Bharat Kumar
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| | - Abram L Falk
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| | - Ali Afzali
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| | - George S Tulevski
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| | - Satoshi Oida
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| | - Shu-Jen Han
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| | - James B Hannon
- IBM T. J. Watson Research Center , 1101 Kitchawan Road, Yorktown Heights, New York 10598, United States
| |
Collapse
|
8
|
Chang CW, Peng CC, Liao WH, Tung YC. Polydimethylsiloxane SlipChip for mammalian cell culture applications. Analyst 2015; 140:7355-65. [DOI: 10.1039/c5an00547g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A polydimethylsiloxane (PDMS) SlipChip for in vitro mammalian cell culture applications, including multiple-treatment assays, cell co-culture, and cytokine detection assays.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Wei-Hao Liao
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| | - Yi-Chung Tung
- Research Center for Applied Sciences
- Academia Sinica
- Taipei 11529
- Taiwan
| |
Collapse
|
9
|
Wu C, He Q, Zhu A, Li D, Xu M, Yang H, Liu Y. Synergistic anticancer activity of photo- and chemoresponsive nanoformulation based on polylysine-functionalized graphene. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21615-21623. [PMID: 25370358 DOI: 10.1021/am5066128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multimodal therapeutic agents based on nanomaterials for cancer combination therapy have attracted increasing attention. In this report, a novel photo- and chemoactive nanohybrid was fabricated by assembling photosensitizer Zn(II)-phthalocyanine (ZnPc) and anticancer drug doxorubicin (DOX) on the biocompatible poly-l-lysine (PLL)-grafted graphene (G-PLL). This nanocomplex of G-PLL/DOX/ZnPc showed excellent physiochemical properties, including high solubility and stability in biological solutions, high drug loading efficiency, pH-triggered drug release, and ability to generalize (1)O2 under light excitation. Compared to free drug molecules, cells treated with G-PLL/DOX/ZnPc showed a higher cellular uptake. In particular, G-PLL/DOX/ZnPc elicited a remarkable synergistic anticancer activity owing to combined photodynamic and chemotherapeutic effects. The combination dose reduction indexes revealed that combining DOX with ZnPc provided strong synergistic effects (combination index < 0.1) against three cancer cell lines tested (HeLa, MCF-7, and B16). Thus, this study demonstrates programmable dual-modality therapy exemplified by G-PLL/DOX/ZnPc to synergistically treat cancers.
Collapse
Affiliation(s)
- Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China , Chengdu, Sichuan 610054, P. R. China
| | | | | | | | | | | | | |
Collapse
|
10
|
Cheng Q, Harris GM, Blais MO, Rutledge K, Jabbarzadeh E. Alignment of Carbon Nanotubes: An Approach to Modulate Cell Orientation and Asymmetry. NANO LIFE 2014; 4:1450002. [PMID: 27170837 PMCID: PMC4861238 DOI: 10.1142/s1793984414500020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stem cells offer a promising tool in tissue engineering strategies, as their differentiated derivatives can be used to reconstruct most biological tissues. These approaches rely on controlling the biophysical cues that tune the ultimate fate of cells. In this context, significant effort has gone to parse out the role of conflicting matrix-elicited signals (e.g., topography and elasticity) in regulation of macroscopic characteristics of cells (e.g., shape and polarity). A critical hurdle, however, lies in our inability to recapitulate the nanoscale spatiotemporal pattern of these signals. The study presented in this manuscript took an initial step to overcome this challenge by developing a carbon nanotube (CNT)-based substrate for nanoresolution control of focal adhesion formation and cell alignment. The utility of this system was studied using human umbilical vascular endothelial cells (HUVECs) and human embryonic stem cells (hESCs) at a single cell level. Our results demonstrated the ability to control cell orientation by merely controlling the alignment of focal adhesions at a nanoscale size. Our long-term vision is to use these nanoengineered substrates to mimic cell orientation in earlier development and explore the role of polarity in asymmetric division and lineage specification of dividing cells.
Collapse
Affiliation(s)
- Qingsu Cheng
- Biomedical Engineering Program, University of South Carolina, SC 29208, USA
| | - Greg M. Harris
- Department of Chemical Engineering Program, University of South Carolina, SC 29208, USA
| | - Marc-Olivier Blais
- Department of Chemical Engineering Program, University of South Carolina, SC 29208, USA
| | - Katy Rutledge
- Department of Chemical Engineering Program, University of South Carolina, SC 29208, USA
| | - Ehsan Jabbarzadeh
- Biomedical Engineering Program, University of South Carolina, SC 29208, USA
- Department of Chemical Engineering Program, University of South Carolina, SC 29208, USA
- Department of Orthopaedic Surgery, University of South Carolina, SC 29208, USA
| |
Collapse
|
11
|
Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z. 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5997-6038. [PMID: 24151185 DOI: 10.1002/adma.201302240] [Citation(s) in RCA: 925] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/22/2013] [Indexed: 05/19/2023]
Abstract
Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.
Collapse
Affiliation(s)
- Mallory L Hammock
- Department of Chemical Engineering, 381 N. South Axis, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | | |
Collapse
|
12
|
Lau PH, Takei K, Wang C, Ju Y, Kim J, Yu Z, Takahashi T, Cho G, Javey A. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. NANO LETTERS 2013; 13:3864-9. [PMID: 23899052 DOI: 10.1021/nl401934a] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fully printed transistors are a key component of ubiquitous flexible electronics. In this work, the advantages of an inverse gravure printing technique and the solution processing of semiconductor-enriched single-walled carbon nanotubes (SWNTs) are combined to fabricate fully printed thin-film transistors on mechanically flexible substrates. The fully printed transistors are configured in a top-gate device geometry and utilize silver metal electrodes and an inorganic/organic high-κ (~17) gate dielectric. The devices exhibit excellent performance for a fully printed process, with mobility and on/off current ratio of up to ~9 cm(2)/(V s) and 10(5), respectively. Extreme bendability is observed, without measurable change in the electrical performance down to a small radius of curvature of 1 mm. Given the high performance of the transistors, our high-throughput printing process serves as an enabling nanomanufacturing scheme for a wide range of large-area electronic applications based on carbon nanotube networks.
Collapse
Affiliation(s)
- Pak Heng Lau
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Some S, Ho SM, Dua P, Hwang E, Shin YH, Yoo H, Kang JS, Lee DK, Lee H. Dual functions of highly potent graphene derivative-poly-L-lysine composites to inhibit bacteria and support human cells. ACS NANO 2012; 6:7151-61. [PMID: 22845739 DOI: 10.1021/nn302215y] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dual-function poly(L-lysine) (PLL) composites that function as antibacterial agents and promote the growth of human cell culture have been sought by researchers for a long period. In this paper, we report the preparation of new graphene derivative-PLL composites via electrostatic interactions and covalent bonding between graphene derivatives and PLL. The resulting composites were characterized by infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. The novel dual function of PLL composites, specifically antibacterial activity and biocompatibility with human cells [human adipose-derived stem cells and non-small-cell lung carcinoma cells (A549)], was carefully investigated. Graphene-DS-PLL composites composed of 4-carboxylic acid benzene diazonium salt (DS) generated more anionic carboxylic acid groups to bind to cationic PLLs, forming the most potent antibacterial agent among PLL and PLL composites with high biocompatibility with human cell culture. This dual functionality can be used to inhibit bacterial growth while enhancing human cell growth.
Collapse
Affiliation(s)
- Surajit Some
- National Creative Research Initiative, Center for Smart Molecular Memory, Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-Dong, Jangan-Gu, Suwon, Gyeonggi-Do 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|