1
|
Czaja M, Chachaj-Brekiesz A, Skirlińska-Nosek K, Szajna K, Sofińska K, Lupa D, Kobierski J, Wnętrzak A, Szymoński M, Lipiec E. Fabrication of plasmonic probes for reproducible nanospectroscopic investigation of lipid monolayers - The electrochemical etching with DC-pulsed voltage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124323. [PMID: 38692104 DOI: 10.1016/j.saa.2024.124323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a label-free analytical technique that characterizes molecular systems, potentially even with a nanometric resolution. In principle, the metallic plasmonic probe is illuminated with a laser beam generating the localized surface plasmons, which induce a strong local electric field enhancement in close proximity to the probe. Such field enhancement improves the Raman scattering cross-section from the sample volume localized near the probe apex. TERS provides a high spatial resolution and a great sensitivity, however, it is rather rarely used due to technical limitations causing unstable enhancement and the relative lack of data reproducibility. Despite many scientific efforts for the fabrication of effective TER probes providing robust TER enhancement still requires further investigations. In this work, we explore new possibilities based on preparation of scanning tunnelling microscopy (STM) plasmonic probes, since by nature of the tunnelling effect, they potentially could offer a very high spatial resolution in STM guided TERS experiments. Here we compare two methods of STM-TERS probe preparation for effective spectra acquisition. Our results strongly indicate that an application of square pulse voltage upon the etching procedure significantly improves the quality of the TER data over those obtained with a constant voltage one. To demonstrate the efficiency of our probes we present the results of hyperspectral TER mapping of the 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) monolayer deposited on an ultra-pure and atomically flat gold substrate.
Collapse
Affiliation(s)
- Michał Czaja
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków 30-387, Poland
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Kraków 30-387, Poland
| | - Konrad Szajna
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Kamila Sofińska
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Dawid Lupa
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Jan Kobierski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biophysics, Medyczna 9, Kraków 30-688, Poland
| | - Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków 30-387, Poland
| | - Marek Szymoński
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland
| | - Ewelina Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, Kraków 30-348, Poland.
| |
Collapse
|
2
|
Sofińska K, Seweryn S, Skirlińska-Nosek K, Barbasz J, Lipiec E. Tip-enhanced Raman spectroscopy reveals the structural rearrangements of tau protein aggregates at the growth phase. NANOSCALE 2024; 16:5294-5301. [PMID: 38372161 DOI: 10.1039/d3nr06365h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Tau protein aggregates inside neurons in the course of Alzheimer's disease (AD). Because of the enormous number of people suffering from AD, this disease has become one of the world's major health and social problems. The presence of tau lesions clearly correlates with cognitive impairments in AD patients, thus, tau is the target of potential treatments for AD, next to amyloid-β. The exact mechanism of tau aggregation has not been understood in detail so far; especially little is known about the structural rearrangements of tau aggregates at the growth phase. The research into tau conformation at each step of the aggregation pathway will contribute to the design of effective therapeutic approaches. To follow the secondary structure of individual tau aggregates at the growth phase, we applied tip-enhanced Raman spectroscopy (TERS). The nanospectroscopic approach enabled us to follow the structure of individual aggregates occurring in the subsequent phases of tau aggregation. We applied multivariate data analysis to extract the spectral differences for tau aggregates at different aggregation phases. Moreover, atomic force microscopy (AFM) allowed the tracking of the morphological alterations for species occurring with the progression of tau aggregation.
Collapse
Affiliation(s)
- Kamila Sofińska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| | - Sara Seweryn
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Jakub Barbasz
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Ewelina Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| |
Collapse
|
3
|
Abrao-Nemeir I, Meyer N, Nouvel A, Charles-Achille S, Janot JM, Torrent J, Balme S. Aβ42 fibril and non-fibril oligomers characterization using a nanopipette. Biophys Chem 2023; 300:107076. [PMID: 37480837 DOI: 10.1016/j.bpc.2023.107076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
The Aβ42 aggregates with different structures and morphology was investigated through a single molecule label-free technique. To this end, the quartz nanopipettes were functionalized with polyethylene glycol. The set of Aβ42- epigallocatechin-3-gallate fibrils with length (from 85 nm to 250 nm) obtained by sonication was detected. The comparison of experimental and computed value of the amplitude of relative current blockade using a geometrical model show that for fibrils longer than 80 nm, the discriminating parameter is their diameter. Then, non-fibril oligomers obtain from Aβ42(Osaka) aggregation at different time seed was investigated. The analysis of the amplitude of relative current blockade shows that detected oligomers are smaller than 30 nm regardless the aggregation time. In addition, the wide distributions of the dwell time suggests the polymorph character of the sample.
Collapse
Affiliation(s)
- Imad Abrao-Nemeir
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Nathan Meyer
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France; INM, University of Montpellier, INSERM, Montpellier, France
| | - Alexis Nouvel
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| |
Collapse
|
4
|
Sun J, Shi Z, Wang L, Zhang X, Luo C, Hua J, Feng M, Chen Z, Wang M, Xu C. Construction of a microcavity-based microfluidic chip with simultaneous SERS quantification of dual biomarkers for early diagnosis of Alzheimer's disease. Talanta 2023; 261:124677. [PMID: 37201340 DOI: 10.1016/j.talanta.2023.124677] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
Since there is no effective Alzheimer's disease (AD)-modifying therapy available currently, early analysis of AD core biomarkers has become one of great significance and common concern in clinical diagnosis. Herein, we designed an Au-plasmonic shell attached polystyrene (PS) microsphere in a microfluidic chip for simultaneous detection of Aβ1-42 and p-Tau181 protein. The corresponding Raman reporters were identified in femto gram level by ultrasensitive surface enhanced Raman spectroscopy (SERS). Both of Raman experimental data and finite-difference time-domain modeling demonstrates the synergetic coupling between PS microcavity with the optical confinement property and the localized surface plasmon resonance (LSPR) of AuNPs, so leading to highly amplified electromagnetic fields at the 'hot spot'. Moreover, the microfluidic system is designed with multiplex testing and control channels in which the AD-related dual proteins were detected quantitatively with a lower limit of 100 fg mL-1. Thus, the proposed microcavity-based SERS strategy initiates a new way for accurately prediction of AD in human blood samples and provides the potential application for synchronous determination of multiple analytes in general disease assays.
Collapse
Affiliation(s)
- Jianli Sun
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Zengliang Shi
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Li Wang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Xinyi Zhang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Chunshan Luo
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Jianyu Hua
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Muyu Feng
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China.
| | - Mingliang Wang
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China.
| | - Chunxiang Xu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
5
|
Höppener C, Elter JK, Schacher FH, Deckert V. Inside Block Copolymer Micelles-Tracing Interfacial Influences on Crosslinking Efficiency in Nanoscale Confined Spaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206451. [PMID: 36806886 DOI: 10.1002/smll.202206451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/22/2023] [Indexed: 05/18/2023]
Abstract
Recently, several studies have demonstrated the excellent capabilities of tip-enhanced Raman spectroscopyfor in-depth investigations of structural properties of matter with unprecedented resolution and chemical specificity. These capabilities are utilized here to study the internal structure of core-crosslinked micelles, which are formed by self-assembly of the diblock terpolymer poly(ethylene oxide)-block-poly(furfuryl glycidylether-co-tert-butylglycidyl ether). Supplementing force-volume atomic force microscopy experiments address additionally the nanomechanical properties. Particularly, TERS enables investigating the underlying principles influencing the homogeneity and efficiency of the Diels-Alder core-crosslinking process in the confined hydrophobic core. While the central core region is homogenously crosslinked, a breakdown of the crosslinking reaction is observed in the core-corona interfacial region. The results corroborate that a strong crosslinking efficiency is directly correlated to the formation of a mixed zone of the glycidyl ether and PEO corona blocks reaching ≈5 nm into the core region. Concomitantly a strong exclusion of the encapsulated bismaleimide crosslinker from the interfacial region is observed. It is conceivable that a changed structure, chemical composition and altered nanomechanical properties of this interfacial region may also influence the crosslinking efficiency across the entire core region by a modification of the solubility of the crosslinker in the interfacial core-corona region.
