1
|
Tao N, Yan Z, Wang X, Wang Y, Ji L, Qiu L, Cui P, Wang J. A Facile Way to Enhance the Therapeutic Efficacy of Hydrophobic Drugs via Amorphous Solid Dispersions. AAPS J 2025; 27:63. [PMID: 40087240 DOI: 10.1208/s12248-025-01046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
Approximately 40% of marketed drugs and 75% of invested drugs in the pharmaceutical field are poorly soluble hydrophobic drugs with minimal solubility in water which make them difficult to be absorbed by the body and significantly limiting their applications. Among chemotherapeutic agents, numerous antitumor drugs such as platinum compounds, camptothecin, paclitaxel and others are also restricted in processing and preparation due to solubility issues. Therefore, improving the solubility and enhancing the therapeutic efficacy of drugs have always been significant research topics in current pharmaceutics. Herein, we propose an amorphous solid dispersion system PRTA-DOX, involving the protein drug protamine sulphate and hydrophobic doxorubicin as the model hydrophobic drug. In previous studies, ASD (Amorphous Solid Dispersion) has been demonstrated to enhance the solubility of hydrophobic drugs and result in a storage-stable system. Protamine sulphate as a marketed drug is reliable in safety and conveniently obtained. Doxorubicin, an antitumor drug with a broad antitumor spectrum, is commonly used in the treatment of breast cancer. Typically, doxorubicin is prepared in the form of a hydrochloride salt to increase its solubility. However, the utilization of doxorubicin hydrochloride is reduced due to drug resistance issues in biological cells and it exhibits higher toxicity to the body. In this system, protamine sulphate which is rich in arginine guanidino hydrophobic planes physically mixes with doxorubicin which is a hydrophobic molecule with aromatic rings and they are connected through weak interactions: π-π conjugation. They constitute an amorphous solid dispersion system which increases the solubility of hydrophobic doxorubicin, enhances cellular uptake, mitigate some cellular drug resistance and thereby achieves the purpose of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Ning Tao
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Zihui Yan
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Xin Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Yuhui Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Li Ji
- Department of Otolaryngology, The Affiliated Changzhou No. 2 People'S Hospital of Nanjing Medical University, Changzhou, 213003, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China.
| |
Collapse
|
2
|
Song P, Chen J, Zhao D, Shi K, Xu R, Zhu M, Zhao L, Pashuck ET, Ouyang L, Jiao F, Lin Y. Evolving Emulsion Microcompartments via Enzyme-Mimicking Amyloid-Mediated Interfacial Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409601. [PMID: 39670696 DOI: 10.1002/smll.202409601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Living organisms take in matter and energy from their surroundings, transforming these inputs into forms that cells can use to sustain metabolism and power various functions. A significant advancement in the development of protocells and life-like materials has been the creation of cell-like microcompartments capable of evolving into higher-order structures characterized by hierarchy and complexity. In this study, a smart emulsion system is designed to digests chemical substrates and generates organic or inorganic products, driving the self-organization and structuration of microcompartments. Central to this system is a lipase-derived peptide that undergoes amyloid fibrillation, exhibiting hydrolase-like activity and stabilizing Pickering emulsions. Through catalytic hydrolysis or silicatein-inspired mineralization, these emulsion microcompartments generate self-organized surfactant layers from organic substrates or silica scaffolds from inorganic substrates at the oil-water interface, respectively, helping to prevent coalescence. This process further facilitates a structural evolution into high-internal phase emulsion gels that are suitable for direct-ink-writing 3D printing. The findings underscore the potential for designing self-evolving soft materials that replicate the structures and functions of living organisms.
