1
|
Arshad M, Gan Y, Wei C, She X, Kolluru PV, Wu C, Naraghi M. Toughening Mechanisms in Stacked Bilayer Graphene Sheets by Means of Sandwiched 1D Nano-rebars. NANO LETTERS 2025; 25:7153-7160. [PMID: 40254837 PMCID: PMC12046602 DOI: 10.1021/acs.nanolett.5c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Graphene, with an intrinsic strength of >100 GPa, exhibits promise for armor applications. However, the thermodynamically favorable manufacturing defects severely diminish their achievable strength. To remedy this, 1D nano-rebars, sandwiched between graphene monolayers, were studied. Real-time mode-I crack growth resistance was studied in reinforced graphene under SEM, which revealed that the dissipative interactions between 1D and 2D nanomaterials can increase the ductility of graphene by over 100%, albeit at a slight loss in effective toughness. This significant improvement was analyzed by introducing the concept of geometric conformity to explain the load transfer between them. By means of finite element analysis and shear lag models we explained the contribution of dissipative interactions between nano-rebar and graphene in reducing stress concentration around cracks, leading to high ductility. The dissipative bonds were found to be more favorable over covalent bonds in terms of maintaining a lower interface stress, further delaying interface local failure.
Collapse
Affiliation(s)
- Muhammad
Usama Arshad
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Yuxiang Gan
- Department
of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Congjie Wei
- Department
of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Xingkang She
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Pavan V. Kolluru
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Chenglin Wu
- Department
of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Mohammad Naraghi
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Department
of Aerospace Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Li J, Hou Y, He Z, Wu H, Zhu Y. Strain Engineering of Ion-Coordinated Nanochannels in Nanocellulose. NANO LETTERS 2024; 24:6262-6268. [PMID: 38743501 DOI: 10.1021/acs.nanolett.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Expanding the interlayer spacing plays a significant role in improving the conductivity of a cellulose-based conductor. However, it remains a challenge to regulate the cellulose nanochannel expanded by ion coordination. Herein, starting from multiscale mechanics, we proposed a strain engineering method to regulate the interlayer spacing of the cellulose nanochannels. First-principles calculations were conducted to select the most suitable ions for coordination. Large-scale molecular dynamics simulations were performed to reveal the mechanism of interlayer spacing expansion by the ion cross-linking. Combining the shear-lag model, we established the relationship between interfacial cross-link density and interlayer spacing of an ion-coordinated cellulose nanochannel. Consequently, fast ion transport and current regulation were realized via the strain engineering of nanochannels, which provides a promising strategy for the current regulation of a cellulose-based conductor.
Collapse
Affiliation(s)
- JiaHao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - YuanZhen Hou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - ZeZhou He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing 100190, People's Republic of China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
| |
Collapse
|
3
|
Park K, Song C, Park J, Ryu S. Multi-objective Bayesian optimization for the design of nacre-inspired composites: optimizing and understanding biomimetics through AI. MATERIALS HORIZONS 2023; 10:4329-4343. [PMID: 37434475 DOI: 10.1039/d3mh00137g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The hierarchical structures found in biological materials lead to an outstanding balance of multiple material properties, and numerous research studies have been initiated to emulate the key concepts for the designing of engineering materials, the so-called bioinspired composites. However, the optimization of bioinspired composites has long been difficult as it usually falls into the category of 'black-box problem', the objective functions not being available in a functional form. Also, bioinspired composites possess multiple material properties that are in a trade-off relationship, making it impossible to reach a unique optimal design solution. As a breakthrough, we propose a data-driven material design framework which can generate bioinspired composite designs with an optimal balance of material properties. In this study, a nacre-inspired composite is chosen as the subject of study and the optimization framework is applied to determine the designs that have an optimal balance of strength, toughness, and specific volume. Gaussian process regression was adopted for the modeling of a complex input-output relationship, and the model was trained with the data generated from the crack phase-field simulation. Then, multi-objective Bayesian optimization was carried out to determine pareto-optimal composite designs. As a result, the proposed data-driven algorithm could generate a 3D pareto surface of optimal composite design solutions, from which a user can choose a design that suits his/her requirement. To validate the result, several pareto-optimal designs are built using a PolyJet 3D printer, and their tensile test results show that each of the characteristic designs is well optimized for its specific target objective.
Collapse
Affiliation(s)
- Kundo Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Chihyeon Song
- Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinkyoo Park
- Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Nie Y, Gao H, Ji H. The energy dissipation property in bioinspired staggered composites with the viscoelastic matrix. J Mech Behav Biomed Mater 2023; 146:106068. [PMID: 37639934 DOI: 10.1016/j.jmbbm.2023.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Many biological materials, such as bone and nacre, exhibit remarkable combinations of stiffness, strength, toughness, and impact resistance over millions of years of evolution. They provide prototypes for designing high-performance artificial composites. However, the dynamic properties of biological materials under impact loading are still not clear. In this study, we establish a dynamic shear-lag model to explore the dynamic response and the energy dissipation capacity of bioinspired staggered composites with a viscoelastic matrix under impact loading. The time domain solution of the dynamic shear-lag model is derived. Then, the model is verified by comparing it with the results from the finite element method. The results demonstrate that matrix viscosity plays a significant role in dissipating the impact energy and enhances the wave transformation between adjacent tablets. Furthermore, there exists an optimal viscosity coefficient to achieve an excellent balance between the rate and efficiency of energy dissipation. The model and the results can not only reveal the energy dissipation property of biological materials but also provide guidelines for the design and optimization of high-performance composites.
Collapse
Affiliation(s)
- Yunqing Nie
- College of Aerospace Science and Engineering, National University of Defense Technology, 109 Deya Road, Changsha, 410073, Hunan, People's Republic of China
| | - Hua Gao
- Northwest Institute of Mechanical and Electrical Engineering, 5 BiYuan Road, Xianyang, 712099, Shanxi, People's Republic of China
| | - Haoran Ji
- Intelligent Game and Decision Lab, Haidian District, 100071, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Modeling of Multiple Fatigue Cracks for the Aircraft Wing Corner Box Based on Non-Ordinary State-Based Peridynamics. METALS 2022. [DOI: 10.3390/met12081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the current research, we propose a novel non-ordinary state-based peridynamics (PD) fatigue model for multiple cracks’ initiation and growth under tension–tension fatigue load. In each loading cycle, the fatigue loading is redistributed throughout the peridynamic solid body, leading to progressive fatigue damage formation and expansion in an autonomous fashion. The proposed fatigue model parameters are first verified by a 3D numerical solution, and then, the novel model is used to depict the widespread fatigue damage evolution of the aircraft wing corner box. The modified constitutive damage model has been implemented into the peridynamic framework. Furthermore, the criteria and processes from multiple initiations to propagation are discussed in detail. It was found that the computational results obtained from the PD fatigue model were consistent with those from the test data. The angular errors of multiple cracks are within 2.66% and the number of cycles errors are within 15%. A comparison of test data and computational results indicates that the fatigue model can successfully capture multiple crack formations and propagation, and other behaviors of aluminum alloy material.
Collapse
|
6
|
Abstract
ConspectusUsing a limited selection of ordinary components and at ambient temperature, nature has managed to produce a wide range of incredibly diverse materials with astonishingly elegant and complex architectures. Probably the most famous example is nacre, or mother-of-pearl, the inner lining of the shells of abalone and certain other mollusks. Nacre is 95% aragonite, a hard but brittle calcium carbonate mineral, that exhibits fracture toughness exceedingly greater than that of pure aragonite, when tested in the direction perpendicular to the platelets. No human-made composite outperforms its constituent materials by such a wide margin. Nature's unique ability to combine the desirable properties of components into a material that performs significantly better than the sum of its parts has sparked strong interest in bioinspired materials design.Inspired by this complex hierarchical architecture, many processing routes have been proposed to replicate one or several of these features. New processing techniques point to a number of laboratory successes that hold promise in mimicking nacre. We pioneered one of them, ice templating, in 2006. When a suspension of particles is frozen, particles are rejected by the growing ice crystals and concentrate in the space between the crystals. After the ice is freeze-dried, the resulting scaffold is a porous body that can eventually be pressed to increase the density and then be infiltrated with a second phase, providing multilayered, lamellar complex composites with a microstructure reminiscent of nacre. The composites exhibit a marked crack deflection during crack propagation, enhancing the damage resistance of the materials, offering an interesting trade-off of strength and toughness.Freezing as a path to build complex composites has turned out to be a rich line of research and development. Understanding and controlling the freezing routes and associated phenomena has become a multidisciplinary endeavor. A step forward in the complexity was achieved with the use of anisotropic particles. Ice-induced segregation and alignment of platelets can yield dense, inorganic composites (nacre-like alumina) with a complex architecture and microstructure, replicating several of the morphological features of nacre. Now, a different class of complex composites is quickly arising: engineered living materials, developed in the soft matter and biology communities. The material-agnostic nature of the freezing routes, the use of an aqueous system, the absence of organic solvents, and the low temperatures being used are all strong assets for the development of such complex composites. More complex building blocks, such as cells or bacteria, can be frozen. Understanding the fundamental mechanisms controlling the interactions between the ice crystals and the objects as well as the interactions between the soft objects themselves and their fate is essential in this context.In this Account, we highlight our efforts over the past decade to achieve the controlled synthesis of nacre-like composites and understand the associated processes and properties. We describe the unique hierarchical and chemical structure of nacre and the fabrication strategies for processing nacre-like composites. We also try to explain why natural materials work so well and see how we can implement these lessons in synthetic composites. Finally, we provide an outlook on the new trends and ongoing challenges in this field. We hope that this Account will inspire future developments in the field of ice templating and bioinspired materials.
