1
|
Bera S, Fereiro JA, Saxena SK, Chryssikos D, Majhi K, Bendikov T, Sepunaru L, Ehre D, Tornow M, Pecht I, Vilan A, Sheves M, Cahen D. Near-Temperature-Independent Electron Transport Well beyond Expected Quantum Tunneling Range via Bacteriorhodopsin Multilayers. J Am Chem Soc 2023; 145. [PMID: 37933117 PMCID: PMC10655127 DOI: 10.1021/jacs.3c09120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2-3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4-5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10-3 cm2) Au-protein-Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of mostly saturated components. Junction currents decreased exponentially with increasing junction width, with uniquely low length-decay constants (0.05-0.5 nm-1). Remarkably, even for the widest junctions, currents are nearly temperature-independent, completely so below 160 K. While, among other things, the lack of temperature-dependence excludes, hopping as a plausible mechanism, coherent quantum-mechanical tunneling over 60 nm is physically implausible. The results may be understood if ETp is limited by injection into one of the contacts, followed by more efficient charge propagation across the protein. Still, the electrostatics of the protein films further limit the number of charge carriers injected into the protein film. How electron transport across dozens of nanometers of protein layers is more efficient than injection defines a riddle, requiring further study.
Collapse
Affiliation(s)
- Sudipta Bera
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jerry A. Fereiro
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Shailendra K. Saxena
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department
of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil
Nadu, India
| | - Domenikos Chryssikos
- Molecular
Electronics, Technical University of Munich, 85748 Garching, Germany
- Fraunhofer
Institute for Electronic Microsystems and Solid State Technologies
(EMFT), 80686 München, Germany
| | - Koushik Majhi
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tatyana Bendikov
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Lior Sepunaru
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - David Ehre
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marc Tornow
- Molecular
Electronics, Technical University of Munich, 85748 Garching, Germany
- Fraunhofer
Institute for Electronic Microsystems and Solid State Technologies
(EMFT), 80686 München, Germany
| | - Israel Pecht
- Department
of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Vilan
- Department
of Chemical and Biological Physics Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Bera S, Govinda S, Fereiro JA, Pecht I, Sheves M, Cahen D. Biotin Binding Hardly Affects Electron Transport Efficiency across Streptavidin Solid-State Junctions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1394-1403. [PMID: 36648410 PMCID: PMC9893813 DOI: 10.1021/acs.langmuir.2c02378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/29/2022] [Indexed: 05/27/2023]
Abstract
The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrode-protein monolayer-microelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our results on compactly integrated, dense, uniform, ∼3 nm thick STV monolayers indicate that, notwithstanding the slight structural changes in the STV monolayers upon biotin binding, there is no statistically significant conductance change between the free STV and that bound to biotin. The ETp temperature (T) dependence over the 80-300 K range is very small but with an unusual, slightly negative (metallic-like) dependence toward room temperature. Such dependence can be accounted for by the reversible structural shrinkage of the STV at temperatures below 160 K.
Collapse
Affiliation(s)
- Sudipta Bera
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sharada Govinda
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jerry A. Fereiro
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- The
School of Chemistry, Indian Institute of
Science Education and Research, Thiruvananthapuram, Maruthamala, Kerala 695551, India
| | - Israel Pecht
- Department
of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordechai Sheves
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Cahen
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Yoon J, Hou Y, Knoepfel AM, Yang D, Ye T, Zheng L, Yennawar N, Sanghadasa M, Priya S, Wang K. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chem Soc Rev 2021; 50:12915-12984. [PMID: 34622260 DOI: 10.1039/d0cs01493a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Smart electronic devices are becoming ubiquitous due to many appealing attributes including portability, long operational time, rechargeability and compatibility with the user-desired form factor. Integration of mobile power sources (MPS) based on photovoltaic technologies with smart electronics will continue to drive improved sustainability and independence. With high efficiency, low cost, flexibility and lightweight features, halide perovskite photovoltaics have become promising candidates for MPS. Realization of these photovoltaic MPS (PV-MPS) with unconventionally extraordinary attributes requires new 'out-of-box' designs. Natural materials have provided promising designing solutions to engineer properties under a broad range of boundary conditions, ranging from molecules, proteins, cells, tissues, apparatus to systems in animals, plants, and humans optimized through billions of years of evolution. Applying bio-inspired strategies in PV-MPS could be biomolecular modification on crystallization at the atomic/meso-scale, bio-structural duplication at the device/system level and bio-mimicking at the functional level to render efficient charge delivery, energy transport/utilization, as well as stronger resistance against environmental stimuli (e.g., self-healing and self-cleaning). In this review, we discuss the bio-inspired/-mimetic structures, experimental models, and working principles, with the goal of revealing physics and bio-microstructures relevant for PV-MPS. Here the emphasis is on identifying the strategies and material designs towards improvement of the performance of emerging halide perovskite PVs and strategizing their bridge to future MPS.