Collapse
Affiliation(s)
- Peiyong Song
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Zhao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Runze Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mengyue Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Zhao
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Veloso SRS, Rosa M, Diaferia C, Fernandes C. A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels. Gels 2024; 10:507. [PMID: 39195036 DOI: 10.3390/gels10080507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Self-assembled peptide-based hydrogels have attracted considerable interest from the research community. Particularly, low molecular weight gelators (LMWGs) consisting of amino acids and short peptides are highly suitable for biological applications owing to their facile synthesis and scalability, as well as their biocompatibility, biodegradability, and stability in physiological conditions. However, challenges in understanding the structure-property relationship and lack of design rules hinder the development of new gelators with the required properties for several applications. Hereby, in the plethora of peptide-based gelators, this review discusses the mechanical properties of single amino acid and dipeptide-based hydrogels. A mutual analysis of these systems allows us to highlight the relationship between the gel mechanical properties and amino acid sequence, preparation methods, or N capping groups. Additionally, recent advancements in the tuning of the gels' rheological properties are reviewed. In this way, the present review aims to help bridge the knowledge gap between structure and mechanical properties, easing the selection or design of peptides with the required properties for biological applications.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies (LaPMET), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Mariangela Rosa
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Célio Fernandes
- Transport Phenomena Research Centre (CEFT), Department of Mechanical Engineering, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centre of Mathematics (CMAT), School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Daly ML, Nishi K, Klawa SJ, Hinton KY, Gao Y, Freeman R. Designer peptide-DNA cytoskeletons regulate the function of synthetic cells. Nat Chem 2024; 16:1229-1239. [PMID: 38654104 PMCID: PMC11322001 DOI: 10.1038/s41557-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
The bottom-up engineering of artificial cells requires a reconfigurable cytoskeleton that can organize at distinct locations and dynamically modulate its structural and mechanical properties. Here, inspired by the vast array of actin-binding proteins and their ability to reversibly crosslink or bundle filaments, we have designed a library of peptide-DNA crosslinkers varying in length, valency and geometry. Peptide filaments conjoint through DNA hybridization give rise to tactoid-shaped bundles with tunable aspect ratios and mechanics. When confined in cell-sized water-in-oil droplets, the DNA crosslinker design guides the localization of cytoskeletal structures at the cortex or within the lumen of the synthetic cells. The tunable spatial arrangement regulates the passive diffusion of payloads within the droplets and complementary DNA handles allow for the reversible recruitment and release of payloads on and off the cytoskeleton. Heat-induced reconfiguration of peptide-DNA architectures triggers shape deformations of droplets, regulated by DNA melting temperatures. Altogether, the modular design of peptide-DNA architectures is a powerful strategy towards the bottom-up assembly of synthetic cells.
Collapse
Affiliation(s)
- Margaret L Daly
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kengo Nishi
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Stephen J Klawa
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kameryn Y Hinton
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yuan Gao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Salter LC, Wojciechowski JP, McLean B, Charchar P, Barnes PRF, Creamer A, Doutch J, Barriga HMG, Holme MN, Yarovsky I, Stevens MM. 3,4-Ethylenedioxythiophene Hydrogels: Relating Structure and Charge Transport in Supramolecular Gels. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3092-3106. [PMID: 38617802 PMCID: PMC11007859 DOI: 10.1021/acs.chemmater.3c01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024]
Abstract
Ionic charge transport is a ubiquitous language of communication in biological systems. As such, bioengineering is in constant need of innovative, soft, and biocompatible materials that facilitate ionic conduction. Low molecular weight gelators (LMWGs) are complex self-assembled materials that have received increasing attention in recent years. Beyond their biocompatible, self-healing, and stimuli responsive facets, LMWGs can be viewed as a "solid" electrolyte solution. In this work, we investigate 3,4-ethylenedioxythiophene (EDOT) as a capping group for a small peptide library, which we use as a system to understand the relationship between modes of assembly and charge transport in supramolecular gels. Through a combination of techniques including small-angle neutron scattering (SANS), NMR-based Van't Hoff analysis, atomic force microscopy (AFM), rheology, four-point probe, and electrochemical impedance spectroscopy (EIS), we found that modifications to the peptide sequence result in distinct assembly pathways, thermodynamic parameters, mechanical properties, and ionic conductivities. Four-point probe conductivity measurements and electrochemical impedance spectroscopy suggest that ionic conductivity is approximately doubled by programmable gel assemblies with hollow cylinder morphologies relative to gels containing solid fibers or a control electrolyte. More broadly, it is hoped this work will serve as a platform for those working on charge transport of aqueous soft materials in general.
Collapse
Affiliation(s)
- Luke C.