Collapse
Affiliation(s)
- Sylvain Deville
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Antoni P. Tomsia
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Sylvain Meille
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS UMR 5510, 69621 Villeurbanne, France
| |
Collapse
|
7
|
Insights on Shear Transfer Efficiency in "Brick-and-Mortar" Composites Made of 2D Carbon Nanoparticles. NANOMATERIALS 2022; 12:nano12081359. [PMID: 35458067 PMCID: PMC9027589 DOI: 10.3390/nano12081359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023]
Abstract
Achieving high mechanical performances in nanocomposites reinforced with lamellar fillers has been a great challenge in the last decade. Many efforts have been made to fabricate synthetic materials whose properties resemble those of the reinforcement. To achieve this, special architectures have been considered mimicking existing materials, such as nacre. However, achieving the desired performances is challenging since the mechanical response of the material is influenced by many factors, such as the filler content, the matrix molecular mobility and the compatibility between the two phases. Most importantly, the properties of a macroscopic bulk material strongly depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases. Consequently, poor mechanical performances of the material are associated with interface issues and low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at the chemical level enhances the mechanical response of the material. The purpose of this review is to give insight into the stress transfer mechanism in high filler content composites reinforced with 2D carbon nanoparticles and to describe the parameters that influence the efficiency of stress transfer and the strategies to improve it.
Collapse
|
8
|
Yang Z, Niksiar P, Meng Z. Identifying Structure-Property Relationships of Micro-Architectured Porous Scaffolds through 3D Printing and Finite Element Analysis. COMPUTATIONAL MATERIALS SCIENCE 2022; 202:110987. [PMID: 34898854 PMCID: PMC8654210 DOI: 10.1016/j.commatsci.2021.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study integrates 3D printing and finite element analysis (FEA) to investigate the effect of micro-architectural characteristics on the mechanical properties of porous scaffolds. The studied characteristics include the thickness of the scaffold walls and the number of domains at the cross-section. We use 3D printing to fabricate scaffolds of deliberately designed microstructures to enable strict control of the structures. The longitudinal compressive properties of different scaffolds are first analyzed through experimental testing. Then, FEA is conducted to investigate the mechanical properties and the deformation mechanisms of the scaffolds. We find that decreasing wall thickness leads to failure mechanism transition from wall compression failure to buckling instability. For scaffolds with different wall thicknesses, the failure mechanisms and the critical loads are evaluated using the theory of thin plate buckling. For the characteristic of the number of domains, both experimental and FEA results indicate increasing effective stiffness with increasing domains. Interestingly, we find that with the material properties extracted from a single wall scaffold, the computational models tend to overestimate the effective compression modulus of scaffolds with larger numbers of walls or domains than the experimental data. This observation indicates possible size-dependent material properties in 3D printed structs. Our study demonstrates that integrating experiments and computational modeling can provide fundamental insights into the mechanical properties and deformation mechanisms of micro-architectured scaffolds and unveil unique small-scale material behaviors.
Collapse
Affiliation(s)
- Zhangke Yang
- Department of Mechanical Engineering, Clemson University, SC 29634, USA
| | - Pooya Niksiar
- Department of Mechanical Engineering, The Citadel, Charleston, SC 29409, USA
| | - Zhaoxu Meng
- Department of Mechanical Engineering, Clemson University, SC 29634, USA
| |
Collapse
|
9
|
Olson E, Liu F, Blisko J, Li Y, Tsyrenova A, Mort R, Vorst K, Curtzwiler G, Yong X, Jiang S. Self-assembly in biobased nanocomposites for multifunctionality and improved performance. NANOSCALE ADVANCES 2021; 3:4321-4348. [PMID: 36133470 PMCID: PMC9418702 DOI: 10.1039/d1na00391g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/26/2021] [Indexed: 06/16/2023]
Abstract
Concerns of petroleum dependence and environmental pollution prompt an urgent need for new sustainable approaches in developing polymeric products. Biobased polymers provide a potential solution, and biobased nanocomposites further enhance the performance and functionality of biobased polymers. Here we summarize the unique challenges and review recent progress in this field with an emphasis on self-assembly of inorganic nanoparticles. The conventional wisdom is to fully disperse nanoparticles in the polymer matrix to optimize the performance. However, self-assembly of the nanoparticles into clusters, networks, and layered structures provides an opportunity to address performance challenges and create new functionality in biobased polymers. We introduce basic assembly principles through both blending and in situ synthesis, and identify key technologies that benefit from the nanoparticle assembly in the polymer matrix. The fundamental forces and biobased polymer conformations are discussed in detail to correlate the nanoscale interactions and morphology with the macroscale properties. Different types of nanoparticles, their assembly structures and corresponding applications are surveyed. Through this review we hope to inspire the community to consider utilizing self-assembly to elevate functionality and performance of biobased materials. Development in this area sets the foundation for a new era of designing sustainable polymers in many applications including packaging, construction chemicals, adhesives, foams, coatings, personal care products, and advanced manufacturing.
Collapse
Affiliation(s)
- Emily Olson
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Fei Liu
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Jonathan Blisko
- Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Yifan Li
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Ayuna Tsyrenova
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
| | - Rebecca Mort
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| | - Keith Vorst
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Greg Curtzwiler
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
- Food Science and Human Nutrition, Iowa State University Ames IA 50011 USA
| | - Xin Yong
- Mechanical Engineering, Binghamton University Binghamton NY 13902 USA
| | - Shan Jiang
- Mateirals Science and Engineering, Iowa State University Ames IA 50011 USA
- Polymer and Food Protection Consortium, Iowa State University Ames IA 50011 USA
| |
Collapse
|
10
|
Liu N, Chavoshnejad P, Li S, Razavi MJ, Liu T, Pidaparti R, Wang X. Geometrical nonlinear elasticity of axon under tension: A coarse-grained computational study. Biophys J 2021; 120:3697-3708. [PMID: 34310941 DOI: 10.1016/j.bpj.2021.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Axon bundles cross-linked by microtubule (MT) associate proteins and bounded by a shell skeleton are critical for normal function of neurons. Understanding effects of the complexly geometrical parameters on their mechanical properties can help gain a biomechanical perspective on the neurological functions of axons and thus brain disorders caused by the structural failure of axons. Here, the tensile mechanical properties of MT bundles cross-linked by tau proteins are investigated by systematically tuning MT length, axonal cross-section radius, and tau protein spacing in a bead-spring coarse-grained model. Our results indicate that the stress-strain curves of axons can be divided into two regimes, a nonlinear elastic regime dominated by rigid-body like inter-MT sliding, and a linear elastic regime dominated by affine deformation of both tau proteins and MTs. From the energetic analyses, first, the tau proteins dominate the mechanical performance of axons under tension. In the nonlinear regime, tau proteins undergo a rigid-body like rotating motion rather than elongating, whereas in the nonlinear elastic regime, tau proteins undergo a flexible elongating deformation along the MT axis. Second, as the average spacing between adjacent tau proteins along the MT axial direction increases from 25 to 125 nm, the Young's modulus of axon experiences a linear decrease whereas with the average space varying from 125 to 175 nm, and later reaches a plateau value with a stable fluctuation. Third, the increment of the cross-section radius of the MT bundle leads to a decrease in Young's modulus of axon, which is possibly attributed to the decrease in MT numbers per cross section. Overall, our research findings offer a new perspective into understanding the effects of geometrical parameters on the mechanics of MT bundles as well as serving as a theoretical basis for the development of artificial MT complexes potentially toward medical applications.