Collapse
Affiliation(s)
- Jungjin Yoon
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Yuchen Hou
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Abbey Marie Knoepfel
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Dong Yang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Tao Ye
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Luyao Zheng
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Neela Yennawar
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, 16802, PA, USA
| | - Mohan Sanghadasa
- U.S. Army Combat Capabilities Development Command Aviation & Missile Center, Redstone Arsenal, Alabama, 35898, USA
| | - Shashank Priya
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Kai Wang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
4
|
Affiliation(s)
- Irit Rosenhek‐Goldian
- Department of Chemical Research Support Weizmann Institute of Science Herzl 234 Rehovot ISRAEL
| | - Sidney R. Cohen
- Department of Chemical Research Support Weizmann Institute of Science Herzl 234 Rehovot ISRAEL
| |
Collapse
|
5
|
Kayser B, Fereiro JA, Bhattacharyya R, Cohen SR, Vilan A, Pecht I, Sheves M, Cahen D. Solid-State Electron Transport via the Protein Azurin is Temperature-Independent Down to 4 K. J Phys Chem Lett 2020; 11:144-151. [PMID: 31821001 DOI: 10.1021/acs.jpclett.9b03120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Solid-state electronic transport (ETp) via the electron-transfer copper protein azurin (Az) was measured in Au/Az/Au junction configurations down to 4 K, the lowest temperature for solid-state protein-based junctions. Not only does lowering the temperature help when observing fine features of electronic transport, but it also limits possible electron transport mechanisms. Practically, wire-bonded devices-on-chip, carrying Az-based microscopic junctions, were measured in liquid He, minimizing temperature gradients across the samples. Much smaller junctions, in conducting-probe atomic force microscopy measurements, served, between room temperature and the protein's denaturation temperature (∼323 K), to check that conductance behavior is independent of device configuration or contact nature and thus is a property of the protein itself. Temperature-independent currents were observed from ∼320 to 4 K. The experimental results were fitted to a single-level Landauer model to extract effective energy barrier and electrode-molecule coupling strength values and to compare data sets. Our results strongly support that quantum tunneling, rather than hopping, dominates ETp via Az.
Collapse
Affiliation(s)
- Ben Kayser
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Jerry A Fereiro
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Rajarshi Bhattacharyya
- Braun Center for Submicron Research, Department of Condensed Matter Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Sidney R Cohen
- Department of Chemical Research Support , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Ayelet Vilan
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Israel Pecht
- Department of Immunology , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Mordechai Sheves
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - David Cahen
- Department of Materials and Interfaces , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
6
|
Giliberti V, Polito R, Ritter E, Broser M, Hegemann P, Puskar L, Schade U, Zanetti-Polzi L, Daidone I, Corni S, Rusconi F, Biagioni P, Baldassarre L, Ortolani M. Tip-Enhanced Infrared Difference-Nanospectroscopy of the Proton Pump Activity of Bacteriorhodopsin in Single Purple Membrane Patches. NANO LETTERS 2019; 19:3104-3114. [PMID: 30950626 PMCID: PMC6745627 DOI: 10.1021/acs.nanolett.9b00512] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/02/2019] [Indexed: 05/21/2023]
Abstract
Photosensitive proteins embedded in the cell membrane (about 5 nm thickness) act as photoactivated proton pumps, ion gates, enzymes, or more generally, as initiators of stimuli for the cell activity. They are composed of a protein backbone and a covalently bound cofactor (e.g. the retinal chromophore in bacteriorhodopsin (BR), channelrhodopsin, and other opsins). The light-induced conformational changes of both the cofactor and the protein are at the basis of the physiological functions of photosensitive proteins. Despite the dramatic development of microscopy techniques, investigating conformational changes of proteins at the membrane monolayer level is still a big challenge. Techniques based on atomic force microscopy (AFM) can detect electric currents through protein monolayers and even molecular binding forces in single-protein molecules but not the conformational changes. For the latter, Fourier-transform infrared