Collapse
Affiliation(s)
- Christiane Höppener
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, D-07745, Jena, Germany
| | - Johanna K Elter
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Lessingstraße 8, D-07743, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University, Lessingstraße 8, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, D-07743, Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, D-07745, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University, Philosophenweg 7, D-07743, Jena, Germany
| |
Collapse
|
6
|
Ko TS, Kuo KY. Using a Au/pitted a-plane GaN substrate to aggregate polar molecules for highly efficient surface-enhanced Raman scattering. J Chem Phys 2022; 157:114702. [DOI: 10.1063/5.0115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a search for efficient surface-enhanced Raman scattering (SERS) substrates is still a challenge. In this study we used metal-organic chemical vapor deposition to directly grow a pitted a-plane GaN thin film, subsequently covered by a thin Au layer ( ca. 25 nm), for use as a SERS substrate, without the need for any additional etching or lithography processes. The SERS substrate containing these micrometer-sized pits provided a low limit of detection ( ca. 10-9 M) for rhodamine 6G (R6G), with a high enhancement factor (4.27 ´ 108) relative to normal Raman spectroscopy. Furthermore, Raman spectral mapping indicated that most of the R6G molecules were concentrated in the pits, enhancing the localization of the probe molecules for further analysis. The same phenomenon was still effective for polar methylene blue molecules but unclear for nonpolar paraffin molecules. The molecular aggregation became more ambiguous upon increasing the thickness of the Au layer, suggesting that the polarity of the Ga and N atoms in the pits was responsible for the efficient aggregation of the polar R6G molecules, potentially beneficial for biomedical detection.
Collapse
Affiliation(s)
- Tsung-Shine Ko
- Department of Electronic Engineering, National Changhua University of Education, Taiwan
| | - Kai-Yuan Kuo
- National Changhua University of Education, Taiwan
| |
Collapse
|
7
|
Umakoshi T, Kawashima K, Moriyama T, Kato R, Verma P. Tip-enhanced Raman spectroscopy with amplitude-controlled tapping-mode AFM. Sci Rep 2022; 12:12776. [PMID: 35896604 PMCID: PMC9329313 DOI: 10.1038/s41598-022-17170-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for analyzing chemical compositions at the nanoscale owing to near-field light localized at a metallic tip. In TERS, atomic force microscopy (AFM) is commonly used for tip position control. AFM is often controlled under the contact mode for TERS, whereas the tapping mode, which is another major operation mode, has not often been employed despite several advantages, such as low sample damage. One of the reasons is the low TERS signal intensity because the tip is mostly away from the sample during the tapping motion. In this study, we quantitatively investigated the effect of the tapping amplitude on the TERS signal. We numerically evaluated the dependence of the TERS signal on tapping amplitude. We found that the tapping amplitude had a significant effect on the TERS signal, and an acceptable level of TERS signal was obtained by reducing the amplitude to a few nanometers. We further demonstrated amplitude-controlled tapping-mode TERS measurement. We observed a strong dependence of the TERS intensity on the tapping amplitude, which is in agreement with our numerical calculations. This practical but essential study encourages the use of the tapping mode for further advancing TERS and related optical techniques.
Collapse
Affiliation(s)
- Takayuki Umakoshi
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan. .,Institute for Advanced Co-creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan. .,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan.
| | - Koji Kawashima
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toki Moriyama
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryo Kato
- Institute of Post-LED Photonics, Tokushima University, Tokushima, Tokushima, 770-8506, Japan
| | - Prabhat Verma
- Department of Applied Physics, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Matveyenka M, Rizevsky S, Kurouski D. Unsaturation in the Fatty Acids of Phospholipids Drastically Alters the Structure and Toxicity of Insulin Aggregates Grown in Their Presence. J Phys Chem Lett 2022; 13:4563-4569. [PMID: 35580189 PMCID: PMC9170185 DOI: 10.1021/acs.jpclett.2c00559] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lipid bilayers play an important role in the pathological assembly of amyloidogenic proteins and peptides. This assembly yields oligomers and fibrils, which are highly toxic protein aggregates. In this study, we investigated the role of saturation in fatty acids of two phospholipids that are present in cell membranes. We found that unsaturated cardiolipin (CL) drastically shortened the lag phase of insulin aggregation. Furthermore, structurally and morphologically different aggregates were formed in the presence of unsaturated CL vs saturated CL. These aggregates exerted drastically different cell toxicity. Both saturated and unsaturated phosphatidylcholine (PC) were able to inhibit insulin aggregation equally efficiently. Similar to CL, structurally different aggregates were formed in the presence of saturated and unsaturated PC. These aggregates exerted different cell toxicities. These results show that unsaturated phospholipids catalyze the formation of more toxic amyloid aggregates comparing to those formed in the presence of saturated lipids.
Collapse
Affiliation(s)
| | - Stanislav Rizevsky
- Department of Biotechnology, Binh Duong University, Thu Dau Mot 820000, Vietnam
| | | |
Collapse
|
9
|
Foti A, Venkatesan S, Lebental B, Zucchi G, Ossikovski R. Comparing Commercial Metal-Coated AFM Tips and Home-Made Bulk Gold Tips for Tip-Enhanced Raman Spectroscopy of Polymer Functionalized Multiwalled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12030451. [PMID: 35159798 PMCID: PMC8840094 DOI: 10.3390/nano12030451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) combines the high specificity and sensitivity of plasmon-enhanced Raman spectroscopy with the high spatial resolution of scanning probe microscopy. TERS has gained a lot of attention from many nanoscience fields, since this technique can provide chemical and structural information of surfaces and interfaces with nanometric spatial resolution. Multiwalled carbon nanotubes (MWCNTs) are very versatile nanostructures that can be dispersed in organic solvents or polymeric matrices, giving rise to new nanocomposite materials, showing improved mechanical, electrical and thermal properties. Moreover, MWCNTs can be easily functionalized with polymers in order to be employed as specific chemical sensors. In this context, TERS is strategic, since it can provide useful information on the cooperation of the two components at the nanoscale for the optimization of the macroscopic properties of the hybrid material. Nevertheless, efficient TERS characterization relies on the geometrical features and material composition of the plasmonic tip used. In this work, after comparing the TERS performance of commercial Ag coated nanotips and home-made bulk Au tips on bare MWCNTs, we show how TERS can be exploited for characterizing MWCNTs mixed with conjugated fluorene copolymers, thus contributing to the understanding of the polymer/CNT interaction process at the local scale.
Collapse
Affiliation(s)
- Antonino Foti
- CNR—IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- Correspondence: (A.F.); (R.O.)
| | - Suriya Venkatesan
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
| | - Bérengère Lebental
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- COSYS-LISIS, Université Gustave Eiffel, IFSTTAR, 77454 Marne-la-Vallée, France
| | - Gaël Zucchi
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
| | - Razvigor Ossikovski
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- Correspondence: (A.F.); (R.O.)
| |
Collapse
|
10
|
Liu Y, Tao F, Miao S, Yang P. Controlling the Structure and Function of Protein Thin Films through Amyloid-like Aggregation. Acc Chem Res 2021; 54:3016-3027. [PMID: 34282883 DOI: 10.1021/acs.accounts.1c00231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein thin films (PTFs) with tunable structure and function can offer multiple opportunities in various fields such as surface modification, biomaterials, packaging, optics, electronics, separation, energy, and environmental science. Although nature may offer a variety of examples of high-level control of structure and function, e.g., the S layer of cells, synthetic alternatives for large-area protein-based thin films with fine control over both biological function and material structure are a key challenge, especially when aiming for facile, low-cost, green, and large-scale preparation as well as a further extension of function, such as the encapsulation and release of functional building blocks.Therefore, regarding the structure and function of PTFs, we will first briefly comment on the problems associated with PTF fabrication, and then, regarding the basis of our long-term research on protein-based thin films, we will summarize the new strategies that we have developed in recent years to explore and control the structure and function of PTFs for frontier research and practical applications.Inspired by naturally occurring protein amyloid fibrillization, we proposed the amyloid-like protein aggregation strategy to assemble proteins into supramolecular 2D films with extremely large sizes and enduring interfacial adhesion stability. This approach opened a new window for PTF fabrication in which the spontaneous interfacial 2D aggregation of protein oligomers instead of traditional 1D protofibril elongation directs the assembly of proteins. As a result, the film morphology, thickness, porosity, and function can be tailored by simply tuning the interfacial aggregation pathways.We further modified amyloid-like protein aggregation to develop chemoselective reaction-induced protein aggregation (CRIPA). It is well known that chemoselective reactions have been employed for protein modification. However, the application of such reactions in PTF fabrication has been overlooked. We initiated this new strategy by employing thiol-disulfide exchange reactions. These reactions are chemoselective toward proteins containing specific disulfide bonds with high redox potentials, resulting in amyloid-like aggregation and thin film formation. Functional proteins with immunity to such reactions can be encapsulated in thin films and released on demand without a loss of activity, opening a new avenue for the development of functional PTFs and coatings.Finally, the resultant amyloid-inspired PTFs, as a new type of biomimetic materials, provide a good platform for integration with various biomedical functions. Here, the creation of bioactive surfaces on virtually arbitrary substrates by amyloid-like PTFs will be discussed, highlighting antimicrobial, antifouling, molecular separation, and interfacial biomineralization activities that exceed those of their native protein precursors and synthetic alternatives.