Collapse
Affiliation(s)
- Ning Liu
- College of Engineering, University of Georgia, Athens, Georgia
| | - Poorya Chavoshnejad
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Shaoheng Li
- College of Engineering, University of Georgia, Athens, Georgia
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York
| | - Tianming Liu
- Department of Computer Science, University of Georgia, Athens, Georgia
| | | | - Xianqiao Wang
- College of Engineering, University of Georgia, Athens, Georgia.
| |
Collapse
|
11
|
Yang J, Custer D, Chun Chiang C, Meng Z, Yao XH. Understanding the Mechanical and Viscoelastic Properties of Graphene Reinforced Polycarbonate Nanocomposites Using Coarse-Grained Molecular Dynamics Simulations. COMPUTATIONAL MATERIALS SCIENCE 2021; 191:110339. [PMID: 33737768 PMCID: PMC7963262 DOI: 10.1016/j.commatsci.2021.110339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Incorporating graphene nanosheets into a polymer matrix is a promising way to utilize the remarkable electronic, thermal, and mechanical properties of graphene. However, the underlying mechanisms near the graphene-polymer interface remain poorly understood. In this study, we employ coarse-grained molecular dynamics (MD) simulations to investigate the nanoscale mechanisms present in graphene-reinforced polycarbonate (GRPC) and the effect of those mechanisms on GRPC's mechanical properties. With a mean-squared displacement analysis, we find that the polymer chains near the GRPC interface exhibit lower mobility than the chains further from the graphene sheet. We also show that the embedding of graphene increases Young's modulus and yield strength of bulk PC. Through non-equilibrium MD simulations and a close look into the deformation mechanisms, we find that early strain localization arises in GRPC, with voids being concentrated further away from the graphene sheet. These results indicate that graphene nanosheets promote the heterogeneous deformation of GRPC. Additionally, to gain deeper insight into the mechanical, interfacial, and viscoelastic properties of GRPC, we study the effects of varying PC chain lengths and interfacial interactions as well as the comparative performance of GRPC and PC under small amplitude oscillatory shear tests. We find that increasing the interfacial interaction leads to an increase in both storage and loss moduli, whereas varying chain length has minimal influence on the dynamic modulus of GRPC. This study contributes to the fundamental understanding of the nanoscale failure mechanisms and structure-property relationships of graphene reinforced polymer nanocomposites.
Collapse
Affiliation(s)
- Jie Yang
- Department of Engineering Mechanics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Daniel Custer
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | - Cho Chun Chiang
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | - Zhaoxu Meng
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | - X H Yao
- Department of Engineering Mechanics, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
12
|
Shishehbor M, Son H, Nuruddin M, Youngblood JP, Davis C, Zavattieri PD. Influence of alignment and microstructure features on the mechanical properties and failure mechanisms of cellulose nanocrystals (CNC) films. J Mech Behav Biomed Mater 2021; 118:104399. [PMID: 33662741 DOI: 10.1016/j.jmbbm.2021.104399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
The mechanical properties of cellulose nanocrystal (CNC) films critically depend on many microstructural parameters such as fiber length distribution (FLD), fiber orientation distribution (FOD), and the strength of the interactions between the fibers. In this paper, we use our coarse-grained molecular model of CNC to study the effect of length and orientation distribution and attractions between CNCs on the mechanical properties of neat CNCs. The effect of misalignment of a 2D staggered structure of CNC with respect to the loading direction was studied with simulations and analytical solutions and then verified with experiments. To understand the effect of FLD and FOD on the mechanical performance, various 3D microstructures representing different case studies such as highly aligned, randomly distributed, short length CNCs and long length CNCs were generated and simulated. According to the misalignment study, three different failure modes: sliding mode, mixed mode, and normal mode were defined. Also, comparing the effects of FOD, FLD, and CNC interaction strength, shows that the adhesion strength is the only parameter that can significantly improve the mechanical properties, regardless of loading direction or FOD of CNCs.
Collapse
Affiliation(s)
- Mehdi Shishehbor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Hyeyoung Son
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Md Nuruddin
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeffrey P Youngblood
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chelsea Davis
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Pablo D Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Gupta N, Alred JM, Penev ES, Yakobson BI. Universal Strength Scaling in Carbon Nanotube Bundles with Frictional Load Transfer. ACS NANO 2021; 15:1342-1350. [PMID: 33381972 DOI: 10.1021/acsnano.0c08588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes (CNTs) individually display exceptional mechanical properties, but the strength of their mesoscale assemblies such as bundles has a fundamental disconnect, with limited understanding of its scaling. Here we use coarse-grained implementation of a CNT interface with prescribed length distributions and parametrized cross-link density, providing two essential control parameters. It is shown that a linear relationship between strength of the bundles and these control parameters exists, across multiple hierarchies of nanotube interfaces. Furthermore, all geometrical perturbations caused by length distribution and bundle dimensions result in a net stress concentration effect, without influencing the scaling behavior.
Collapse
Affiliation(s)
- Nitant Gupta
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - John M Alred
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Evgeni S Penev
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
14
|
Fiber reorientation in hybrid helicoidal composites. J Mech Behav Biomed Mater 2020; 110:103914. [PMID: 32957213 DOI: 10.1016/j.jmbbm.2020.103914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 11/23/2022]
Abstract
Naturally occurring biological materials with stiff fibers embedded in a ductile matrix are commonly known to achieve excellent balance between stiffness, strength and ductility. In particular, biological composite materials with helicoidal architecture have been shown to exhibit enhanced damage tolerance and increased impact energy absorption. However, the role of fiber reorientation inside the flexible matrix of helicoid composites on their mechanical behaviors have not yet been extensively investigated. In the present work, we introduce a Discontinuous Fiber Helicoid (DFH) composite inspired by both the helicoid microstructure in the cuticle of mantis shrimp and the nacreous architecture of the red abalone shell. We employ 3D printed specimens, analytical models and finite element models to analyze and quantify in-plane fiber reorientation in helicoid architectures with different geometrical features. We also introduce additional architectures, i.e., single unidirectional lamina and mono-balanced architectures, for comparison purposes. Compared with associated mono-balanced architectures, helicoid architectures exhibit less fiber reorientation values and lower values of strain stiffening. The explanation for this difference is addressed in terms of the measured in-plane deformation, due to uniaxial tensile of the laminae, correlated to lamina misorientation with respect to the loading direction and lay-up sequence.
Collapse
|
15
|
Zhang S, Liu Y, Shang J, Ujjaman Chudry MK, Zheng Y, Cai J, An B, Zhang D, Zheng R. Enamel-inspired materials design achieving balance of high stiffness and large energy dissipation. J Mech Behav Biomed Mater 2020; 103:103587. [PMID: 32090916 DOI: 10.1016/j.jmbbm.2019.103587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 11/19/2022]
Abstract
Owing to the unique non-self-similar hierarchical microstructure, enamel achieves the balance of high stiffness and toughness, and in turn provides important ideas for the bio-inspired materials design. In this study, a multiscale numerical study has been conducted to investigate whether the property of high stiffness and large energy dissipation could be duplicated in engineering materials through certain material design principles. Motivated by the structure of enamel, the bio-inspired materials consisting of hard and soft phases were considered, and the designing parameters including the cross-sectional shape, volume fraction, and inclination angle of the reinforcement, and other three parameters related to the waviness of the reinforcement were taken into account. It was found that by employing the non-self-similar hierarchical structure, the designed composites exhibited the balance between stiffness and toughness, which has not been achieved in many engineering materials yet. Furthermore, the influences of the aforementioned designing parameters on the mechanical performance of the composites have been elucidated. The findings of this study have provided a guideline for designing bio-inspired composites achieving the balance between stiffness and toughness.
Collapse
Affiliation(s)
- Shuiqiang Zhang
- School of Engineering, Huzhou University, Huzhou, 313000, China.
| | - Yuying Liu
- School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Jiangyinzi Shang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Yuqing Zheng
- School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Jiabin Cai
- School of Engineering, Huzhou University, Huzhou, 313000, China
| | - Bingbing An
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai, 200072, China; School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200444, China
| | - Dongsheng Zhang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai, 200072, China; School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200444, China
| | - Ruizhe Zheng
- Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200050, China
| |
Collapse
|
16
|
A New Biomimetic Composite Structure with Tunable Stiffness and Superior Toughness via Designed Structure Breakage. MATERIALS 2020; 13:ma13030636. [PMID: 32023937 PMCID: PMC7040607 DOI: 10.3390/ma13030636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022]
Abstract
Mimicking natural structures has been highly pursued recently in composite structure design to break the bottlenecks in the mechanical properties of the traditional structures. Bone has a remarkable comprehensive performance of strength, stiffness and toughness, due to the intricate hierarchical microstructures and the sacrificial bonds within the organic components. Inspired by the strengthening and toughening mechanisms of cortical bone, a new biomimetic composite structure, with a designed progressive breakable internal construction mimicking the sacrificial bond, is proposed in this paper. Combining the bio-composite staggered plate structure with the sacrificial bond-mimicking construction, our new structure can realize tunable stiffness and superior toughness. We established the constitutive model of the representative unit cell of our new structure, and investigated its mechanical properties through theoretical analysis, as well as finite element modeling (FEM) and simulation. Two theoretical relations, respectively describing the elastic modulus decline ratio and the unit cell toughness promotion, are derived as functions of the geometrical parameters and the material parameters, and validated by simulation. We hope that this work can lay the foundation for the stiffness tunable and high toughness biomimetic composite structure design, and provide new ideas for the development of sacrificial bond-mimicking strategies in bio-inspired composite structures.