B. Salter
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jonathan P. Wojciechowski
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ben McLean
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- ARC
Research Hub for Australian Steel Innovation, https://www.rmit.edu.au/research/centres-collaborations/multi-partner-collaborations/arc-research-hub-aus-steel-manufacturing
| | - Patrick Charchar
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Piers R. F. Barnes
- Department
of Physics, Imperial College London, London SW7 2AZ, United
Kingdom
| | - Adam Creamer
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Doutch
- ISIS
Muon and Neutron Source, Rutherford Appleton
Laboratory, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Hanna M. G. Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Irene Yarovsky
- School
of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Molly M. Stevens
- Department
of Materials and Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
- Department
of Physiology, Anatomy and Genetics, Department of Engineering Science,
and Kavli Institute for Nanoscience Discovery, University of Oxford, OX1
3QU, Oxford, United Kingdom
| |
Collapse
|
6
|
Wang T, Ménard-Moyon C, Bianco A. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10532-10544. [PMID: 38367060 DOI: 10.1021/acsami.3c18463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Materials made of assembled biomolecules such as amino acids have drawn much attention during the past decades. Nevertheless, research on the relationship between the chemical structure of building block molecules, supramolecular interactions, and self-assembled structures is still necessary. Herein, the self-assembly and the coassembly of fluorenylmethoxycarbonyl (Fmoc)-protected aromatic amino acids (tyrosine, tryptophan, and phenylalanine) were studied. The individual self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH in water formed nanofibers, while Fmoc-Trp-OH self-assembled into nanoparticles. Moreover, when Fmoc-Tyr-OH or Fmoc-Phe-OH was coassembled with Fmoc-Trp-OH, the nanofibers were transformed into nanoparticles. UV-vis spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectroscopy were used to investigate the supramolecular interactions leading to the self-assembled architectures. π-π stacking and hydrogen bonding were the main driving forces leading to the self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH forming nanofibers. Further, a mechanism involving a two-step coassembly process is proposed based on nucleation and elongation/growth to explain the structural transformation. Fmoc-Trp-OH acted as a fiber inhibitor to alter the molecular interactions in the Fmoc-Tyr-OH or Fmoc-Phe-OH self-assembled structures during the coassembly process, locking the coassembly in the nucleation step and preventing the formation of nanofibers. This structural transformation is useful for extending the application of amino acid self- or coassembled materials in different fields. For example, the amino acids forming nanofibers could be applied for tissue engineering, while they could be exploited as drug nanocarriers when they form nanoparticles.
Collapse
Affiliation(s)
- Tengfei Wang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| |
Collapse
|
7
|
Li M, Wu A, Li L, Li Z, Zang H. Three Stages of Dynamic Assembly Process of Dipeptide-Based Supramolecular Gel Revealed by In Situ Infrared Spectroscopy. ACS Biomater Sci Eng 2024; 10:863-874. [PMID: 38240580 DOI: 10.1021/acsbiomaterials.3c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
The exploration of short peptide-based assembly is vital for understanding protein-misfolding-associated diseases and seeking strategies to attenuate aggregate formation. While, the molecular mechanism of their structural evolution remains poorly studied in view of the dynamic and unpredictable assembly process. Herein, infrared (IR) spectroscopy, which serves as an in situ and real-time analytical technique, was intelligently employed to investigate the mechanism of phase transition and aggregate formation during the dynamic assembly process of diphenylalanine. Combined with other spectroscopy and electron microscopy technologies, three stages of gel formation and the main driving forces in different stages were revealed. A variety of stoichiometric methods such as continuous wavelet transform, principal component analysis, and two-dimensional correlation spectroscopy techniques were conducted to analyze the original time-dependent IR spectra to obtain detailed information on the changes in the amide bands and hydration layer. The microenvironment of hydrogen bonding among amide bands was significantly changed with the addition of pyridine derivatives, resulting in great differences in the properties of co-assembled gels. This work not only provides a universal analytical way to reveal the dynamic assembly process of dipeptide-based supramolecular gel but also expands their applications in supramolecular regulation and high-throughput screens in situ.