Collapse
Affiliation(s)
- Yongchun Liu
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Fei Tao
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shuting Miao
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Peng Yang
- Key of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
11
|
Zikic B, Bremner A, Talaga D, Lecomte S, Bonhommeau S. Tip-enhanced Raman spectroscopy of Aβ(1-42) fibrils. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Williams AE, Davis JE, Reynolds JE, Fortenberry RC, Hammer NI, Reinemann DN. Determination of vibrational band positions in the E-hook of β-tubulin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118895. [PMID: 32919160 DOI: 10.1016/j.saa.2020.118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Raman spectral characterization of the β-TUBB2A E-hook hexapeptide, EGEDEA, is determined through experimental analysis combined with full geometry optimizations and corresponding harmonic vibrational frequency computations employing DFT methods. The hexapeptide is first broken down into di- and tetrapeptide fragments which are analyzed both quantum chemically and experimentally, and then combined to achieve an energetic minimum of the large EGEDEA hexapeptide. The Raman spectral characterization of EGEDEA band positions are then verified via the literature and comparison to the small fragment's similarly located band positions. The approach employed provides further evidence for the use of fragments as a helpful tool in characterization of the vibrational band positions of large peptides. STATEMENT OF SIGNIFICANCE: To investigate β-TUBB2A E-hook hexapeptide, a unique approach is employed whereby the hexapeptide is broken into fragments, EG, ED, EA, EGED, and EDEA and analyzed via experimental Raman spectroscopy of the crystalline solids. The experimentally observed vibrational band positions are compared to those computed using and scaled from DFT methods and Pople's 6-311+G(2df,2pd) basis set. The reported vibrational band positions are also confirmed by previously reported bands of similar peptides in the literature. This methodology facilitates differentiation between the behaviors of various side chains and their influence on the structure of the hexapeptide, providing insight into not only the nature of the peptide but also defining regions for potential protein and cytoplasmic interactions, without requiring excessive computing resources or overly-sensitive experimental methods.
Collapse
Affiliation(s)
- Ashley E Williams
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, United States of America
| | - Juliana E Davis
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, United States of America
| | - Justin E Reynolds
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, United States of America
| | - Ryan C Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, United States of America
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, United States of America
| | - Dana N Reinemann
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, United States of America; Department of Chemical Engineering, University of Mississippi, University, MS 38677, United States of America.
| |
Collapse
|
13
|
Schultz JF, Mahapatra S, Li L, Jiang N. The Expanding Frontiers of Tip-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2020; 74:1313-1340. [PMID: 32419485 DOI: 10.1177/0003702820932229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fundamental understanding of chemistry and physical properties at the nanoscale enables the rational design of interface-based systems. Surface interactions underlie numerous technologies ranging from catalysis to organic thin films to biological systems. Since surface environments are especially prone to heterogeneity, it becomes crucial to characterize these systems with spatial resolution sufficient to localize individual active sites or defects. Spectroscopy presents as a powerful means to understand these interactions, but typical light-based techniques lack sufficient spatial resolution. This review describes the growing number of applications for the nanoscale spectroscopic technique, tip-enhanced Raman spectroscopy (TERS), with a focus on developments in areas that involve measurements in new environmental conditions, such as liquid, electrochemical, and ultrahigh vacuum. The expansion into unique environments enables the ability to spectroscopically define chemistry at the spatial limit. Through the confinement and enhancement of light at the apex of a plasmonic scanning probe microscopy tip, TERS is able to yield vibrational fingerprint information of molecules and materials with nanoscale resolution, providing insight into highly localized chemical effects.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Sayantan Mahapatra
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Linfei Li
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| | - Nan Jiang
- Department of Chemistry, 14681University of Illinois at Chicago, Chicago, USA
| |
Collapse
|
14
|
de Oliveira MAS, Hilt S, Chang CW, Lee C, Voss JC, Chan JW. Surface-enhanced Raman scattering sensing platform for detecting amyloid-β peptide interaction with an aggregation inhibitor. APPLIED OPTICS 2020; 59:7490-7495. [PMID: 32902446 DOI: 10.1364/ao.399307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Soluble, small amyloid-β oligomers (AβO) are recognized as significant contributors to the pathology of Alzheimer's disease (AD). Although drugs for treating AD symptoms have been approved, no therapy targeting amyloid-β (Aβ) capable of modifying the course of the disease is available. In an effort to develop a label-free method for screening new anti-AD therapeutic agents, we show the use of a surface-enhanced Raman scattering (SERS) active substrate for detecting the interactions between Aβ peptides and spin-labeled fluorine (SLF), a peptide aggregation inhibitor. Changes in the peak positions and intensity ratios of two spectral peaks near 1600cm-1 and 2900cm-1 can be used to monitor the molecular interactions between SLF and Aβ. This study demonstrates the potential of SERS spectroscopy for rapidly screening and identifying new anti-Aβ therapeutic agents.
Collapse
|
15
|
Schultz JF, Li S, Jiang S, Jiang N. Optical scanning tunneling microscopy based chemical imaging and spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:463001. [PMID: 32702674 DOI: 10.1088/1361-648x/aba8c7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Through coupling optical processes with the scanning tunneling microscope (STM), single-molecule chemistry and physics have been investigated at the ultimate spatial and temporal limit. Electrons and photons can be used to drive interactions and reactions in chemical systems and simultaneously probe their characteristics and consequences. In this review we introduce and review methods to couple optical imaging and spectroscopy with scanning tunneling microscopy. The integration of the STM and optical spectroscopy provides new insights into individual molecular adsorbates, surface-supported molecular assemblies, and two-dimensional materials with subnanoscale resolution, enabling the fundamental study of chemistry at the spatial and temporal limit. The inelastic scattering of photons by molecules and materials, that results in unique and sensitive vibrational fingerprints, will be considered with tip-enhanced Raman spectroscopy. STM-induced luminescence examines the intrinsic luminescence of organic adsorbates and their energy transfer and charge transfer processes with their surroundings. We also provide a survey of recent efforts to probe the dynamics of optical excitation at the molecular level with scanning tunneling microscopy in the context of light-induced photophysical and photochemical transformations.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, United States of America
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
16
|
Mahapatra S, Li L, Schultz JF, Jiang N. Tip-enhanced Raman spectroscopy: Chemical analysis with nanoscale to angstrom scale resolution. J Chem Phys 2020; 153:010902. [DOI: 10.1063/5.0009766] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sayantan Mahapatra
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Linfei Li
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Jeremy F. Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
17
|
Wilkosz N, Czaja M, Seweryn S, Skirlińska-Nosek K, Szymonski M, Lipiec E, Sofińska K. Molecular Spectroscopic Markers of Abnormal Protein Aggregation. Molecules 2020; 25:E2498. [PMID: 32471300 PMCID: PMC7321069 DOI: 10.3390/molecules25112498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Abnormal protein aggregation has been intensively studied for over 40 years and broadly discussed in the literature due to its significant role in neurodegenerative diseases etiology. Structural reorganization and conformational changes of the secondary structure upon the aggregation determine aggregation pathways and cytotoxicity of the aggregates, and therefore, numerous analytical techniques are employed for a deep investigation into the secondary structure of abnormal protein aggregates. Molecular spectroscopies, including Raman and infrared ones, are routinely applied in such studies. Recently, the nanoscale spatial resolution of tip-enhanced Raman and infrared nanospectroscopies, as well as the high sensitivity of the surface-enhanced Raman spectroscopy, have brought new insights into our knowledge of abnormal protein aggregation. In this review, we order and summarize all nano- and micro-spectroscopic marker bands related to abnormal aggregation. Each part presents the physical principles of each particular spectroscopic technique listed above and a concise description of all spectral markers detected with these techniques in the spectra of neurodegenerative proteins and their model systems. Finally, a section concerning the application of multivariate data analysis for extraction of the spectral marker bands is included.