spectroscopy (FTIR) using difference-spectroscopy mode is typically employed, but it is performed on macroscopic liquid suspensions or thick films containing large amounts of purified photosensitive proteins. In this work, we develop AFM-assisted, tip-enhanced infrared difference-nanospectroscopy to investigate light-induced conformational changes of the bacteriorhodopsin mutant D96N in single submicrometric native purple membrane patches. We obtain a significant improvement compared with the signal-to-noise ratio of standard IR nanospectroscopy techniques by exploiting the field enhancement in the plasmonic nanogap that forms between a gold-coated AFM probe tip and an ultraflat gold surface, as further supported by electromagnetic and thermal simulations. IR difference-spectra in the 1450-1800 cm-1 range are recorded from individual patches as thin as 10 nm, with a diameter of less than 500 nm, well beyond the diffraction limit for FTIR microspectroscopy. We find clear spectroscopic evidence of a branching of the photocycle for BR molecules in direct contact with the gold surfaces, with equal amounts of proteins either following the standard proton-pump photocycle or being trapped in an intermediate state not directly contributing to light-induced proton transport. Our results are particularly relevant for BR-based optoelectronic and energy-harvesting devices, where BR molecular monolayers are put in contact with metal surfaces, and, more generally, for AFM-based IR spectroscopy studies of conformational changes of proteins embedded in intrinsically heterogeneous native cell membranes.
Collapse
Affiliation(s)
- Valeria Giliberti
- Istituto
Italiano di Tecnologia, Center for Life NanoScience, Viale Regina Elena 291, I-00161 Roma, Italy
- E-mail:
| | - Raffaella Polito
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, I-00185 Roma, Italy
| | - Eglof Ritter
- Humboldt-Universität
zu Berlin, Institut für
Biologie, Invalidenstraße
42, D-10115 Berlin, Germany
| | - Matthias Broser
- Humboldt-Universität
zu Berlin, Institut für
Biologie, Invalidenstraße
42, D-10115 Berlin, Germany
| | - Peter Hegemann
- Humboldt-Universität
zu Berlin, Institut für
Biologie, Invalidenstraße
42, D-10115 Berlin, Germany
| | - Ljiljana Puskar
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Ulrich Schade
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Laura Zanetti-Polzi
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via Vetoio, I-67010 L’Aquila, Italy
| | - Isabella Daidone
- Department
of Physical and Chemical Sciences, University
of L’Aquila, Via Vetoio, I-67010 L’Aquila, Italy
| | - Stefano Corni
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- CNR
Institute
of Nanoscience, Via Campi
213/A, I-41125 Modena, Italy
| | - Francesco Rusconi
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Paolo Biagioni
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Leonetta Baldassarre
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, I-00185 Roma, Italy
| | - Michele Ortolani
- Istituto
Italiano di Tecnologia, Center for Life NanoScience, Viale Regina Elena 291, I-00161 Roma, Italy
- Department
of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, I-00185 Roma, Italy
- E-mail:
| |
Collapse
|
7
|
Kayser B, Fereiro JA, Guo C, Cohen SR, Sheves M, Pecht I, Cahen D. Transistor configuration yields energy level control in protein-based junctions. NANOSCALE 2018; 10:21712-21720. [PMID: 30431054 DOI: 10.1039/c8nr06627b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The incorporation of proteins as functional components in electronic junctions has received much interest recently due to their diverse bio-chemical and physical properties. However, information regarding the energies of the frontier orbitals involved in their electron transport (ETp) has remained elusive. Here we employ a new method to quantitatively determine the energy position of the molecular orbital, nearest to the Fermi level (EF) of the electrode, in the electron transfer protein Azurin. The importance of the Cu(ii) redox center of Azurin is demonstrated by measuring gate-controlled conductance switching which is absent if Azurin's copper ions are removed. Comparing different electrode materials, a higher conductance and a lower gate-induced current onset is observed for the material with smaller work function, indicating that ETp via Azurin is LUMO-mediated. We use the difference in work function to calibrate the difference in gate-induced current onset for the two electrode materials, to a specific energy level shift and find that ETp via Azurin is near resonance. Our results provide a basis for mapping and studying the role of energy level positions in (bio)molecular junctions.