Collapse
Affiliation(s)
- Meiqi Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zibo Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
8
|
Lu Y, Gao J, Ren Y, Ding Y, Jia L. Synergetic Self-Assembly of Liquid Crystalline Block Copolymer with Amphiphiles for Fabrication of Hierarchical Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304955. [PMID: 37649168 DOI: 10.1002/smll.202304955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Novel functions and advanced structure, where each single component could not be produced individually, can exhibit from the collective and synergistic behavior of component systems. This synergetic strategy has been successfully demonstrated for co-assembly of polymer-polymer to construct hierarchical nanomaterials. However, differences in the natures of polymer and small molecules impose challenges in the construction of sophisticated co-assemblies with geometrical and compositional control. Herein, a synergetic self-assembly strategy is proposed to prepare organic-organic hybrid colloidal mesostructures by blending a liquid crystalline block copolymer (LC-BCP) with small molecular amphiphiles. Through a classic solvent-exchange process, amphiphiles embedded with LC-BCP realize multi-component nucleation and hierarchical assembly driven by anisotropic interaction from the LC ordering alignment of the core-forming block. 1D nanofibers with a periodic striped structure are formed by further LC component fusion and refinement. In addition, LC ordering effect of LC-BCP can be regulated by selecting appropriate solvents and leads to the formation of vesicular co-micelles. By means of the thermal-responsive behavior of amphiphiles, hexagonal pore arrays are finally generated on the surface of those vesicles.
Collapse
Affiliation(s)
- Yue Lu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Juanjuan Gao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yangge Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yi Ding
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Lin Jia
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| |
Collapse
|
9
|
Zhang L, Sekhar KPC, Yang Y, Dong S, Song A, Hao J. Developing Safe Organohydrogel Sunscreens Using Polyelectrolyte-Betaine Surfactant Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17333-17341. [PMID: 37988122 DOI: 10.1021/acs.langmuir.3c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Oil-in-water emulsions are extensively used in skincare products due to their improved texture, stability, and effectiveness. There is limited success in developing effective delivery systems that can selectively target the active sunscreen ingredients onto the skin surface. Herein, an organohydrogel was prepared by physical cross-linking of an oil-in-water nanoemulsion with chitosan under neutral pH conditions. In the presence of a small quantity of coconut oil, lauramidopropyl betaine and glycerol were able to emulsify the active sunscreen ingredients into nanoscale droplets with enhanced ultraviolet light absorption. A facile pH-triggered interfacial cross-linking approach was applied to transform the nanoemulsion into an organohydrogel sunscreen. Furthermore, the organohydrogel sunscreen displayed encouraging characteristics including efficient UV-blocking capacity, resistance to water, simple removal, and minimal skin penetration. This facile approach provides an effective pathway for scaling up the organohydrogels, which are highly suitable for the safe application of sunscreen.
Collapse
Affiliation(s)
- Liquan Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Yujie Yang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Kim I, Elliott JC, Lawanprasert A, Wood GM, Simon JC, Medina SH. Real-Time, In Situ Imaging of Macrophages via Phase-Change Peptide Nanoemulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301673. [PMID: 37452514 PMCID: PMC10787802 DOI: 10.1002/smll.202301673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Macrophages are specialized phagocytes that play central roles in immunity and tissue repair. Their diverse functionalities have led to an evolution of new allogenic and autologous macrophage products. However, realizing the full therapeutic potential of these cell-based therapies requires development of imaging technologies that can track immune cell migration within tissues in real-time. Such innovations will not only inform treatment regimens and empower interpretation of therapeutic outcomes but also enable prediction and early intervention during adverse events. Here, phase-changing nanoemulsion contrast agents are reported that permit real-time, continuous, and high-fidelity ultrasound imaging of macrophages in situ. Using a de novo designed peptide emulsifier, liquid perfluorocarbon nanoemulsions are prepared and show that rational control over interfacial peptide assembly affords formulations with tunable acoustic sensitivity, macrophage internalization, and in cellulo stability. Imaging experiments demonstrate that emulsion-loaded macrophages can be readily visualized using standard diagnostic B-mode and Doppler ultrasound modalities. This allows on-demand and long-term tracking of macrophages within porcine coronary arteries, as an exemplary model. The results demonstrate that this platform is poised to open new opportunities for non-invasive, contrast-enhanced imaging of cell-based immunotherapies in tissues, while leveraging the low-cost, portable, and safe nature of diagnostic ultrasound.