Collapse
Affiliation(s)
| | | | | | | | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Kraków, Poland; (N.W.); (M.C.); (S.S.); (K.S.-N.); (M.S.)
| | - Kamila Sofińska
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Kraków, Poland; (N.W.); (M.C.); (S.S.); (K.S.-N.); (M.S.)
| |
Collapse
|
18
|
Exploration of Insulin Amyloid Polymorphism Using Raman Spectroscopy and Imaging. Biophys J 2020; 118:2997-3007. [PMID: 32428440 DOI: 10.1016/j.bpj.2020.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/10/2020] [Accepted: 04/27/2020] [Indexed: 11/20/2022] Open
Abstract
We aimed to investigate insulin amyloid fibril polymorphism caused by salt effects and heating temperature and to visualize the structural differences of the polymorphisms in situ using Raman imaging without labeling. The time course monitoring for amyloid formation was carried out in an acidic condition without any salts and with two species of salts (NaCl and Na2SO4) by heating at 60, 70, 80, and 90°C. The intensity ratio of two Raman bands at 1672 and 1657 cm-1 due to antiparallel β-sheet and α-helix structures, respectively, was revealed to be an indicator of amyloid fibril formation, and the relative proportion of the β-sheet structure was higher in the case with salts, especially at a higher temperature with Na2SO4. In conjunction with the secondary structural changes of proteins, the S-S stretching vibrational mode of a disulfide bond (∼514 cm-1) and the ratio of the tyrosine doublet I850/I826 were also found to be markers distinguishing polymorphisms of insulin amyloid fibrils by principal component analysis. Especially, amyloid fibrils with Na2SO4 media formed the gauche-gauche-gauche conformation of disulfide bond at a higher rate, but without any salts, the gauche-gauche-gauche conformation was partially transformed into the gauche-gauche-trans conformation at higher temperatures. The different environments of the hydroxyl groups of the tyrosine residue were assumed to be caused by fibril polymorphism. Raman imaging using these marker bands also successfully visualized the two- and three- dimensional structural differences of amyloid polymorphisms. These results demonstrate the potential of Raman imaging as a diagnostic tool for polymorphisms in tissues of amyloid-related diseases.
Collapse
|
19
|
Höppener C, Schacher FH, Deckert V. Multimodal Characterization of Resin Embedded and Sliced Polymer Nanoparticles by Means of Tip-Enhanced Raman Spectroscopy and Force-Distance Curve Based Atomic Force Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907418. [PMID: 32227438 DOI: 10.1002/smll.201907418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/27/2020] [Indexed: 05/24/2023]
Abstract
Understanding the property-function relation of nanoparticles in various application fields involves determining their physicochemical properties, which is still a remaining challenge to date. While a multitude of different characterization tools can be applied, these methods by themselves can only provide an incomplete picture. Therefore, novel analytical techniques are required, which can address both chemical functionality and provide structural information at the same time with high spatial resolution. This is possible by using tip-enhanced Raman spectroscopy (TERS), but due to its limited depth information, TERS is usually restricted to investigations of the nanoparticle surface. Here, TERS experiments are established on polystyrene nanoparticles (PS NPs) after resin embedding and microtome slicing. With that, unique access to their internal morphological features is gained, and thus, enables differentiation between information obtained for core- and shell-regions. Complementary information is obtained by means of transmission electron microscopy (TEM) and from force-distance curve based atomic force microscopy (FD-AFM). This multimodal approach achieves a high degree of discrimination between the resin and the polymers used for nanoparticle formulation. The high potential of TERS combined with advanced AFM spectroscopy tools to probe the mechanical properties is applied for quality control of the resin embedding procedure.
Collapse
Affiliation(s)
- Christiane Höppener
- Leibniz Institute of Photonic Technologies (IPHT) Jena, Albert-Einsteinstraße 9, 07745, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Lessingstraße 10, D-07743, Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743, Jena, Germany
| | - Volker Deckert
- Leibniz Institute of Photonic Technologies (IPHT) Jena, Albert-Einsteinstraße 9, 07745, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Lessingstraße 10, D-07743, Jena, Germany
- Institute of Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843-4242, USA
| |
Collapse
|
20
|
Szczerbiński J, Metternich JB, Goubert G, Zenobi R. How Peptides Dissociate in Plasmonic Hot Spots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905197. [PMID: 31894644 DOI: 10.1002/smll.201905197] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/01/2019] [Indexed: 06/10/2023]
Abstract
Plasmon-induced hot carriers enable dissociation of strong chemical bonds by visible light. This unusual chemistry has been demonstrated for several diatomic and small organic molecules. Here, the scope of plasmon-driven photochemistry is extended to biomolecules and the reactivity of proteins and peptides in plasmonic hot spots is described. Tip-enhanced Raman spectroscopy (TERS) is used to both drive the reactions and to monitor their products. Peptide backbone bonds are found to dissociate in the hot spot, which is reflected in the disappearance of the amide I band in the TER spectra. The observed fragmentation pathway involves nonthermal activation, presumably by dissociative capture of a plasmon-induced hot electron. This fragmentation pathway is known from electron transfer dissociation (ETD) of peptides in gas-phase mass spectrometry (MS), which suggests a general similarity between plasmon-induced photochemistry and nonergodic reactions triggered by electron capture. This analogy may serve as a design principle for plasmon-induced reactions of biomolecules.
Collapse
Affiliation(s)
- Jacek Szczerbiński
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Jonas B Metternich
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
21
|
Hettiarachchi SD, Zhou Y, Seven E, Lakshmana MK, Kaushik AK, Chand HS, Leblanc RM. Nanoparticle-mediated approaches for Alzheimer's disease pathogenesis, diagnosis, and therapeutics. J Control Release 2019; 314:125-140. [PMID: 31647979 DOI: 10.1016/j.jconrel.2019.10.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder manifested by memory loss and cognitive impairment. Deposition of the amyloid β plaques has been identified as the most common AD pathology; however, the excessive accumulation of phosphorylated or total tau proteins, reactive oxygen species, and higher acetylcholinesterase activity are also strongly associated with Alzheimer's dementia. Several therapeutic approaches targeting these pathogenic mechanisms have failed in clinical or preclinical trials, partly due to the limited bioavailability, poor cell, and blood-brain barrier penetration, and low drug half-life of current regimens. The nanoparticles (NPs)-mediated drug delivery systems improve drug solubility and bioavailability, thus renders as superior alternatives. Moreover, NPs-mediated approaches facilitate multiple drug loading and targeted drug delivery, thereby increasing drug efficacy. However, certain NPs can cause acute toxicity damaging cellular and tissue architecture, therefore, NP material should be carefully selected. In this review, we summarize the recent NPs-mediated studies that exploit various pathologic mechanisms of AD by labeling, identifying, and treating the affected brain pathologies. The disadvantages of the select NP-based deliveries and the future aspects will also be discussed.
Collapse
Affiliation(s)
- Sajini D Hettiarachchi
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Elif Seven
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Madepalli K Lakshmana
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Ajeet K Kaushik
- Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Hitendra S Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
22
|
Zhang X, Liu S, Song X, Wang H, Wang J, Wang Y, Huang J, Yu J. Robust and Universal SERS Sensing Platform for Multiplexed Detection of Alzheimer's Disease Core Biomarkers Using PAapt-AuNPs Conjugates. ACS Sens 2019; 4:2140-2149. [PMID: 31353891 DOI: 10.1021/acssensors.9b00974] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiplexed detection of Alzheimer's disease (AD) core biomarkers is of great significance to early diagnosis and personalized treatment of AD patients. Herein, we construct a robust and convenient surface-enhanced Raman scattering (SERS) biosensing platform for simultaneous detection of Aβ(1-42) oligomers and Tau protein using different Raman dye-coded polyA aptamer-AuNPs (PAapt-AuNPs) conjugates. This strategy relies on the specific protein-aptamer binding-mediated aggregation of AuNPs and the concomitant plasmonic coupling effect that allow us to "turn on" SERS detection of protein biomarkers. To the best of our knowledge, this is the first work in which PAapt-AuNPs conjugates are used for probing protein biomarkers, which may be enlightening for the exploitation of more extensive biological applications of aptamer-AuNPs conjugates. The results reveal that the present strategy displays excellent analytical performance. Moreover, the applicability of this strategy is demonstrated in the artificial cerebrospinal fluid (CSF) samples with satisfactory results. Except for the prominent sensitivity and practicality, our strategy offers additional advantages. The preparation of nanoconjugates is handy and easily repeated, and the synthesis cost is greatly reduced because it dispenses with the complicated labeling process. Moreover, the assay can be accomplished in 15 min, allowing rapid detection of protein biomarkers. Furthermore, simultaneous detection of Tau protein and Aβ(1-42) oligomers is realized by employing different Raman dye-coded nanoconjugates, which is valuable for accurately predicting and diagnosing AD disease. Thus, our PAapt-AuNPs conjugate-based multiplexed SERS strategy indeed creates a useful and universal platform for detecting multiple protein biomarkers and related clinical diagnosis.