Collapse
|
17
|
Shishehbor M, Pouranian MR. Tuning the Mechanical and Adhesion Properties of Carbon Nanotubes Using Aligned Cellulose Wrap (Cellulose Nanotube): A Molecular Dynamics Study. NANOMATERIALS 2020; 10:nano10010154. [PMID: 31963187 PMCID: PMC7022496 DOI: 10.3390/nano10010154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
Improving the adhesion properties of carbon nanotubes (CNTs) at the molecular scale can significantly enhance dispersion of CNT fibers in polymer matrix and unleash the dormant extraordinary mechanical properties of CNTs in CNT-polymer nanocomposites. Inspired by the outstanding adhesion, dispersion, mechanical, and surface functionalization properties of crystalline nanocellulose (CNC), this paper studies the mechanical and adhesion properties of CNT wrapped by aligned cellulose chains around CNT using molecular dynamic simulations. The strength, elastic modulus, and toughness of CNT-cellulose fiber for different cellulose contents are obtained from tensile and compression tests. Additionally, the effect of adding cellulose on the surface energy, interfacial shear modulus, and strength is evaluated. The result shows that even adding a single layer cellulose wrap (≈55% content) significantly decreases the mechanical properties, however, it also dramatically enhances the adhesion energy, interfacial shear strength, and modulus. Adding more cellulose layers, subsequently, deceases and increases mechanical properties and adhesion properties, respectively. In addition, analysis of nanopapers of pristine CNT, pristine CNC, and CNT-wrapped cellulose reveals that CNT-wrapped cellulose nanopapers are strong, stiff, and tough, while for CNT and CNC either strength or toughness is compromised. This research shows that cellulose wraps provide CNT fibers with tunable mechanical properties and adhesion energy that could yield strong and tough materials due to the excellent mechanical properties of CNT and active surface and hydrogen bonding of cellulose.
Collapse
|
18
|
Sajadi SM, Woellner CF, Ramesh P, Eichmann SL, Sun Q, Boul PJ, Thaemlitz CJ, Rahman MM, Baughman RH, Galvão DS, Tiwary CS, Ajayan PM. 3D Printed Tubulanes as Lightweight Hypervelocity Impact Resistant Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904747. [PMID: 31709753 DOI: 10.1002/smll.201904747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Lightweight materials with high ballistic impact resistance and load-bearing capabilities are regarded as a holy grail in materials design. Nature builds these complementary properties into materials using soft organic materials with optimized, complex geometries. Here, the compressive deformation and ballistic impact properties of three different 3D printed polymer structures, named tubulanes, are reported, which are the architectural analogues of cross-linked carbon nanotubes. The results show that macroscopic tubulanes are remarkable high load-bearing, hypervelocity impact-resistant lightweight structures. They exhibit a lamellar deformation mechanism, arising from the tubulane ordered pore structure, manifested across multiple length scales from nano to macro dimensions. This approach of using complex geometries inspired by atomic and nanoscale models to generate macroscale printed structures allows innovative morphological engineering of materials with tunable mechanical responses.
Collapse
Affiliation(s)
- Seyed Mohammad Sajadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Cristiano F Woellner
- Physics Department, Federal University of Parana (UFPR), 81531980, Curitiba, PR, Brazil
| | - Prathyush Ramesh
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | | | - Qiushi Sun
- Aramco Research Center, Houston, TX, 77061, USA
| | | | | | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Douglas S Galvão
- Applied Physics Department and Center of Computational Engineering and Science, State University of Campinas-UNICAMP, 13083-859, Campinas, SP, Brazil
| | - Chandra Sekhar Tiwary
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
- Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
19
|
Mechanical Properties of Cellulose Nanocrystal (CNC) Bundles: Coarse-Grained Molecular Dynamic Simulation. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3020057] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellulose nanocrystals (CNCs) is a promising biodegradable nanomaterial with outstanding physical, chemical, and mechanical properties for many applications. Although aligned CNCs can self-assemble into bundles, their mechanical performance is reduced by interfacial strength between CNCs and a twisted structure. In this paper, we employ developed coarse-grained (CG) molecular dynamic (MD) simulations to investigate the influence of twist and interface energy on the tensile performance of CNC bundles. CNC bundles of different sizes (number of particles) are tested to also include the effect of size on mechanical performance. The effect of interfacial energy and twist on the mechanical performance shows that elastic modulus, strength, and toughness are more sensitive to twisted angle than interfacial energy. In addition, the effect of size on the bundle and twist on their mechanical performance revealed that both size and twist have a significant effect on the results and can reduce the strength and elastic modulus by 75% as a results of covalent bond dissociation. In addition, a comparison of the broken regions for different values of twist shows that by increasing the twist angle the crack propagates in multiple locations with a twisted shape.
Collapse
|
20
|
Negi V, Sengab A, Picu RC. Strength of filament bundles - The role of bundle structure stochasticity. J Mech Behav Biomed Mater 2019; 94:1-9. [PMID: 30851655 DOI: 10.1016/j.jmbbm.2019.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 11/26/2022]
Abstract
Most biological fibrous materials are hierarchical, in the sense that fibers of finite length assemble in bundles, which then form networks with structural role. Examples include collagen, silk, fibrin and microtubules. Some artificial fiber-based materials share this characteristic, examples including carbon nanotube (CNT) yarns and unidirectional composites. Here we study bundles in which filaments do not break, while bundle rupture happens by the failure of inter-filament crosslinks, followed by pull-out. In all cases, the crosslinks are randomly distributed along interfaces. The strength of such bundles depends on material parameters of the filaments and crosslinks, such as their stiffness and strength, and on the cross-link density. We focus on the dependence of the bundle strength on two parameters: filament waviness and filament staggering. Bundles with regular staggering are stronger than those with stochastic staggering. We identify the optimal regular staggering that maximizes the strength. Filament waviness increases the strength of stochastically staggered bundles at constant crosslink density but decreases the strength of regularly staggered bundles. Results for bundles with permanent crosslinks, which never reform once they break, as well as transient crosslinks capable of reforming during deformation are presented, and it is shown that the general trends are independent of the nature of the crosslinks. The results are discussed in the context of collagen and carbon nanotube bundles.
Collapse
Affiliation(s)
- V Negi
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - A Sengab
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| |
Collapse
|
21
|
Owuor PS, Tsafack T, Hwang HY, Sajadi M, Jung S, Li T, Susarla S, Wei B, Vajtai R, Lou J, Bhowmick S, Tiwary CS, Ajayan PM. Interconnecting Bone Nanoparticles by Ovalbumin Molecules to Build a Three-Dimensional Low-Density and Tough Material. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41757-41762. [PMID: 30379531 DOI: 10.1021/acsami.8b13681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural building blocks like proteins and hydroxyapatite (HA) are found in abundance. However, their effective utilization to fabricate environment-friendly, strong, stiff, and tough materials remains a challenge. This work reports on the synthesis of a layered material from entirely natural building blocks. A simple process to extract HA from bones, while keeping collagen intact, is presented. These HA nanocrystals have a high aspect ratio as a result of the extraction method that largely retains the pristine nature of the HA. To fabricate the materials, polymerized egg white is used to induce toughness to the crystals where it acts like a load transfer entity between the crystals. As shown by atomic force microscope modulus mapping, the result is a layered material with a modulus that ranges from 3 to 180 GPa. Furthermore, the material exhibits self-stiffening behavior. Hydrogen and ionic bonds are likely to regulate the chemical interactions at the egg white/HA interface and are likely to be responsible for the observed high toughness and stiffness, respectively. The use of the HA/egg white composite as printed scaffolds is also demonstrated together with their biocompatibility.
Collapse
Affiliation(s)
- Peter Samora Owuor
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Thierry Tsafack
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Hye Yoon Hwang
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Mohamed Sajadi
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Seohui Jung
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Tong Li
- University of Delaware , Newark , Delaware 19716 , United States
| | - Sandhya Susarla
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Bingqing Wei
- University of Delaware , Newark , Delaware 19716 , United States
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Jun Lou
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| | - Sanjit Bhowmick
- Bruker Nano Surfaces , Minneapolis , Minnesota 55344 , United States
| | - Chandra Sekhar Tiwary
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
- Metallurgical and Materials Engineering , Indian Institute of Technology , Kharagpur , West-Bengal 721302 , India
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
22
|
Song N, Zhang Y, Gao Z, Li X. Bioinspired, Multiscale Reinforced Composites with Exceptionally High Strength and Toughness. NANO LETTERS 2018; 18:5812-5820. [PMID: 30088938 DOI: 10.1021/acs.nanolett.8b02459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nature's multiscale reinforcing mechanisms in fabricating composite armors, such as seashells, provide lessons for engineering materials design and manufacturing. However, it is still a challenge to simultaneously add both micro- and nanoreinforcements in a matrix material since nano-fillers tend to agglomerate, decreasing their reinforcing effects. In this study, we report a new type of micro/nano hybrid filler, synthesized by an unconventional cotton aided method, which has B4C microplatelet as the core and radially aligned B4C nanowires as the shell. To enhance the bonding between the B4C fillers and epoxy, the B4C micro/nano-fillers were coated with a layer of polyaniline (PANI). With a low concentration of the PANI functionalized B4C micro/nano-fillers (1 wt %), this B4C/epoxy composite exhibited an exceptional combination of mechanical properties in terms of elastic modulus (∼3.47 GPa), toughness (2026.3 kJ/m3), and fracture strain (>3.6%). An analytical mechanics model was established to show that such multiscale reinforcement design remarkably enhanced the load carrying efficiency of the B4C fillers, leading to the overall improved mechanical performance of the composites. This new design concept opens up a new path for developing lightweight, yet high-strength and tough materials with multiscale reinforcing configurations.