Collapse
Affiliation(s)
- Inhye Kim
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Jacob C Elliott
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Atip Lawanprasert
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Grace M Wood
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Julianna C Simon
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
11
|
Yu S, Huang Y, Shen B, Zhang W, Xie Y, Gao Q, Zhao D, Wu Z, Liu Y. Peptide hydrogels: Synthesis, properties, and applications in food science. Compr Rev Food Sci Food Saf 2023; 22:3053-3083. [PMID: 37194927 DOI: 10.1111/1541-4337.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/26/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Due to the unique and excellent biological, physical, and chemical properties of peptide hydrogels, their application in the biomedical field is extremely wide. The applications of peptide hydrogels are closely related to their unique responsiveness and excellent properties. However, its defects in mechanical properties, stability, and toxicity limit its application in the food field. In this review, we focus on the fabrication methods of peptide hydrogels through the physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by the incorporation with materials is discussed. Meanwhile, the excellent properties of peptide hydrogels such as the stimulus responsiveness, biocompatibility, antimicrobial properties, rheology, and stability are reviewed. Finally, the application of peptide hydrogel in the food field is summarized and prospected.
Collapse
Affiliation(s)
- Shuang Yu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yueying Huang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Biao Shen
- Zhoushan Customs District, Zhoushan, P. R. China
| | - Wang Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yan Xie
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Qi Gao
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Dan Zhao
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Yang S, Wang M, Wang T, Sun M, Huang H, Shi X, Duan S, Wu Y, Zhu J, Liu F. Self-assembled short peptides: Recent advances and strategies for potential pharmaceutical applications. Mater Today Bio 2023; 20:100644. [PMID: 37214549 PMCID: PMC10199221 DOI: 10.1016/j.mtbio.2023.100644] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/10/2023] [Accepted: 04/23/2023] [Indexed: 05/24/2023] Open
Abstract
Self-assembled short peptides have intrigued scientists due to the convenience of synthesis, good biocompatibility, low toxicity, inherent biodegradability and fast response to change in the physiological environment. Therefore, it is necessary to present a comprehensive summary of the recent advances in the last decade regarding the construction, route of administration and application of self-assembled short peptides based on the knowledge on their unique and specific ability of self-assembly. Herein, we firstly explored the molecular mechanisms of self-assembly of short peptides, such as non-modified amino acids, as well as Fmoc-modified, N-functionalized, and C-functionalized peptides. Next, cell penetration, fusion, and peptide targeting in peptide-based drug delivery were characterized. Then, the common administration routes and the potential pharmaceutical applications (drug delivery, antibacterial activity, stabilizers, imaging agents, and applications in bioengineering) of peptide drugs were respectively summarized. Last but not least, some general conclusions and future perspectives in the relevant fields were briefly listed. Although with certain challenges, great opportunities are offered by self-assembled short peptides to the fascinating area of drug development.
Collapse
Affiliation(s)
- Shihua Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Mingge Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tianye Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Anus and Intestine Surgery, The First Hospital of Dalian Medical University, Dalian, 116000, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Shijie Duan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Ying Wu
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, 110001, China
- Department of Phase I Clinical Trials Center, The First Hospital of China Medical University, Shenyang, 110102, China
| |
Collapse
|
13
|
Gila-Vilchez C, Mañas-Torres MC, García-García ÓD, Escribano-Huesca A, Rodríguez-Arco L, Carriel V, Rodriguez I, Alaminos M, Lopez-Lopez MT, Álvarez de Cienfuegos L. Biocompatible Short-Peptides Fibrin Co-assembled Hydrogels. ACS APPLIED POLYMER MATERIALS 2023; 5:2154-2165. [PMID: 36935654 PMCID: PMC10013376 DOI: 10.1021/acsapm.2c02164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Fibrin hydrogels made by self-assembly of fibrinogen obtained from human plasma have shown excellent biocompatible and biodegradable properties and are widely used in regenerative medicine. The fibrinogen self-assembly process can be triggered under physiological conditions by the action of thrombin, allowing the injection of pregel mixtures that have been used as cell carriers, wound-healing systems, and bio-adhesives. However, access to fibrinogen from human plasma is expensive and fibrin gels have limited mechanical properties, which make them unsuitable for certain applications. One solution to these problems is to obtain composite gels made of fibrin and other polymeric compounds that improve their mechanical properties and usage. Herein, we prepared composite hydrogels made by the self-assembly of fibrinogen together with Fmoc-FF (Fmoc-diphenylalanine) and Fmoc-RGD (Fmoc-arginine-glycine-aspartic acid). We have shown that the mixture of these three peptides co-assembles and gives rise to a unique type of supramolecular fiber, whose morphology and mechanical properties can be modulated. We have carried out a complete characterization of these materials from chemical, physical, and biological points of view. Composite gels have improved mechanical properties compared to pure fibrin gels, as well as showing excellent biocompatibility ex vivo. In vivo experiments have shown that these gels do not cause any type of inflammatory response or tissue damage and are completely resorbed in short time, which would enable their use as vehicles for cell, drug, or growth factor release.