Collapse
|
23
|
Sreeprasad S, Narayan M. Nanoscopic Portrait of an Amyloidogenic Pathway Visualized through Tip-Enhanced Raman Spectroscopy. ACS Chem Neurosci 2019; 10:3343-3345. [PMID: 31290321 DOI: 10.1021/acschemneuro.9b00353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Inroads into understanding the process by which amyloid proteins become toxic have been hampered by the lack of experimental techniques that adequately resolve the process. Recently, tip-enhanced Raman spectroscopy, with its unique capability to spectroscopically image and chemically identify reaction mixtures with nanoscale precision, was used to obtain a high-resolution roadmap of the soluble-to-toxic conversion of amyloid beta. This technique opens the door for studying the toxic aggregation pathways of other amyloid proteins and spurs efforts devoted to prophylactic and therapeutic intervention in neurodegenerative and protein-misfolding-related disorders.
Collapse
Affiliation(s)
- Sreenivasan Sreeprasad
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
24
|
Tabatabaei M, Caetano FA, Pashee F, Ferguson SSG, Lagugné-Labarthet F. Tip-enhanced Raman spectroscopy of amyloid β at neuronal spines. Analyst 2018; 142:4415-4421. [PMID: 29090690 DOI: 10.1039/c7an00744b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The early stages of Alzheimer's disease pathogenesis are thought to occur at the synapse level, since synapse loss can be directly correlated with memory dysfunction. Considerable evidence has suggested that amyloid beta (Aβ), a secreted proteolytic derivative of amyloid precursor protein, appears to be a critical factor in the early 'synaptic failure' that is observed in Alzheimer's disease pathogenesis. The identification of Aβ at neuronal spines with high spatial resolution and high surface specificity would facilitate unraveling the intricate effect of Aβ on synapse loss and its effect on neighboring neuronal connections. Here, tip-enhanced Raman spectroscopy was used to map the presence of Aβ aggregations in the vicinity of the spines exposed to Aβ preformed in vitro. Exposure to Aβ was of 1 and 6 hours. The intensity variation of selected vibrational modes of Aβ was mapped by TERS for different exposure times to Aβ. Of interest, we discuss the distinct contributions of the amide modes from Aβ that are enhanced by the TERS process and in particular the suppression of the amide I mode in the context of recently reported observations in the literature.
Collapse
Affiliation(s)
- Mohammadali Tabatabaei
- Department of Chemistry and Centre for Advanced Materials and Biomaterials, University of Western Ontario, London, ON, Canada N6A 5B7.
| | | | | | | | | |
Collapse
|
25
|
Talaga D, Smeralda W, Lescos L, Hunel J, Lepejova-Caudy N, Cullin C, Bonhommeau S, Lecomte S. PIP2
Phospholipid-Induced Aggregation of Tau Filaments Probed by Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David Talaga
- ISM, CNRS UMR 5255; Univ. Bordeaux; 33400 Talence France
| | - Willy Smeralda
- CBMN, CNRS UMR 5248; Univ. Bordeaux; 33600 Pessac France
| | - Laurie Lescos
- ISM, CNRS UMR 5255; Univ. Bordeaux; 33400 Talence France
| | - Julien Hunel
- ISM, CNRS UMR 5255; Univ. Bordeaux; 33400 Talence France
| | | | | | | | - Sophie Lecomte
- CBMN, CNRS UMR 5248; Univ. Bordeaux; 33600 Pessac France
| |
Collapse
|
26
|
Talaga D, Smeralda W, Lescos L, Hunel J, Lepejova-Caudy N, Cullin C, Bonhommeau S, Lecomte S. PIP 2 Phospholipid-Induced Aggregation of Tau Filaments Probed by Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2018; 57:15738-15742. [PMID: 30278104 DOI: 10.1002/anie.201809636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 12/18/2022]
Abstract
The morphology and secondary structure of peptide fibers formed by aggregation of tubulin-associated unit (Tau) fragments (K18), in the presence of the inner cytoplasmic membrane phosphatidylinositol component (PIP2 ) or heparin sodium (HS) as cofactors, are determined with nanoscale (<10 nm) spatial resolution. By means of tip-enhanced Raman spectroscopy (TERS), the inclusion of PIP2 lipids in fibers is determined based on the observation of specific C=O ester vibration modes. Moreover, analysis of amide I and amide III bands suggests that the parallel β-sheet secondary structure content is lower and the random coil content is higher for fibers grown from the PIP2 cofactor instead of HS. These observations highlight the occurrence of some local structural differences between these fibers. This study constitutes the first nanoscale structural characterization of Tau/phospholipid aggregates, which are implicated in deleterious mechanisms on neural membranes in Alzheimer's disease.
Collapse
Affiliation(s)
- David Talaga
- ISM, CNRS UMR 5255, Univ. Bordeaux, 33400, Talence, France
| | - Willy Smeralda
- CBMN, CNRS UMR 5248, Univ. Bordeaux, 33600, Pessac, France
| | - Laurie Lescos
- ISM, CNRS UMR 5255, Univ. Bordeaux, 33400, Talence, France
| | - Julien Hunel
- ISM, CNRS UMR 5255, Univ. Bordeaux, 33400, Talence, France
| | | | | | | | - Sophie Lecomte
- CBMN, CNRS UMR 5248, Univ. Bordeaux, 33600, Pessac, France
| |
Collapse
|
27
|
Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials. Anal Bioanal Chem 2018; 411:37-61. [DOI: 10.1007/s00216-018-1392-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
|
28
|
D'Andrea C, Foti A, Cottat M, Banchelli M, Capitini C, Barreca F, Canale C, de Angelis M, Relini A, Maragò OM, Pini R, Chiti F, Gucciardi PG, Matteini P. Nanoscale Discrimination between Toxic and Nontoxic Protein Misfolded Oligomers with Tip-Enhanced Raman Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800890. [PMID: 30091859 DOI: 10.1002/smll.201800890] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/20/2018] [Indexed: 05/12/2023]
Abstract
Highly toxic protein misfolded oligomers associated with neurological disorders such as Alzheimer's and Parkinson's diseases are nowadays considered primarily responsible for promoting synaptic failure and neuronal death. Unraveling the relationship between structure and neurotoxicity of protein oligomers appears pivotal in understanding the causes of the pathological process, as well as in designing novel diagnostic and therapeutic strategies tuned toward the earliest and presymptomatic stages of the disease. Here, it is benefited from tip-enhanced Raman spectroscopy (TERS) as a surface-sensitive tool with spatial resolution on the nanoscale, to inspect the spatial organization and surface character of individual protein oligomers from two samples formed by the same polypeptide sequence and different toxicity levels. TERS provides direct assignment of specific amino acid residues that are exposed to a large extent on the surface of toxic species and buried in nontoxic oligomers. These residues, thanks to their outward disposition, might represent structural factors driving the pathogenic behavior exhibited by protein misfolded oligomers, including affecting cell membrane integrity and specific signaling pathways in neurodegenerative conditions.