Collapse
Affiliation(s)
- Ben Kayser
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | | | | | | | |
Collapse
|
8
|
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D. Protein bioelectronics: a review of what we do and do not know. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:026601. [PMID: 29303117 DOI: 10.1088/1361-6633/aa85f2] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
Collapse
Affiliation(s)
- Christopher D Bostick
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, United States of America. Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, United States of America
| | | | | | | | | | | |
Collapse
|
9
|
Panda SS, Katz HE, Tovar JD. Solid-state electrical applications of protein and peptide based nanomaterials. Chem Soc Rev 2018; 47:3640-3658. [DOI: 10.1039/c7cs00817a] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advancements in electrical properties and applications of natural proteins and mutated variants, synthetic oligopeptides and peptide–π conjugates.
Collapse
Affiliation(s)
- Sayak Subhra Panda
- Department of Chemistry
- Krieger School of Arts and Sciences
- Johns Hopkins University
- Baltimore
- USA
| | - Howard E. Katz
- Department of Chemistry
- Krieger School of Arts and Sciences
- Johns Hopkins University
- Baltimore
- USA
| | - John D. Tovar
- Department of Chemistry
- Krieger School of Arts and Sciences
- Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
10
|
Varade V, Markus T, Vankayala K, Friedman N, Sheves M, Waldeck DH, Naaman R. Bacteriorhodopsin based non-magnetic spin filters for biomolecular spintronics. Phys Chem Chem Phys 2018; 20:1091-1097. [DOI: 10.1039/c7cp06771b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss spin injection and spin valves, which are based on organic and biomolecules, that offer the possibility to overcome some of the limitations of solid-state devices, which are based on ferromagnetic metal electrodes.
Collapse
Affiliation(s)
- Vaibhav Varade
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Tal Markus
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Kiran Vankayala
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Noga Friedman
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Mordechai Sheves
- Department of Organic Chemistry
- Weizmann Institute of Science
- Rehovot
- Israel
| | | | - Ron Naaman
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| |
Collapse
|
11
|
Nakamaru S, Scholz F, Ford WE, Goto Y, von Wrochem F. Photoswitchable Sn-Cyt c Solid-State Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605924. [PMID: 28401734 DOI: 10.1002/adma.201605924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/16/2017] [Indexed: 06/07/2023]
Abstract
Electron transfer across proteins plays an important role in many biological processes, including those relevant for the conversion of solar photons to chemical energy. Previous studies demonstrated the generation of photocurrents upon light irradiation in a number of photoactive proteins, such as photosystem I or bacteriorhodopsin. Here, it is shown that Sn-cytochrome c layers act as reversible and efficient photoelectrochemical switches upon integration into large-area solid-state junctions. Photocurrents are observed both in the Soret band (λ = 405 nm) and in the Q band (λ = 535 nm), with current on/off ratios reaching values of up to 25. The underlying modulation in charge-transfer rate is attributed to a hole-transport channel created by the photoexcitation of the Sn-porphyrin.