Collapse
Affiliation(s)
- Cristina Gila-Vilchez
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Mari Carmen Mañas-Torres
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Óscar Darío García-García
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Alfredo Escribano-Huesca
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
| | - Laura Rodríguez-Arco
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Víctor Carriel
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Ismael Rodriguez
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Miguel Alaminos
- Department
of Histology, Universidad de Granada (UGR), Avenida de Madrid 11, 18012 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Modesto Torcuato Lopez-Lopez
- Departamento
de Física Aplicada, Universidad de
Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), C. U. Fuentenueva, Avenida Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avenida de Madrid, 15, 18016, Granada, Spain
| |
Collapse
|
14
|
Ma Y, Wang A, Li J, Li Q, Han Q, Jing Y, Zheng X, Cao H, Yan X, Bai S. Surface Self-Assembly of Dipeptides on Porous CaCO 3 Particles Promoting Cell Internalization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2486-2497. [PMID: 36580635 DOI: 10.1021/acsami.2c21447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The self-assembling behavior of peptides and derivatives is crucial in the natural process to construct various architectures and achieve specific functions. However, the surface or interfacial self-assembly, in particular, on the surface of micro- or nanoparticles is even less systematically investigated. Here, uniform porous CaCO3 microparticles were prepared with different charged, hydrophobic and hydrophilic surfaces to assess the self-assembling behavior of dipeptides composed of various sequences. Experimental results indicate that dipeptides with a negative charge in an aqueous solution preferred to self-assemble on the hydrophobic and positively charged surface of CaCO3 particles, which can be ascribed to the electrostatic and hydrophobic interaction between dipeptides and CaCO3 particles. Meanwhile, the Log p (lipid-water partition coefficient) of dipeptides has a significant effect on the self-assembling behavior of dipeptides on the surface of porous CaCO3; dipeptides with high Log p preferred to self-assemble on the surface of CaCO3 particles, resulting in the improved cell internalization efficiency of particles with low cytotoxicity. After loading with a model drug (doxorubicin), the particles show obvious antitumor activity in animal experiments and can reduce Dox side effects effectively.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yafeng Jing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefang Zheng
- College of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Hongyu Cao
- College of Life Science and Biotechnology, Dalian University, Dalian 116622, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
15
|
Insight into interfacial adsorption behavior of high-density lipoprotein hydrolysates regulated by carboxymethyl dextrin and in vitro digestibility of curcumin loaded high internal phase emulsions. Food Chem 2023; 400:134006. [DOI: 10.1016/j.foodchem.2022.134006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
16
|
Sasaoka Y, Ito K. Amphiphilic Sugar Derivatives Linked with Gallic Acid Bearing Tris-alkoxy Groups through L-Lysine Linkage: Self-assembly and Efficient Dye Removal in Water-organic Solvent Biphasic System. CHEM LETT 2022. [DOI: 10.1246/cl.220328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuuki Sasaoka
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kazuaki Ito
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jhonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
17
|
Ravarino P, Panja S, Adams DJ. Spatiotemporal Control Over Base-Catalysed Hydrogelation Using a Bilayer System. Macromol Rapid Commun 2022; 43:e2200606. [PMID: 35995598 DOI: 10.1002/marc.202200606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Controlling the formation and directional growth of hydrogels is a challenge. In this paper, we propose a new methodology to program the gel formation both over space and time, using the diffusion and subsequent hydrolysis of 1,1'-carbonyldiimidazole (CDI) from an immiscible organic solution to the aqueous gel media. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Paolo Ravarino
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, Bologna, 40126, Italy
| | - Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, U.K
| |
Collapse
|
18
|
Xiong Y, Huang X, Li L, Liu W, Zhang J, He M, Liu J, Lu L, Peng K. Destructing surfactant network in nanoemulsions by positively charged magnetic nanorods to enhance oil-water separation. J Environ Sci (China) 2022; 118:112-121. [PMID: 35305759 DOI: 10.1016/j.jes.2021.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/07/2021] [Accepted: 08/19/2021] [Indexed: 06/14/2023]