Collapse
Affiliation(s)
- Cristiano D'Andrea
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Antonino Foti
- IPCF-CNR, Institute for Chemical and Physical Processes, National Research Council, Viale F. Stagno D'Alcontres 37, I-98158, Messina, Italy
| | - Maximilien Cottat
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Martina Banchelli
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Claudia Capitini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134, Firenze, Italy
| | - Francesco Barreca
- Department of MIFT, University of Messina, Viale F. Stagno d'Alcontres 31, I-98166, Messina, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Via Dodecaneso 33, I-16146, Genova, Italy
| | - Marella de Angelis
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Annalisa Relini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146, Genova, Italy
| | - Onofrio M Maragò
- IPCF-CNR, Institute for Chemical and Physical Processes, National Research Council, Viale F. Stagno D'Alcontres 37, I-98158, Messina, Italy
| | - Roberto Pini
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, I-50134, Firenze, Italy
| | - Pietro G Gucciardi
- IPCF-CNR, Institute for Chemical and Physical Processes, National Research Council, Viale F. Stagno D'Alcontres 37, I-98158, Messina, Italy
| | - Paolo Matteini
- IFAC-CNR, Institute of Applied Physics "Nello Carrara,", National Research Council, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| |
Collapse
|
29
|
Martial B, Lefèvre T, Auger M. Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR. Biophys Rev 2018; 10:1133-1149. [PMID: 29855812 PMCID: PMC6082320 DOI: 10.1007/s12551-018-0427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
It is well established that amyloid proteins play a primary role in neurodegenerative diseases. Alzheimer's, Parkinson's, type II diabetes, and Creutzfeldt-Jakob's diseases are part of a wider family encompassing more than 50 human pathologies related to aggregation of proteins. Although this field of research is thoroughly investigated, several aspects of fibrillization remain misunderstood, which in turn slows down, or even impedes, advances in treating and curing amyloidoses. To solve this problem, several research groups have chosen to focus on short fragments of amyloid proteins, sequences that have been found to be of great importance for the amyloid formation process. Studying short peptides allows bypassing the complexity of working with full-length proteins and may provide important information relative to critical segments of amyloid proteins. To this end, efficient biophysical tools are required. In this review, we focus on two essential types of spectroscopic techniques, i.e., vibrational spectroscopy and its derivatives (conventional Raman scattering, deep-UV resonance Raman (DUVRR), Raman optical activity (ROA), surface-enhanced Raman spectroscopy (SERS), tip-enhanced Raman spectroscopy (TERS), infrared (IR) absorption spectroscopy, vibrational circular dichroism (VCD)) and solid-state nuclear magnetic resonance (ssNMR). These techniques revealed powerful to provide a better atomic and molecular comprehension of the amyloidogenic process and fibril structure. This review aims at underlining the information that these techniques can provide and at highlighting their strengths and weaknesses when studying amyloid fragments. Meaningful examples from the literature are provided for each technique, and their complementarity is stressed for the kinetic and structural characterization of amyloid fibril formation.
Collapse
Affiliation(s)
- Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
30
|
McRae D, Jeon K, Lagugné-Labarthet F. Plasmon-Mediated Drilling in Thin Metallic Nanostructures. ACS OMEGA 2018; 3:7269-7277. [PMID: 31458887 PMCID: PMC6644463 DOI: 10.1021/acsomega.8b00774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/19/2018] [Indexed: 05/22/2023]
Abstract
Thin and ultraflat conductive surfaces are of particular interest to use as substrates for tip-enhanced spectroscopy applications. Tip-enhanced spectroscopy exploits the excitation of a localized surface plasmon resonance mode at the apex of a metallized atomic force microscope tip, confining and enhancing the local electromagnetic field by several orders of magnitude. This allows for nanoscale mapping of the surface with high spatial resolution and surface sensitivity, as demonstrated when coupled to local Raman measurements. In gap-mode tip-enhanced spectroscopy, the specimen of interest is deposited onto a flat metallic surface and probed by a metallic tip, allowing for further electromagnetic confinement and subsequent enhancement. We investigate here a geometry where a gold tip is used in conjunction with a silver nanoplate, thus forming a heterometallic platform for local enhancement. When irradiated, a plasmon-mediated reaction is triggered at the tip-substrate junction due to the enhanced electric field and the transfer of hot electrons from the tip to the nanoplate. This resulting nanoscale reaction appears to be sufficient to ablate the thin silver plates even under weak laser intensity. Such an approach may be further exploited for patterning metallic nanostructures or photoinduced chemical reactions at metal surfaces.
Collapse
|
31
|
Lipiec E, Perez‐Guaita D, Kaderli J, Wood BR, Zenobi R. Direct Nanospectroscopic Verification of the Amyloid Aggregation Pathway. Angew Chem Int Ed Engl 2018; 57:8519-8524. [DOI: 10.1002/anie.201803234] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/22/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Ewelina Lipiec
- Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
- The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences 31-342 Krakow Poland
- Centre for Biospectroscopy and School of Chemistry Monash University 3800 Victoria Australia
| | - David Perez‐Guaita
- Centre for Biospectroscopy and School of Chemistry Monash University 3800 Victoria Australia
| | - Janina Kaderli
- Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Bayden R. Wood
- Centre for Biospectroscopy and School of Chemistry Monash University 3800 Victoria Australia
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
32
|
Lipiec E, Perez‐Guaita D, Kaderli J, Wood BR, Zenobi R. Direct Nanospectroscopic Verification of the Amyloid Aggregation Pathway. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ewelina Lipiec
- Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
- The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences 31-342 Krakow Poland
- Centre for Biospectroscopy and School of Chemistry Monash University 3800 Victoria Australia
| | - David Perez‐Guaita
- Centre for Biospectroscopy and School of Chemistry Monash University 3800 Victoria Australia
| | - Janina Kaderli
- Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| | - Bayden R. Wood
- Centre for Biospectroscopy and School of Chemistry Monash University 3800 Victoria Australia
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
33
|
Meyer R, Yao X, Deckert V. Latest instrumental developments and bioanalytical applications in tip-enhanced Raman spectroscopy. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Gao L, Zhao H, Li T, Huo P, Chen D, Liu B. Atomic Force Microscopy Based Tip-Enhanced Raman Spectroscopy in Biology. Int J Mol Sci 2018; 19:E1193. [PMID: 29652860 PMCID: PMC5979470 DOI: 10.3390/ijms19041193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Most biological phenomena occur at the nanometer scale, which is not accessible by the conventional optical techniques because of the optical diffraction limitation. Tip-enhanced Raman spectroscopy (TERS), one of the burgeoning probing techniques, not only can provide the topography characterization with high resolution, but also can deliver the chemical or molecular information of a sample beyond the optical diffraction limitation. Therefore, it has been widely used in various structural analyses pertaining to materials science, tissue engineering, biological processes and so on. Based on the different feedback mechanisms, TERS can be classified into three types: atomic force microscopy based TERS system (AFM-TERS), scanning tunneling microscopy based TERS system (STM-TERS) and shear force microscopy based TERS system (SFM-TERS). Among them, AFM-TERS is the most widely adopted feedback system by live biosamples because it can work in liquid and this allows the investigation of biological molecules under native conditions. In this review, we mainly focus on the applications of AFM-TERS in three biological systems: nucleic acids, proteins and pathogens. From the TERS characterization to the data analysis, this review demonstrates that AFM-TERS has great potential applications to visually characterizing the biomolecular structure and crucially detecting more nano-chemical information of biological systems.
Collapse
Affiliation(s)
- Lizhen Gao
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Huiling Zhao
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Tianfeng Li
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China.
| | - Dong Chen
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| | - Bo Liu
- Institute of Photo-biophysics, School of Physics and Electronics, Henan University, Kaifeng 475004, China.
| |
Collapse
|
35
|
Deckert-Gaudig T, Taguchi A, Kawata S, Deckert V. Tip-enhanced Raman spectroscopy - from early developments to recent advances. Chem Soc Rev 2018. [PMID: 28640306 DOI: 10.1039/c7cs00209b] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An analytical technique operating at the nanoscale must be flexible regarding variable experimental conditions while ideally also being highly specific, extremely sensitive, and spatially confined. In this respect, tip-enhanced Raman scattering (TERS) has been demonstrated to be ideally suited to, e.g., elucidating chemical reaction mechanisms, determining the distribution of components and identifying and localizing specific molecular structures at the nanometre scale. TERS combines the specificity of Raman spectroscopy with the high spatial resolution of scanning probe microscopies by utilizing plasmonic nanostructures to confine the incident electromagnetic field and increase it by many orders of magnitude. Consequently, molecular structure information in the optical near field that is inaccessible to other optical microscopy methods can be obtained. In this general review, the development of this still-young technique, from early experiments to recent achievements concerning inorganic, organic, and biological materials, is addressed. Accordingly, the technical developments necessary for stable and reliable AFM- and STM-based TERS experiments, together with the specific properties of the instruments under different conditions, are reviewed. The review also highlights selected experiments illustrating the capabilities of this emerging technique, the number of users of which has steadily increased since its inception in 2000. Finally, an assessment of the frontiers and new concepts of TERS, which aim towards rendering it a general and widely applicable technique that combines the highest possible lateral resolution and extreme sensitivity, is provided.