Collapse
Affiliation(s)
- Satoshi Nakamaru
- Advanced Materials Laboratories, Sony Corporation, Atsugi Technology Center No. 2, 4-16-1 Okata, Atsugi, Kanagawa, 243-0021, Japan
| | - Frank Scholz
- Sony Europe Ltd., Materials Science Laboratory, Hedelfinger Strasse 61, 70327, Stuttgart, Germany
| | - William E Ford
- Sony Europe Ltd., Materials Science Laboratory, Hedelfinger Strasse 61, 70327, Stuttgart, Germany
| | - Yoshio Goto
- Advanced Materials Laboratories, Sony Corporation, Atsugi Technology Center No. 2, 4-16-1 Okata, Atsugi, Kanagawa, 243-0021, Japan
| | - Florian von Wrochem
- Sony Europe Ltd., Materials Science Laboratory, Hedelfinger Strasse 61, 70327, Stuttgart, Germany
| |
Collapse
|
12
|
Kiran V, Cohen SR, Naaman R. Structure dependent spin selectivity in electron transport through oligopeptides. J Chem Phys 2017. [DOI: 10.1063/1.4966237] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Vankayala Kiran
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot NA 76100, Israel
| | - Sidney R. Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ron Naaman
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot NA 76100, Israel
| |
Collapse
|
13
|
Vilan A, Aswal D, Cahen D. Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chem Rev 2017; 117:4248-4286. [DOI: 10.1021/acs.chemrev.6b00595] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ayelet Vilan
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | | - David Cahen
- Department
of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Lee C, Mertz B. Theoretical Evidence for Multiple Charge Transfer Pathways in Bacteriorhodopsin. J Chem Theory Comput 2016; 12:1639-46. [PMID: 26950405 DOI: 10.1021/acs.jctc.6b00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Choongkeun Lee
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Blake Mertz
- C. Eugene Bennett Department
of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
15
|
Mukhopadhyay S, Gärtner W, Cahen D, Pecht I, Sheves M. Electron transport via a soluble photochromic photoreceptor. Phys Chem Chem Phys 2016; 18:25671-25675. [DOI: 10.1039/c6cp05011e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transport properties via a photochromic biological photoreceptor have been studied in junctions of monolayer assemblies in solid-state configurations.
Collapse
Affiliation(s)
- Sabyasachi Mukhopadhyay
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Israel
- Department of Organic Chemistry
- Weizmann Institute of Science
| | - Wolfgang Gärtner
- Max Planck Institute for Chemical Energy Conversion
- 45470 Mülheim a.d. Ruhr
- Germany
| | - David Cahen
- Department of Materials and Interfaces
- Weizmann Institute of Science
- Israel
| | - Israel Pecht
- Department of Immunology
- Weizmann Institute of Science
- Israel
| | - Mordechai Sheves
- Department of Organic Chemistry
- Weizmann Institute of Science
- Israel
| |
Collapse
|
16
|
Xie Y, Hu J, Bai T, Zhou X, Yang J. Effect of surface modification by coating thioacetamide on the performance of ZnO-based dye-sensitized solar cells. NEW J CHEM 2016. [DOI: 10.1039/c6nj00097e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We coated thioacetamide on the surface of ZnO and a photoelectric conversion efficiency of 8.28% for ZnO-based dye-sensitized solar cells was achieved.
Collapse
Affiliation(s)
- Yahong Xie
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education and Xinjiang Uyghur Autonomous Region
- Xinjiang University
- Urumqi 830046
- China
| | - Jing Hu
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education and Xinjiang Uyghur Autonomous Region
- Xinjiang University
- Urumqi 830046
- China
| | - Te Bai
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xiaofeng Zhou
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education and Xinjiang Uyghur Autonomous Region
- Xinjiang University
- Urumqi 830046
- China
| | - Jianya Yang
- Key Laboratory of Oil and Gas Fine Chemicals
- Ministry of Education and Xinjiang Uyghur Autonomous Region
- Xinjiang University
- Urumqi 830046
- China
| |
Collapse
|
17
|
Alfinito E, Reggiani L. Mechanisms responsible for the photocurrent in bacteriorhodopsin. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032702. [PMID: 25871139 DOI: 10.1103/physreve.91.032702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 06/04/2023]
Abstract
Recently, there has been growing interest in the electrical properties of bacteriorhodopsin (bR), a protein belonging to the transmembrane protein family. Several experiments pointed out the role of green light in enhancing the current flow in nanolayers of bR, thus confirming potential applications of this protein in the field of optoelectronics. By contrast, the mechanisms underlying the charge transfer and the associated photocurrent are still far from being understood at a microscopic level. To take into account the structure-dependent nature of the current, in a previous set of papers we suggested a mechanism of sequential tunneling among neighboring amino acids. As a matter of fact, when irradiated with green light, bR undergoes a conformational change at a molecular level. Thus, the role played by the protein tertiary-structure in modeling the charge transfer cannot be neglected. The aim of this paper is to go beyond previous models, in the framework of a new branch of electronics we call proteotronics, which exploits the ability of using proteins as reliable, well-understood materials for the development of novel bioelectronic devices. In particular, the present approach assumes that the conformational change is not the unique transformation the protein undergoes when irradiated by light. Instead, the light can also promote an increase of the protein state free energy that, in turn, should modify its internal degree of connectivity. This phenomenon is here described by the change of the value of an interaction radius associated with the physical interactions among amino acids. The implemented model enables us to achieve a better agreement between theory and experiments in the region of a low applied bias by preserving the level of agreement at high values of applied bias. Furthermore, results provide new insights on the mechanisms responsible for bR photoresponse.