Collapse
Affiliation(s)
- Ningning Song
- Department of Mechanical and Aerospace Engineering University of Virginia 122 Engineer's Way Charlottesville , Virginia 22904-4746 , United States
| | - Yunya Zhang
- Department of Mechanical and Aerospace Engineering University of Virginia 122 Engineer's Way Charlottesville , Virginia 22904-4746 , United States
| | - Zan Gao
- Department of Mechanical and Aerospace Engineering University of Virginia 122 Engineer's Way Charlottesville , Virginia 22904-4746 , United States
| | - Xiaodong Li
- Department of Mechanical and Aerospace Engineering University of Virginia 122 Engineer's Way Charlottesville , Virginia 22904-4746 , United States
| |
Collapse
|
23
|
Hansoge NK, Huang T, Sinko R, Xia W, Chen W, Keten S. Materials by Design for Stiff and Tough Hairy Nanoparticle Assemblies. ACS NANO 2018; 12:7946-7958. [PMID: 29975847 DOI: 10.1021/acsnano.8b02454] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Matrix-free polymer-grafted nanocrystals, called assembled hairy nanoparticles (aHNPs), can significantly enhance the thermomechanical performance of nanocomposites by overcoming nanoparticle dispersion challenges and achieving stronger interfacial interactions through grafted polymer chains. However, effective strategies to improve both the mechanical stiffness and toughness of aHNPs are lacking given the general conflicting nature of these two properties and the large number of molecular parameters involved in the design of aHNPs. Here, we propose a computational framework that combines multiresponse Gaussian process metamodeling and coarse-grained molecular dynamics simulations to establish design strategies for achieving optimal mechanical properties of aHNPs within a parametric space. Taking poly(methyl methacrylate) grafted to high-aspect-ratio cellulose nanocrystals as a model nanocomposite, our multiobjective design optimization framework reveals that the polymer chain length and grafting density are the main influencing factors governing the mechanical properties of aHNPs, in comparison to the nanoparticle size and the polymer-nanoparticle interfacial interactions. In particular, the Pareto frontier, that marks the upper bound of mechanical properties within the design parameter space, can be achieved when the weight percentage of nanoparticles is above around 60% and the grafted chains exceed the critical length scale governing transition into the semidilute brush regime. We show that theoretical scaling relationships derived from the Daoud-Cotton model capture the dependence of the critical length scale on graft density and nanoparticle size. Our established modeling framework provides valuable insights into the mechanical behavior of these hairy nanoparticle assemblies at the molecular level and allows us to establish guidelines for nanocomposite design.
Collapse
Affiliation(s)
- Nitin K Hansoge
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
| | - Tianyu Huang
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
| | - Robert Sinko
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
- Department of Mechanical Engineering , Northern Illinois University , 590 Garden Road , DeKalb , Illinois 60115 , United States
| | - Wenjie Xia
- Department of Civil and Environmental Engineering , North Dakota State University , 1410 14th Avenue N , Fargo , North Dakota 58105 , United States
- Center for Hierarchical Materials Design , Northwestern University , 2205 Tech Drive , Evanston , Illinois 60208-3109 , United States
| | - Wei Chen
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
- Center for Hierarchical Materials Design , Northwestern University , 2205 Tech Drive , Evanston , Illinois 60208-3109 , United States
| | - Sinan Keten
- Department of Mechanical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
- Center for Hierarchical Materials Design , Northwestern University , 2205 Tech Drive , Evanston , Illinois 60208-3109 , United States
- Department of Civil and Environmental Engineering , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3109 , United States
| |
Collapse
|
24
|
Liu J, Zhu W, Yu Z, Wei X. Dynamic shear-lag model for understanding the role of matrix in energy dissipation in fiber-reinforced composites. Acta Biomater 2018; 74:270-279. [PMID: 29723702 DOI: 10.1016/j.actbio.2018.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
Abstract
Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. STATEMENT OF SIGNIFICANCE Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites.
Collapse
|
25
|
Wu K, Song Z, He L, Ni Y. Analysis of optimal crosslink density and platelet size insensitivity in graphene-based artificial nacres. NANOSCALE 2018; 10:556-565. [PMID: 29165497 DOI: 10.1039/c7nr06748h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploration of graphene-based artificial nacres with excellent mechanical properties demonstrates the potential to surpass natural nacre. Recent experimental studies report that optimal crosslink density defined as concentration of the surface functional groups is usually observed in these artificial nacres towards superb mechanical performance. A hybrid model integrating a nonlinear shear-lag model and atomistic simulations reveals the emergence of an optimal crosslink density at which the maximum strength and toughness are achieved. The origin is due to the balance among the reduction of in-plane tensile properties of the graphene sheets, the enhancement of the shear strength of the interlayer and the reduction of interface plasticity. In addition, our results also reveal that the size insensitivity of the graphene sheet appears when the shear stress of the interlayer is highly localized, the increase of the crosslink density intensifies the nonuniformity of the shear stress and the optimal mechanical properties of the artificial nacre cannot be further enhanced by tuning the size of the graphene sheets. Three kinds of interface molecular interactions with their optimal crosslink densities are also proposed to simultaneously maximize the strength and toughness of graphene-based artificial nacres.
Collapse
Affiliation(s)
- Kaijin Wu
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | |
Collapse
|
26
|
Natarajan B, Krishnamurthy A, Qin X, Emiroglu CD, Forster A, Foster EJ, Weder C, Fox DM, Keten S, Obrzut J, Gilman JW. Binary Cellulose Nanocrystal Blends for Bioinspired Damage Tolerant Photonic Films. ADVANCED FUNCTIONAL MATERIALS 2018; 28:10.1002/adfm.201800032. [PMID: 39449828 PMCID: PMC11500320 DOI: 10.1002/adfm.201800032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 10/26/2024]
Abstract
Most attempts to emulate the mechanical properties of strong and tough natural composites using helicoidal films of wood-derived cellulose nanocrystals (w-CNCs) fall short in mechanical performance due to the limited shear transfer ability between the w-CNCs. This shortcoming is ascribed to the small w-CNC-w-CNC overlap lengths that lower the shear transfer efficiency. Herein, we present a simple strategy to fabricate superior helicoidal CNC films with mechanical properties that rival those of the best natural materials and are some of the best reported for photonic CNC materials thus far. Assembling the short w-CNCs with a minority fraction of high aspect ratio CNCs derived from tunicates (t-CNCs), we report remarkable simultaneous enhancement of all in-plane mechanical properties and out-of-plane flexibility. The important role of t-CNCs is revealed by coarse grained molecular dynamics simulations where the property enhancement are due to increased interaction lengths and the activation of additional toughening mechanisms. At t-CNC contents greater than 5% by mass the mixed films also display UV reflecting behaviour. These damage tolerant optically active materials hold great promise for application as protective coatings. More broadly, we expect the strategy of using length-bidispersity to be adaptable to mechanically enhancing other matrix-free nanoparticle ensembles.
Collapse
Affiliation(s)
- Bharath Natarajan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Physics, Georgetown University, Washington, DC 20057, USA
| | - Ajay Krishnamurthy
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Theiss Research, La Jolla, CA 92037, USA
| | - Xin Qin
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Caglar D Emiroglu
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Physics, Georgetown University, Washington, DC 20057, USA
| | - Amanda Forster
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - E Johan Foster
- Materials Science and Engineering, Virginia Tech Blacksburg, VA 24061, USA
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Douglas M Fox
- Department of Chemistry, American University, Washington, DC 20016, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jan Obrzut
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey W Gilman
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
27
|
Sajadi SM, Owuor PS, Schara S, Woellner CF, Rodrigues V, Vajtai R, Lou J, Galvão DS, Tiwary CS, Ajayan PM. Multiscale Geometric Design Principles Applied to 3D Printed Schwarzites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704820. [PMID: 29141112 DOI: 10.1002/adma.201704820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Schwartzites are 3D porous solids with periodic minimal surfaces having negative Gaussian curvatures and can possess unusual mechanical and electronic properties. The mechanical behavior of primitive and gyroid schwartzite structures across different length scales is investigated after these geometries are 3D printed at centimeter length scales based on molecular models. Molecular dynamics and finite elements simulations are used to gain further understanding on responses of these complex solids under compressive loads and kinetic impact experiments. The results show that these structures hold great promise as high load bearing and impact-resistant materials due to a unique layered deformation mechanism that emerges in these architectures during loading. Easily scalable techniques such as 3D printing can be used for exploring mechanical behavior of various predicted complex geometrical shapes to build innovative engineered materials with tunable properties.