Collapse
|
36
|
Bonhommeau S, Lecomte S. Tip-Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules. Chemphyschem 2017; 19:8-18. [DOI: 10.1002/cphc.201701067] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Sébastien Bonhommeau
- University of Bordeaux; Institut des Sciences Moléculaires; CNRS UMR 5255; 351 cours de la Libération 33405 Talence cedex France
| | - Sophie Lecomte
- University of Bordeaux; Institut de Chimie et Biologie des Membranes et des Nano-objets; CNRS UMR 5248; Allée Geoffroy Saint Hilaire 33600 Pessac France
| |
Collapse
|
37
|
Jiang S, Zhang X, Zhang Y, Hu C, Zhang R, Zhang Y, Liao Y, Smith ZJ, Dong Z, Hou JG. Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e17098. [PMID: 30167216 PMCID: PMC6062048 DOI: 10.1038/lsa.2017.98] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 05/15/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a powerful surface analysis technique that can provide subnanometer-resolved images of nanostructures with site-specific chemical fingerprints. However, due to the limitation of weak Raman signals and the resultant difficulty in achieving TERS imaging with good signal-to-noise ratios (SNRs), the conventional single-peak analysis is unsuitable for distinguishing complex molecular architectures at the subnanometer scale. Here we demonstrate that the combination of subnanometer-resolved TERS imaging and advanced multivariate analysis can provide an unbiased panoramic view of the chemical identity and spatial distribution of different molecules on surfaces, yielding high-quality chemical images despite limited SNRs in individual pixel-level spectra. This methodology allows us to exploit the full power of TERS imaging and unambiguously distinguish between adjacent molecules with a resolution of ~0.4 nm, as well as to resolve submolecular features and the differences in molecular adsorption configurations. Our results provide a promising methodology that promotes TERS imaging as a routine analytical technique for the analysis of complex nanostructures on surfaces.
Collapse
Affiliation(s)
- Song Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianbiao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chunrui Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zachary J Smith
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenchao Dong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - J G Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Scherger JD, Foster MD. Tunable, Liquid Resistant Tip Enhanced Raman Spectroscopy Probes: Toward Label-Free Nano-Resolved Imaging of Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7818-7825. [PMID: 28719214 DOI: 10.1021/acs.langmuir.7b01338] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Tip enhanced Raman spectroscopy (TERS) has been established as a powerful, noninvasive technique for chemical identification at the nanoscale. However, difficulties, including the degradation of probes, limit its use in liquid systems. Here TERS probes for studies in aqueous environments have been demonstrated using titanium nitride coatings with an alumina protective layer. The probes show enhancement in signal intensity as high as 380% in liquid measurements, and the probe resonance can be tuned by varying deposition conditions to optimize performance for different laser sources and types of samples. This development of inexpensively produced probes suited for studies in aqueous environments enables its wider use for fields such as biology and biomedicine in which aqueous environments are the norm.
Collapse
Affiliation(s)
- Jacob D Scherger
- Department of Polymer Science, The University of Akron , Akron, Ohio, United States
| | - Mark D Foster
- Department of Polymer Science, The University of Akron , Akron, Ohio, United States
| |
Collapse
|
39
|
Mochizuki M, Lkhamsuren G, Suthiwanich K, Mondarte EA, Yano TA, Hara M, Hayashi T. Damage-free tip-enhanced Raman spectroscopy for heat-sensitive materials. NANOSCALE 2017; 9:10715-10720. [PMID: 28681893 DOI: 10.1039/c7nr02398g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report a method to establish experimental conditions for tip-enhanced Raman spectroscopy (TERS) with low thermal and mechanical damage to samples. In this method, we monitor the thermal desorption of thiol molecules from a gold-coated probe of an atomic force microscope (AFM) via TERS spectra. Temperatures for desorption of thiol molecules (60-100 °C) from gold surfaces cover the temperature range for degradation of heat-sensitive biomaterials (e.g. proteins). By monitoring the desorption of the thiols on the probe, we can estimate the power of an excitation laser for the samples to reach their critical temperatures for thermal degradation. Furthermore, we also found that an active oscillation of AFM cantilevers significantly promotes the heat transfer from the probe to the surrounding medium. This enables us to employ a higher power density of the excitation laser, resulting in a stronger Raman signal compared with the signal obtained with a contact mode. We propose that this combinatory method is effective in acquiring strong TERS signals while suppressing thermal and mechanical damage to soft and heat-sensitive samples.
Collapse
Affiliation(s)
- Masahito Mochizuki
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Rapid and accurate Gram differentiation is paramount as the first step of pathogen identification and antibiotics administration. However, the current method requires additional reagents, is time-consuming, and is operator dependent. Here we show the principle of tip enhanced Raman spectroscopy (TERS) can differentiate between Gram negative and positive species, by detecting the changes in tip-enhancement in the Raman scattering from the bacteria's lipid-bilayer membrane, which specifically enhances Gram negative bacteria.
Collapse
|
41
|
Bonhommeau S, Talaga D, Hunel J, Cullin C, Lecomte S. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ1-
42
Fibrils at the Nanometer Scale. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sébastien Bonhommeau
- University of Bordeaux; Institut des Sciences Moléculaires, CNRS UMR 5255; 351 cours de la Libération 33405 Talence cedex France
| | - David Talaga
- University of Bordeaux; Institut des Sciences Moléculaires, CNRS UMR 5255; 351 cours de la Libération 33405 Talence cedex France
| | - Julien Hunel
- University of Bordeaux; Institut des Sciences Moléculaires, CNRS UMR 5255; 351 cours de la Libération 33405 Talence cedex France
| | - Christophe Cullin
- University of Bordeaux; Institut de Chimie et Biologie des Membranes et des Nano-objets, CNRS UMR 5248; Allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Sophie Lecomte
- University of Bordeaux; Institut de Chimie et Biologie des Membranes et des Nano-objets, CNRS UMR 5248; Allée Geoffroy Saint Hilaire 33600 Pessac France
| |
Collapse
|
42
|
Bonhommeau S, Talaga D, Hunel J, Cullin C, Lecomte S. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ 1-42 Fibrils at the Nanometer Scale. Angew Chem Int Ed Engl 2017; 56:1771-1774. [PMID: 28071842 DOI: 10.1002/anie.201610399] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/02/2016] [Indexed: 11/09/2022]
Abstract
For the first time, natural Aβ1-42 fibrils (WT) implicated in Alzheimer's disease, as well as two synthetic mutants forming less toxic amyloid fibrils (L34T) and highly toxic oligomers (oG37C), are chemically characterized at the scale of a single structure using tip-enhanced Raman spectroscopy (TERS). While the proportion of TERS features associated with amino acid residues is similar for the three peptides, a careful examination of amide I and amide III bands allows us to clearly distinguish WT and L34T fibers organized in parallel β-sheets from the small and more toxic oG37C oligomers organized in anti-parallel β-sheets.
Collapse
Affiliation(s)
- Sébastien Bonhommeau
- University of Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, 351 cours de la Libération, 33405, Talence cedex, France
| | - David Talaga
- University of Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, 351 cours de la Libération, 33405, Talence cedex, France
| | - Julien Hunel
- University of Bordeaux, Institut des Sciences Moléculaires, CNRS UMR 5255, 351 cours de la Libération, 33405, Talence cedex, France
| | - Christophe Cullin
- University of Bordeaux, Institut de Chimie et Biologie des Membranes et des Nano-objets, CNRS UMR 5248, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Sophie Lecomte
- University of Bordeaux, Institut de Chimie et Biologie des Membranes et des Nano-objets, CNRS UMR 5248, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| |
Collapse
|
43
|
Sereda V, Lednev IK. Two Mechanisms of Tip Enhancement of Raman Scattering by Protein Aggregates. APPLIED SPECTROSCOPY 2017; 71:118-128. [PMID: 27407009 DOI: 10.1177/0003702816651890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for probing the surface of biological species with nanometer spatial resolution. Here, we report the TER spectra of an individual insulin fibril, the protein cast film and a short peptide (LVEALYL) microcrystal mimicking the fibril core. Two different types of TER spectra were acquired depending on the "roughness" of the probed surface at the molecular level. A fully reproducible, low-intensity, normal Raman-type spectrum was characteristic of the top flat surface of the microcrystal while highly variable, higher intensity TER spectra were obtained for the edges of the microcrystal, cast film, and fibril. As a result, two tip enhancement mechanisms of Raman scattering, long- and short-range, were proposed by analogy with the physical and chemical enhancement mechanisms, respectively, known for surface-enhanced Raman spectroscopy.