Abstract
The separation of ultrafine oil droplets from wasted nanoemulsions stabilized with high concentration of surfactants is precondition for oil reuse and the safe discharge of effluent. However, the double barriers of the interfacial film and network structures formed by surfactants in nanoemulsions significantly impede the oil-water separation. To destroy these surfactant protective layers, we proposed a newly-developed polyethyleneimine micelle template approach to achieve simultaneous surface charge manipulation and morphology transformation of magnetic nanospheres to magnetic nanorods. The results revealed that positively charged magnetic nanospheres exhibited limited separation performance of nanoemulsions, with a maximum chemical oxygen demand (COD) removal of 50%, whereas magnetic nanorods achieved more than 95% COD removal in less than 30 s. The magnetic nanorods were also applicable to wasted nanoemulsions from different sources and exhibited excellent resistance to wide pH changes. Owing to their unique one-dimensional structure, the interfacial dispersion of magnetic nanorods was significantly promoted, leading to the efficient capture of surfactants and widespread destruction of both the interfacial film and network structure, which facilitated droplet merging into the oil phase. The easy-to-prepare and easy-to-tune strategy in this study paves a feasible avenue to simultaneously tailor surface charge and morphology of magnetic nanoparticles, and reveals the huge potential of morphology manipulation for producing high-performance nanomaterials to be applied in complex interfacial interaction process. We believe that the newly-developed magnetic-nanorods significantly contribute to hazardous oily waste remediation and advances technology evolution toward problematic oil-pollution control.
Collapse
Affiliation(s)
- Yongjiao Xiong
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Lexue Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wanqi Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jialu Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Mengfan He
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Lijun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Kaiming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
19
|
Wan Y, Li J, Ma J, Li Y, Wang R, Chen Z, Wang T. Fixing zein at the fibrillar carboxymethyl cellulose toward an amphiphilic nano-network. Food Chem 2022; 398:133862. [DOI: 10.1016/j.foodchem.2022.133862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
20
|
Zhang Y, Zhou F, Zeng X, Shen P, Yuan D, Zhong M, Zhao Q, Zhao M. pH-driven-assembled soy peptide nanoparticles as particulate emulsifier for oil-in-water Pickering emulsion and their potential for encapsulation of vitamin D 3. Food Chem 2022; 383:132489. [PMID: 35183964 DOI: 10.1016/j.foodchem.2022.132489] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Pickering emulsions prepared by food-grade particles have gained growing attention due to their promising application in functional food and pharmaceutical industries. In this study, we successfully fabricated soy peptide-based nanoparticles (SPN) through pH-driven process. Obtained particles with small particle size were surface active and shared intermediate wettability, and they could be well applied as an efficient particulate emulsifier for stabilizing oil-in-water Pickering emulsions at SPN concentration above 0.25 wt%. Furthermore, formed emulsions stabilized with SPN exhibited good protection towards Vitamin D3 against UV irradiation and oxidative deterioration, where controlled release of Vitamin D3in vitro could also be well achieved by modulating particle concentration. The whole process can contribute to a sustainable development of low-value peptide byproducts as functional food ingredients.
Collapse
Affiliation(s)
- Yuanhong Zhang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xiaofang Zeng
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Penghui Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dan Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Min Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
21
|
Abstract
![]()
Low molecular weight
gels are formed by the self-assembly of small
molecules into anisotropic structures that form a network capable
of immobilizing the solvent. Such gels are common, with a huge number
of different examples existing, and they have many applications. However,
there are still significant gaps in our understanding of these systems
and challenges that need to be addressed if we are to be able to fully
design such systems. Here, a number of these challenges are discussed.