Collapse
Affiliation(s)
- Seyed Mohammad Sajadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Peter Samora Owuor
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Steven Schara
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Cristiano F Woellner
- Applied Physics Department, State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
| | - Varlei Rodrigues
- Applied Physics Department, State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Jun Lou
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Douglas S Galvão
- Applied Physics Department, State University of Campinas - UNICAMP, Campinas, São Paulo, 13083-859, Brazil
| | - Chandra Sekhar Tiwary
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
28
|
Wu J, Yuan H, Li L, Fan K, Qian S, Li B. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading. J Theor Biol 2017; 437:202-213. [PMID: 29111420 DOI: 10.1016/j.jtbi.2017.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
Owing to its viscoelastic nature, tendon exhibits stress rate-dependent breaking and stiffness function. A Kelvin-Voigt viscoelastic shear lag model is proposed to illustrate the micromechanical behavior of the tendon under dynamic tensile conditions. Theoretical closed-form expressions are derived to predict the deformation and stress transfer between fibrils and interfibrillar matrix while tendon is dynamically stretched. The results from the analytical solutions demonstrate that how the fibril overlap length and fibril volume fraction affect the stress transfer and mechanical properties of tendon. We find that the viscoelastic property of interfibrillar matrix mainly results in collagen fibril failure under fast loading rate or creep rupture of tendon. However, discontinuous fibril model and hierarchical structure of tendon ensure relative sliding under slow loading rate, helping dissipate energy and protecting fibril from damage, which may be a key reason why regularly staggering alignment microstructure is widely selected in nature. According to the growth, injury, healing and healed process of tendon observed by many researchers, the conclusions presented in this paper agrees well with the experimental findings. Additionally, the emphasis of this paper is on micromechanical behavior of tendon, whereas this analytical viscoelastic shear lag model can be equally applicable to other soft or hard tissues, owning the similar microstructure.
Collapse
Affiliation(s)
- Jiayu Wu
- MOE Key Laboratory of Disaster Forecast and Control in Engineering, Institute of Applied Mechanics, Jinan University, Guangzhou 510632, China; School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Hong Yuan
- MOE Key Laboratory of Disaster Forecast and Control in Engineering, Institute of Applied Mechanics, Jinan University, Guangzhou 510632, China.
| | - Longyuan Li
- School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Kunjie Fan
- School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Shanguang Qian
- Architecture Engineering Faculty, Kunming Metallurgy College, Kumming 650033, China
| | - Bing Li
- Blackett Laboratory, Imperial College London, South Kensington Campus, SW7 2AZ, UK
| |
Collapse
|
29
|
Gao E, Cao Y, Liu Y, Xu Z. Optimizing Interfacial Cross-Linking in Graphene-Derived Materials, Which Balances Intralayer and Interlayer Load Transfer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24830-24839. [PMID: 28677388 DOI: 10.1021/acsami.7b04411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Graphene-derived layer-by-layer (LbL) assemblies in the form of films or fibers have recently attracted particular interests owing to their low cost, facile fabrication, and outstanding mechanical properties, which could be further tuned by surface functionalization that cross-links graphene sheets in the assembly. However, this interfacial engineering approach has not yet been finely utilized considering the dual roles of cross-links in modifying the intrinsic properties of graphene sheets and their interlayer interactions. In this work, combining first-principles calculations and continuum-mechanics-based model analysis, we find that the functionalization weakens the intrinsic mechanical resistance of graphene, whereas it enhances interlayer load transfer through interlayer cross-linking. There are optimum cross-linking densities or concentrations of the surface functional groups that maximize the overall tensile stiffness, tensile strength and strain to failure of graphene-derived LbL assemblies, arising from the competition between intralayer and interlayer load-bearing mechanisms, as defined by the type of functionalization and size of graphene sheets. Our work quantifies the ultimate mechanical performance of graphene-derived LbL assemblies, on the condition that their microstructures and functionalization could be adequately controlled in the fabrication process.
Collapse
Affiliation(s)
- Enlai Gao
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University , Beijing 100084, China
| | - Yu Cao
- College of Chemistry, Nankai University , Tianjin 300071, China
| | - Yilun Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University , Xi'an 710049, China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University , Beijing 100084, China
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University , Chengdu, Sichuan 610031, China
| |
Collapse
|
30
|
Liu N, Hong J, Zeng X, Pidaparti R, Wang X. Fracture mechanisms in multilayer phosphorene assemblies: from brittle to ductile. Phys Chem Chem Phys 2017; 19:13083-13092. [DOI: 10.1039/c7cp01033h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper studies the transition of fracture patterns of multilayer phosphorene assemblies.
Collapse
Affiliation(s)
- Ning Liu
- College of Engineering
- University of Georgia
- Athens
- USA
| | - Jiawang Hong
- Department of Applied Mechanics
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Xiaowei Zeng
- Department of Mechanical Engineering
- University of Texas at San Antonio
- San Antonio
- USA
| | | | - Xianqiao Wang
- College of Engineering
- University of Georgia
- Athens
- USA
| |
Collapse
|
31
|
Al-Maskari NS, McAdams DA, Reddy JN. Modeling of a biological material nacre: Waviness stiffness model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:772-776. [PMID: 27770954 DOI: 10.1016/j.msec.2016.09.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 08/15/2016] [Accepted: 09/26/2016] [Indexed: 01/27/2023]
Abstract
Nacre is a tough yet stiff natural composite composed of microscopic mineral polygonal tablets bonded by a tough biopolymer. The high stiffness of nacre is known to be due to its high mineral content. However, the remarkable toughness of nacre is explained by its ability to deform past a yield point and develop large inelastic strain over a large volume around defects and cracks. The high strain is mainly due to sliding and waviness of the tablets. Mimicking nacre's remarkable properties, to date, is still a challenge due in part to fabrication challenges as well as a lack of models that can predict its properties or properties of a bulk material given specific constituent materials and material structure. Previous attempts to create analytical models for nacre include tablet sliding but don't account for the waviness of the tablets. In this work, a mathematical model is proposed to account for the waviness of the tablet. Using this model, a better prediction of the elastic modulus is obtained that agrees with experimental values found in the literature. In addition, the waviness angle can be predicted which is within the recommended range. Having a good representative model aids in designing a bio-mimicked nacre.
Collapse
Affiliation(s)
- N S Al-Maskari
- Department of Mechanical Engineering, Texas A&M University, TX 77843-3123, USA.
| | - D A McAdams
- Department of Mechanical Engineering, Texas A&M University, TX 77843-3123, USA
| | - J N Reddy
- Department of Mechanical Engineering, Texas A&M University, TX 77843-3123, USA
| |
Collapse
|
32
|
Song ZQ, Ni Y, Peng LM, Liang HY, He LH. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates. Sci Rep 2016; 6:23724. [PMID: 27029955 PMCID: PMC4814825 DOI: 10.1038/srep23724] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/08/2016] [Indexed: 11/25/2022] Open
Abstract
Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.
Collapse
Affiliation(s)
- Z. Q. Song
- CAS Key Laboratory of Mechanical Behavior and Design of Materials,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Y. Ni
- CAS Key Laboratory of Mechanical Behavior and Design of Materials,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - L. M. Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - H. Y. Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - L. H. He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
33
|
Xia W, Ruiz L, Pugno NM, Keten S. Critical length scales and strain localization govern the mechanical performance of multi-layer graphene assemblies. NANOSCALE 2016; 8:6456-6462. [PMID: 26935048 DOI: 10.1039/c5nr08488a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Multi-layer graphene assemblies (MLGs) or fibers with a staggered architecture exhibit high toughness and failure strain that surpass those of the constituent single sheets. However, how the architectural parameters such as the sheet overlap length affect these mechanical properties remains unknown due in part to the limitations of mechanical continuum models. By exploring the mechanics of MLG assemblies under tensile deformation using our established coarse-grained molecular modeling framework, we have identified three different critical interlayer overlap lengths controlling the strength, plastic stress, and toughness of MLGs, respectively. The shortest critical length scale L(C)(S) governs the strength of the assembly as predicted by the shear-lag model. The intermediate critical length L(C)(P) is associated with a dynamic frictional process that governs the strain localization propensity of the assembly, and hence the failure strain. The largest critical length scale L(C)(T) corresponds to the overlap length necessary to achieve 90% of the maximum theoretical toughness of the material. Our analyses provide the general guidelines for tuning the constitutive properties and toughness of multilayer 2D nanomaterials using elasticity, interlayer adhesion energy and geometry as molecular design parameters.