Collapse
|
44
|
Hermelink A, Naumann D, Piesker J, Lasch P, Laue M, Hermann P. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 2017; 142:1342-1349. [DOI: 10.1039/c6an02151d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The morphology and structure of biological nanoparticles, such as viruses, can be efficiently analysed by transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- A. Hermelink
- Centre for Biological Threats and Special Pathogens – Proteomics and Spectroscopy (ZBS6)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - D. Naumann
- Centre for Biological Threats and Special Pathogens – Proteomics and Spectroscopy (ZBS6)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - J. Piesker
- Centre for Biological Threats and Special Pathogens – Advanced Light and Electron Microscopy (ZBS4)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - P. Lasch
- Centre for Biological Threats and Special Pathogens – Proteomics and Spectroscopy (ZBS6)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - M. Laue
- Centre for Biological Threats and Special Pathogens – Advanced Light and Electron Microscopy (ZBS4)
- Robert Koch-Institute
- 13353 Berlin
- Germany
| | - P. Hermann
- Centre for Biological Threats and Special Pathogens – Proteomics and Spectroscopy (ZBS6)
- Robert Koch-Institute
- 13353 Berlin
- Germany
- Physikalisch-Technische Bundesanstalt (PTB)
| |
Collapse
|
45
|
Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. NANOTECHNOLOGY 2016; 27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Collapse
Affiliation(s)
- Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800 Turkey
| | | | | | | |
Collapse
|
46
|
Yano TA, Tsuchimoto Y, Mochizuki M, Hayashi T, Hara M. Laser Scanning-Assisted Tip-Enhanced Optical Microscopy for Robust Optical Nanospectroscopy. APPLIED SPECTROSCOPY 2016; 70:1239-1243. [PMID: 27412187 DOI: 10.1177/0003702816652369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/22/2015] [Indexed: 06/06/2023]
Abstract
Laser-scanning-assisted tip-enhanced optical microscopy was developed for robust optical nanospectroscopy. The laser-scanning system was utilized to automatically set and keep the center of a tight laser-focusing spot in the proximity of a metallic tip with around 10 nm precision. This enabled us to efficiently and stably induce plasmon-coupled field enhancement at the apex of the metallic probe tip. The laser-scanning technique was also applied to tracking and compensating the thermal drift of the metallic tip in the spot. This technique is usable for long-term tip-enhanced optical spectroscopy without any optical degradation.
Collapse
Affiliation(s)
- Taka-Aki Yano
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan RIKEN, Wako, Japan
| | - Yuta Tsuchimoto
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masahito Mochizuki
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tomohiro Hayashi
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan RIKEN, Wako, Japan
| | - Masahiko Hara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan RIKEN, Wako, Japan Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Japan
| |
Collapse
|
47
|
Kurouski D, Van Duyne RP, Lednev IK. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst 2016; 140:4967-80. [PMID: 26042229 DOI: 10.1039/c5an00342c] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amyloid fibrils are β-sheet rich protein aggregates that are strongly associated with various neurodegenerative diseases. Raman spectroscopy has been broadly utilized to investigate protein aggregation and amyloid fibril formation and has been shown to be capable of revealing changes in secondary and tertiary structures at all stages of fibrillation. When coupled with atomic force (AFM) and scanning electron (SEM) microscopies, Raman spectroscopy becomes a powerful spectroscopic approach that can investigate the structural organization of amyloid fibril polymorphs. In this review, we discuss the applications of Raman spectroscopy, a unique, label-free and non-destructive technique for the structural characterization of amyloidogenic proteins, prefibrilar oligomers, and mature fibrils.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, USA.
| | | | | |
Collapse
|
48
|
Langelüddecke L, Singh P, Deckert V. Exploring the Nanoscale: Fifteen Years of Tip-Enhanced Raman Spectroscopy. APPLIED SPECTROSCOPY 2015; 69:1357-71. [PMID: 26554759 DOI: 10.1366/15-08014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Spectroscopic methods with high spatial resolution are essential to understand the physical and chemical properties of nanoscale materials including biological and chemical materials. Tip-enhanced Raman spectroscopy (TERS) is a combination of surface-enhanced Raman spectroscopy (SERS) and scanning probe microscopy (SPM), which can provide high-resolution topographic and spectral information simultaneously below the diffraction limit of light. Even examples of sub-nanometer resolution have been demonstrated. This review intends to give an introduction to TERS, focusing on its basic principle and the experimental setup, the strengths followed by recent applications, developments, and perspectives in this field.
Collapse
Affiliation(s)
- Lucas Langelüddecke
- Institute of Physical Chemistry and Abbe Center of Photonics, University of Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | | | | |
Collapse
|
49
|
Deckert V, Deckert-Gaudig T, Diegel M, Götz I, Langelüddecke L, Schneidewind H, Sharma G, Singh P, Singh P, Trautmann S, Zeisberger M, Zhang Z. Spatial resolution in Raman spectroscopy. Faraday Discuss 2015; 177:9-20. [PMID: 25826010 DOI: 10.1039/c5fd90014j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article is intended to set the scope of the meeting, in particular, the high spatial resolution section.
Collapse
Affiliation(s)
- Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Święch D, Tanabe I, Vantasin S, Sobolewski D, Ozaki Y, Prahl A, Maćkowski S, Proniewicz E. Tip-enhanced Raman spectroscopy of bradykinin and its B2 receptor antagonists adsorbed onto colloidal suspended Ag nanowires. Phys Chem Chem Phys 2015; 17:22882-22892. [PMID: 26264526 DOI: 10.1039/c5cp03438h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tip-enhanced Raman scattering (TERS) spectra of bradykinin (BK) and its potent B2 BK receptor antagonists, [d-Arg(0),Hyp(3),Thi(5,8),l-Pip(7)]BK and [d-Arg(0),Hyp(3),Thi(5),d-Phe(7),l-Pip(8)]BK, approximately with a size of about 40 nm, adsorbed onto colloidal suspended Ag nanowires with diameter in the range of 350-500 nm and length of 2-50 μm were recorded. The metal surface plasmon resonance and morphology of the Ag nanowires were studied by ultraviolet-visible (UV-Vis) spectroscopy and scanning electron microscopy (SEM). Briefly, it was shown that two C-terminal amino acids of BK and [d-Arg(0),Hyp(3),Thi(5,8),l-Pip(7)]BK are involved in the interaction with the colloidal suspended Ag nanowire surface, whereas three last amino acids of the [d-Arg(0),Hyp(3),Thi(5),d-Phe(7),l-Pip(8)]BK sequence attached the Ag surface. Thus, BK adsorbs on the colloidal suspended Ag nanowires mainly through the Phe(5/8) ring (tilted orientation) and the one oxygen atom of the carboxylate group and the H2N-C-NH-CH2- fragment of Arg(9). In the case of [d-Arg(0),Hyp(3),Thi(5,8),l-Pip(7)]BK, the Thi(8) ring (through the lone electron pair on the sulfur atom) and the both oxygen atoms of the carboxylate group and the amine group of Arg(9) mainly participated in the interaction with the Ag nanowire surface. For [d-Arg(0),Hyp(3),Thi(5),d-Phe(7),l-Pip(8)]BK, the d-Phe(7) ring, the Pip(8) ring, and the Arg(9) side-chain assisted in the peptide interaction with the Ag surface. The obtained results emphasize the importance of the C-terminal part of these peptides in the adsorption process onto the colloidal suspended Ag nanowires.
Collapse
Affiliation(s)
- D Święch
- Faculty of Foundry Engineering, AGH University of Science and Technology, ul. Reymonta 23, 30-059 Kraków, Poland.
| | | | | | | | | | | | | | | |
Collapse
|