Collapse
Affiliation(s)
- Eleonora Alfinito
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, I-73100 Lecce, Italy and CNISM, Via della Vasca Navale, 84-00146 Rome, Italy
| | - Lino Reggiani
- Dipartimento di Matematica e Fisica, "Ennio de Giorgi," Università del Salento, via Monteroni, I-73100 Lecce, Italy and CNISM, Via della Vasca Navale, 84-00146 Rome, Italy
| |
Collapse
|
18
|
Einati H, Mishra D, Friedman N, Sheves M, Naaman R. Light-controlled spin filtering in bacteriorhodopsin. NANO LETTERS 2015; 15:1052-6. [PMID: 25621438 PMCID: PMC4330096 DOI: 10.1021/nl503961p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/05/2015] [Indexed: 05/21/2023]
Abstract
The role of the electron spin in chemistry and biology has received much attention recently owing to to the possible electromagnetic field effects on living organisms and the prospect of using molecules in the emerging field of spintronics. Recently the chiral-induced spin selectivity effect was observed by electron transmission through organic molecules. In the present study, we demonstrated the ability to control the spin filtering of electrons by light transmitted through purple membranes containing bacteriorhodopsin (bR) and its D96N mutant. The spin-dependent electrochemical cyclic voltammetry (CV) and chronoamperometric measurements were performed with the membranes deposited on nickel substrates. High spin-dependent electron transmission through the membranes was observed; however, after the samples were illuminated by 532 nm light, the spin filtering in the D96N mutant was dramatically reduced whereas the light did not have any effect on the wild-type bR. Beyond demonstrating spin-dependent electron transmission, this work also provides an interesting insight into the relationship between the structure of proteins and spin filtering by conducting electrons.
Collapse
Affiliation(s)
- Hila Einati
- Department of Chemical Physics and ‡Department of Organic Chemistry, Weizmann Institute , Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
19
|
Amdursky N, Marchak D, Sepunaru L, Pecht I, Sheves M, Cahen D. Electronic transport via proteins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7142-61. [PMID: 25256438 DOI: 10.1002/adma.201402304] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/07/2014] [Indexed: 05/25/2023]
Abstract
A central vision in molecular electronics is the creation of devices with functional molecular components that may provide unique properties. Proteins are attractive candidates for this purpose, as they have specific physical (optical, electrical) and chemical (selective binding, self-assembly) functions and offer a myriad of possibilities for (bio-)chemical modification. This Progress Report focuses on proteins as potential building components for future bioelectronic devices as they are quite efficient electronic conductors, compared with saturated organic molecules. The report addresses several questions: how general is this behavior; how does protein conduction compare with that of saturated and conjugated molecules; and what mechanisms enable efficient conduction across these large molecules? To answer these questions results of nanometer-scale and macroscopic electronic transport measurements across a range of organic molecules and proteins are compiled and analyzed, from single/few molecules to large molecular ensembles, and the influence of measurement methods on the results is considered. Generalizing, it is found that proteins conduct better than saturated molecules, and somewhat poorer than conjugated molecules. Significantly, the presence of cofactors (redox-active or conjugated) in the protein enhances their conduction, but without an obvious advantage for natural electron transfer proteins. Most likely, the conduction mechanisms are hopping (at higher temperatures) and tunneling (below ca. 150-200 K).
Collapse
Affiliation(s)
- Nadav Amdursky
- Dept. of Materials & Interfaces, Weizmann Institute of Science, Rehovot, 76305, Israel
| | | | | | | | | | | |
Collapse
|