Collapse
Affiliation(s)
- Wenjie Xia
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Luis Ruiz
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Nicola M Pugno
- Department of Civil, Environmental and Mechanical Engineering, Laboratory of Bio-inspired & Graphene Mechanics, University of Trento, Via Mesiano 77, 38123 Trento, Italy and Center for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy and School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Sinan Keten
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. and Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
34
|
Mathiazhagan S, Anup S. Influence of platelet aspect ratio on the mechanical behaviour of bio-inspired nanocomposites using molecular dynamics. J Mech Behav Biomed Mater 2016; 59:21-40. [PMID: 26741376 DOI: 10.1016/j.jmbbm.2015.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/04/2015] [Accepted: 12/09/2015] [Indexed: 11/28/2022]
Abstract
Superior mechanical properties of biocomposites such as nacre and bone are attributed to their basic building blocks. These basic building blocks have nanoscale features and play a major role in achieving combined stiffening, strengthening and toughening mechanisms. Bioinspired nanocomposites based on these basic building blocks, regularly and stairwise staggered arrangements of hard platelets in soft matrix, have huge potential for developing advanced materials. The study of applicability of mechanical principles of biological materials to engineered materials will guide designing advanced materials. To probe the generic mechanical characteristics of these bioinspired nanocomposites, the model material concept in molecular dynamics (MD) is used. In this paper, the effect of platelets aspect ratio (AR) on the mechanical behaviour of bioinspired nanocomposites is investigated. The obtained Young׳s moduli of both the models and the strengths of the regularly staggered models agree with the available theories. However, the strengths of the stairwise staggered models show significant difference. For the stairwise staggered model, we demonstrate the existence of two critical ARs, a smaller critical AR above which platelet fracture occurs and a higher critical AR above which composite strength remains constant. Our MD study also shows the existence of mechanisms of platelet pull-out and breakage for lower and higher ARs. Pullout mechanism acts as a major source of plasticity. Further, we find that the regularly staggered model can achieve an optimal combination of high Young׳s modulus, flow strength and toughness, and the stairwise staggered model is efficient in obtaining high Young׳s modulus and tensile strength.
Collapse
Affiliation(s)
- S Mathiazhagan
- Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala, India.
| | - S Anup
- Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala, India.
| |
Collapse
|
35
|
Liu K, Kang Y, Ma G, Möhwald H, Yan X. Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system. Phys Chem Chem Phys 2016; 18:16738-47. [DOI: 10.1039/c6cp01358a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiscale theoretical models are built to unravel the hierarchically ordered organization of dipeptide–porphyrin co-assemblies with different light-harvesting efficiencies.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yu Kang
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces
- Potsdam/Golm 14476
- Germany
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
36
|
Abberton BC, Liu WK, Keten S. Anisotropy of Shear Relaxation in Confined Thin Films of Unentangled Polymer Melts. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brendan C. Abberton
- Theoretical and Applied Mechanics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wing Kam Liu
- Theoretical and Applied Mechanics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sinan Keten
- Theoretical and Applied Mechanics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
37
|
To spin or not to spin: spider silk fibers and more. Appl Microbiol Biotechnol 2015; 99:9361-80. [DOI: 10.1007/s00253-015-6948-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022]
|
38
|
Roenbeck MR, Furmanchuk A, An Z, Paci JT, Wei X, Nguyen ST, Schatz GC, Espinosa HD. Molecular-Level Engineering of Adhesion in Carbon Nanomaterial Interfaces. NANO LETTERS 2015; 15:4504-4516. [PMID: 26065464 DOI: 10.1021/acs.nanolett.5b01011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Weak interfilament van der Waals interactions are potentially a significant roadblock in the development of carbon nanotube- (CNT-) and graphene-based nanocomposites. Chemical functionalization is envisioned as a means of introducing stronger intermolecular interactions at nanoscale interfaces, which in turn could enhance composite strength. This paper reports measurements of the adhesive energy of CNT-graphite interfaces functionalized with various coverages of arylpropionic acid. Peeling experiments conducted in situ in a scanning electron microscope show significantly larger adhesive energies compared to previously obtained measurements for unfunctionalized surfaces (Roenbeck et al. ACS Nano 2014, 8 (1), 124-138). Surprisingly, however, the adhesive energies are significantly higher when both surfaces have intermediate coverages than when one surface is densely functionalized. Atomistic simulations reveal a novel functional group interdiffusion mechanism, which arises for intermediate coverages in the presence of water. This interdiffusion is not observed when one surface is densely functionalized, resulting in energy trends that correlate with those observed in experiments. This unique intermolecular interaction mechanism, revealed through the integrated experimental-computational approach presented here, provides significant insights for use in the development of next-generation nanocomposites.
Collapse
Affiliation(s)
| | | | | | - Jeffrey T Paci
- ⊥Department of Chemistry, University of Victoria, British Columbia V8W 3V6, Canada
| | | | | | | | | |
Collapse
|
39
|
Wei X, Filleter T, Espinosa HD. Statistical shear lag model - unraveling the size effect in hierarchical composites. Acta Biomater 2015; 18:206-12. [PMID: 25684701 DOI: 10.1016/j.actbio.2015.01.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/08/2014] [Accepted: 01/28/2015] [Indexed: 11/27/2022]
Abstract
Numerous experimental and computational studies have established that the hierarchical structures encountered in natural materials, such as the brick-and-mortar structure observed in sea shells, are essential for achieving defect tolerance. Due to this hierarchy, the mechanical properties of natural materials have a different size dependence compared to that of typical engineered materials. This study aimed to explore size effects on the strength of bio-inspired staggered hierarchical composites and to define the influence of the geometry of constituents in their outstanding defect tolerance capability. A statistical shear lag model is derived by extending the classical shear lag model to account for the statistics of the constituents' strength. A general solution emerges from rigorous mathematical derivations, unifying the various empirical formulations for the fundamental link length used in previous statistical models. The model shows that the staggered arrangement of constituents grants composites a unique size effect on mechanical strength in contrast to homogenous continuous materials. The model is applied to hierarchical yarns consisting of double-walled carbon nanotube bundles to assess its predictive capabilities for novel synthetic materials. Interestingly, the model predicts that yarn gauge length does not significantly influence the yarn strength, in close agreement with experimental observations.
Collapse
|
40
|
Sakhavand N, Shahsavari R. Universal composition–structure–property maps for natural and biomimetic platelet–matrix composites and stacked heterostructures. Nat Commun 2015; 6:6523. [DOI: 10.1038/ncomms7523] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 02/03/2015] [Indexed: 11/09/2022] Open
|
41
|
Beese AM, Wei X, Sarkar S, Ramachandramoorthy R, Roenbeck MR, Moravsky A, Ford M, Yavari F, Keane DT, Loutfy RO, Nguyen ST, Espinosa HD. Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships. ACS NANO 2014; 8:11454-11466. [PMID: 25353651 DOI: 10.1021/nn5045504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studies of carbon nanotube (CNT) based composites have been unable to translate the extraordinary load-bearing capabilities of individual CNTs to macroscale composites such as yarns. A key challenge lies in the lack of understanding of how properties of filaments and interfaces across yarn hierarchical levels govern the properties of macroscale yarns. To provide insight required to enable the development of superior CNT yarns, we investigate the fabrication-structure-mechanical property relationships among CNT yarns prepared by different techniques and employ a Monte Carlo based model to predict upper bounds on their mechanical properties. We study the correlations between different levels of alignment and porosity and yarn strengths up to 2.4 GPa. The uniqueness of this experimentally informed modeling approach is the model's ability to predict when filament rupture or interface sliding dominates yarn failure based on constituent mechanical properties and structural organization observed experimentally. By capturing this transition and predicting the yarn strengths that could be obtained under ideal fabrication conditions, the model provides critical insights to guide future efforts to improve the mechanical performance of CNT yarn systems. This multifaceted study provides a new perspective on CNT yarn design that can serve as a foundation for the development of future composites that effectively exploit the superior mechanical performance of CNTs.
Collapse
Affiliation(s)
- Allison M Beese
- Department of Mechanical Engineering, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Miller SG, Williams TS, Baker JS, Solá F, Lebron-Colon M, McCorkle LS, Wilmoth NG, Gaier J, Chen M, Meador MA. Increased tensile strength of carbon nanotube yarns and sheets through chemical modification and electron beam irradiation. ACS APPLIED MATERIALS & INTERFACES 2014; 6:6120-6126. [PMID: 24720450 DOI: 10.1021/am4058277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The inherent strength of individual carbon nanotubes (CNTs) offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of CNT forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated into that of sheets and yarns, where the bulk material strength is limited by intertube electrostatic attractions and slippage. The focus of this work was to assess postprocessing of CNT sheets and yarns to improve the macro-scale strength of these material forms. Both small-molecule functionalization and electron-beam irradiation were evaluated as means to enhance the tensile strength and Young's modulus of the bulk CNT materials. Mechanical testing revealed a 57% increase in tensile strength of CNT sheets upon functionalization compared with unfunctionalized sheets, while an additional 48% increase in tensile strength was observed when functionalized sheets were irradiated. Similarly, small-molecule functionalization increased tensile strength of yarn by up to 25%, whereas irradiation of the functionalized yarns pushed the tensile strength to 88% beyond that of the baseline yarn.
Collapse
Affiliation(s)
- Sandi G Miller
- NASA Glenn Research Center , 21000 Brookpark Road, Cleveland, Ohio 44135, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oiko VTA, Martins BVC, Silva PC, Rodrigues V, Ugarte D. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:035003. [PMID: 24689612 DOI: 10.1063/1.4868236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1-100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently, applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5-40 nN range, measured with an error bar of a few nN.
Collapse
Affiliation(s)
- V T A Oiko
- Instituto de Física "Gleb Wataghin," Univ. Estadual de Campinas (UNICAMP), Campinas 13083-859, Brazil
| | - B V C Martins
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - P C Silva
- Laboratório Nacional de Nanotecnologia, CNPEM, Campinas 13083-970, Brazil
| | - V Rodrigues
- Instituto de Física "Gleb Wataghin," Univ. Estadual de Campinas (UNICAMP), Campinas 13083-859, Brazil
| | - D Ugarte
- Instituto de Física "Gleb Wataghin," Univ. Estadual de Campinas (UNICAMP), Campinas 13083-859, Brazil
| |
Collapse
|
44
|
An B, Zhao X, Zhang D. On the mechanical behavior of bio-inspired materials with non-self-similar hierarchy. J Mech Behav Biomed Mater 2014; 34:8-17. [PMID: 24548949 DOI: 10.1016/j.jmbbm.2013.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
Abstract
Biological materials exhibiting non-self-similar hierarchical structures possess desirable mechanical properties. Motivated by their penetration resistance and fracture toughness, the mechanical performance of model materials with non-self-similar hierarchical structures was explored and the distinct advantages were identified. A numerical model was developed, based on microscopic observation of enamel prisms. Computational simulations showed that the systems with non-self-similar hierarchy displayed lateral expansion when subjected to longitudinal tensile loading, which reflected negative Poisson׳s ratio and potential for greater volume strain energies when compared with conventional materials with positive Poisson׳s ratio. Employing the non-self-similar hierarchical design, the capability of resilience can be improved. Additionally, the non-self-similar hierarchical structure exhibited larger toughness, resulting from the large pull-out work of the reinforcements. The findings of this study not only elucidate the deformation mechanisms of biological materials with non-self-similar hierarchical structure, but also provide a new path for bio-inspired materials design.
Collapse
Affiliation(s)
- Bingbing An
- Department of Mechanics, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Department of Physics, Shanghai University, Shanghai 200444, PR China
| | - Xinluo Zhao
- Department of Physics, Shanghai University, Shanghai 200444, PR China
| | - Dongsheng Zhang
- Department of Mechanics, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China; Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai 200072, PR China.
| |
Collapse
|
45
|
Roenbeck MR, Wei X, Beese AM, Naraghi M, Furmanchuk A, Paci JT, Schatz GC, Espinosa HD. In situ scanning electron microscope peeling to quantify surface energy between multiwalled carbon nanotubes and graphene. ACS NANO 2014; 8:124-138. [PMID: 24341540 DOI: 10.1021/nn402485n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Understanding atomic interactions between constituents is critical to the design of high-performance nanocomposites. Here, we report an experimental-computational approach to investigate the adhesion energy between as-produced arc discharge multiwalled carbon nanotubes (MWCNTs) and graphene. An in situ scanning electron microscope (SEM) experiment is used to peel MWCNTs from graphene grown on copper foils. The force during peeling is obtained by monitoring the deflection of a cantilever. Finite element and molecular mechanics simulations are performed to assist the data analysis and interpretation of the results. A finite element analysis of the experimental configuration is employed to confirm the applicability of Kendall's peeling model to obtain the adhesion energy. Molecular mechanics simulations are used to estimate the effective contact width at the MWCNT-graphene interface. The measured surface energy is γ = 0.20 ± 0.09 J·m(-2) or γ = 0.36 ± 0.16 J·m(-2), depending on the assumed conformation of the tube cross section during peeling. The scatter in the data is believed to result from an amorphous carbon coating on the MWCNTs, observed using transmission electron microscopy (TEM), and the surface roughness of graphene as characterized by atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Michael R Roenbeck
- Department of Mechanical Engineering, and ‡Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3111, United States
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhou X, Miao H, Li F. Nanoscale structural and functional mapping of nacre by scanning probe microscopy techniques. NANOSCALE 2013; 5:11885-11893. [PMID: 24129833 DOI: 10.1039/c3nr02731g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nacre has received great attention due to its nanoscale hierarchical structure and extraordinary mechanical properties. Meanwhile, the nanoscale piezoelectric properties of nacre have also been investigated but the structure-function relationship has never been addressed. In this work, firstly we realized quantitative nanomechanical mapping of nacre of a green abalone using atomic force acoustic microscopy (AFAM). The modulus of the mineral tablets is determined to be ~80 GPa and that of the organic biopolymer no more than 23 GPa, and the organic-inorganic interface width is determined to be about 34 ± 9 nm. Then, we conducted both AFAM and piezoresponse force microscopy (PFM) mapping in the same scanning area to explore the correlations between the nanomechanical and piezoelectric properties. The PFM testing shows that the organic biopolymer exhibits a significantly stronger piezoresponse than the mineral tablets, and they permeate each other, which is very difficult to reproduce in artificial materials. Finally, the phase hysteresis loops and amplitude butterfly loops were also observed using switching spectroscopy PFM, implying that nacre may also be a bio-ferroelectric material. The obtained nanoscale structural and functional properties of nacre could be very helpful in understanding its deformation mechanism and designing biomimetic materials of extraordinary properties.
Collapse
Affiliation(s)
- Xilong Zhou
- State Key Lab for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, 100871, China.
| | | | | |
Collapse
|
47
|
Verho T, Karesoja M, Das P, Martikainen L, Lund R, Alegría A, Walther A, Ikkala O. Hydration and dynamic state of nanoconfined polymer layers govern toughness in nacre-mimetic nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5055-9. [PMID: 23913740 DOI: 10.1002/adma.201301881] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 05/25/2023]
Abstract
Biological high-performance composites inspire to create new tough, strong, and stiff structural materials. We show a brittle-to-ductile transition in a self-assembled nacre-inspired poly(vinyl alcohol)/nanoclay composite based on a hydration-induced glass-to-rubber transition in the 2D-nanoconfined poly(vinyl alcohol) layers. The findings open routes to design dissipative toughening mechanisms to combine stiffness and strength in nanocomposites.
Collapse
Affiliation(s)
- Tuukka Verho
- Department of Applied Physics, Aalto University, (former Helsinki University of Technology), P.O. Box 15100, FI-00076 Aalto, Espoo, Finland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sakhavand N, Muthuramalingam P, Shahsavari R. Toughness governs the rupture of the interfacial H-bond assemblies at a critical length scale in hybrid materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8154-8163. [PMID: 23713817 DOI: 10.1021/la4014015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The geometry and material property mismatch across the interface of hybrid materials with dissimilar building blocks make it extremely difficult to fully understand the lateral chemical bonding processes and design nanocomposites with optimal performance. Here, we report a combined first-principles study, molecular dynamics modeling, and theoretical derivations to unravel the detailed mechanisms of H-bonding, deformation, load transfer, and failure at the interface of polyvinyl alcohol (PVA) and silicates, as an example of hybrid materials with geometry and property mismatch across the interface. We identify contributing H-bonds that are key to adhesion and demonstrate a specific periodic pattern of interfacial H-bond network dictated by the interface mismatch and intramolecular H-bonding. We find that the maximum toughness, incorporating both intra- and interlayer strain energy contributions, govern the existence of optimum overlap length and thus the rupture of interfacial (interlayer) H-bond assemblies in natural and synthetic hybrid materials. This universally valid result is in contrast to the previous reports that correlate shear strength with rupture of H-bonds assemblies at a finite overlap length. Overall, this work establishes a unified understanding to explain the interplay between geometric constraints, interfacial H-bonding, materials characteristics, and optimal mechanical properties in hybrid organic-inorganic materials.
Collapse
Affiliation(s)
- Navid Sakhavand
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Tristan Giesa
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, and
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, and
- Center for Computational Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| |
Collapse
|
50
|
Cranford SW. Increasing silk fibre strength through heterogeneity of bundled fibrils. J R Soc Interface 2013; 10:20130148. [PMID: 23486175 PMCID: PMC3627094 DOI: 10.1098/rsif.2013.0148] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 12/17/2022] Open
Abstract
Can naturally arising disorder in biological materials be beneficial? Materials scientists are continuously attempting to replicate the exemplary performance of materials such as spider silk, with detailed techniques and assembly procedures. At the same time, a spider does not precisely machine silk-imaging indicates that its fibrils are heterogeneous and irregular in cross section. While past investigations either focused on the building material (e.g. the molecular scale protein sequence and behaviour) or on the ultimate structural component (e.g. silk threads and spider webs), the bundled structure of fibrils that compose spider threads has been frequently overlooked. Herein, I exploit a molecular dynamics-based coarse-grain model to construct a fully three-dimensional fibril bundle, with a length on the order of micrometres. I probe the mechanical behaviour of bundled silk fibrils with variable density of heterogenic protrusions or globules, ranging from ideally homogeneous to a saturated distribution. Subject to stretching, the model indicates that cooperativity is enhanced by contact through low-force deformation and shear 'locking' between globules, increasing shear stress transfer by up to 200 per cent. In effect, introduction of a random and disordered structure can serve to improve mechanical performance. Moreover, addition of globules allows a tuning of free volume, and thus the wettability of silk (with implications for supercontraction). These findings support the ability of silk to maintain near-molecular-level strength at the scale of silk threads, and the mechanism could be easily adopted as a strategy for synthetic fibres.
Collapse
Affiliation(s)
- Steven W Cranford
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|