Collapse
Affiliation(s)
- Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
22
|
Bercea M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers (Basel) 2022; 14:polym14122365. [PMID: 35745941 PMCID: PMC9229923 DOI: 10.3390/polym14122365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrogels, as interconnected networks (polymer mesh; physically, chemically, or dynamic crosslinked networks) incorporating a high amount of water, present structural characteristics similar to soft natural tissue. They enable the diffusion of different molecules (ions, drugs, and grow factors) and have the ability to take over the action of external factors. Their nature provides a wide variety of raw materials and inspiration for functional soft matter obtained by complex mechanisms and hierarchical self-assembly. Over the last decade, many studies focused on developing innovative and high-performance materials, with new or improved functions, by mimicking biological structures at different length scales. Hydrogels with natural or synthetic origin can be engineered as bulk materials, micro- or nanoparticles, patches, membranes, supramolecular pathways, bio-inks, etc. The specific features of hydrogels make them suitable for a wide variety of applications, including tissue engineering scaffolds (repair/regeneration), wound healing, drug delivery carriers, bio-inks, soft robotics, sensors, actuators, catalysis, food safety, and hygiene products. This review is focused on recent advances in the field of bioinspired hydrogels that can serve as platforms for life-science applications. A brief outlook on the actual trends and future directions is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
23
|
Gong H, Zhou Q, Lin F, Qin W, Zhang S, Yang S, Li J, Feng Y. Preparation and application of uniform TiO 2 electrospun nanofiber based on pickering emulsion stabilized by TiO 2/amphiphilic sodium alginate/polyoxyethylene. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2075884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Houkui Gong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Feilin Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Siqi Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials and Chemical Engineering, Hainan University, Haikou, China
| |
Collapse
|
24
|
Piras CC, Mahon CS, Genever PG, Smith DK. Shaping and Patterning Supramolecular Materials─Stem Cell-Compatible Dual-Network Hybrid Gels Loaded with Silver Nanoparticles. ACS Biomater Sci Eng 2022; 8:1829-1840. [PMID: 35364810 PMCID: PMC9092345 DOI: 10.1021/acsbiomaterials.1c01560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Hydrogels
with spatio-temporally
controlled properties are appealing
materials for biological and pharmaceutical applications. We make
use of mild acidification protocols to fabricate hybrid gels using
calcium alginate in the presence of a preformed thermally triggered
gel based on a low-molecular-weight gelator (LMWG) 1,3:2:4-di(4-acylhydrazide)-benzylidene
sorbitol (DBS-CONHNH2). Nonwater-soluble calcium carbonate
slowly releases calcium ions over time when exposed to an acidic pH,
triggering the assembly of the calcium alginate gel network. We combined
the gelators in different ways: (i) the LMWG was used as a template
to spatially control slow calcium alginate gelation within preformed
gel beads, using glucono-δ-lactone (GdL) to lower the pH; (ii)
the LMWG was used as a template to spatially control slow calcium
alginate gelation within preformed gel trays, using diphenyliodonium
nitrate (DPIN) as a photoacid to lower the pH, and spatial resolution
was achieved by masking. The dual-network hybrid gels display highly
tunable properties, and the beads are compatible with stem cell growth.
Furthermore, they preserve the LMWG function of inducing in situ silver
nanoparticle (AgNP) formation, which provides the gels with antibacterial
activity. These gels have potential for eventual regenerative medicine
applications in (e.g.) bone tissue engineering.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Clare S Mahon
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Paul G Genever
- Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - David K Smith
- Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
25
|
Scott GG, Börner T, Leser ME, Wooster TJ, Tuttle T. Directed Discovery of Tetrapeptide Emulsifiers. Front Chem 2022; 10:822868. [PMID: 35252117 PMCID: PMC8891517 DOI: 10.3389/fchem.2022.822868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Oil in water emulsions are an important class of soft material that are used in the food, cosmetic, and biomedical industries. These materials are formed through the use of emulsifiers that are able to stabilize oil droplets in water. Historically emulsifiers have been developed from lipids or from large biomolecules such as proteins. However, the ability to use short peptides, which have favorable degradability and toxicity profiles is seen as an attractive alternative. In this work, we demonstrate that it is possible to design emulsifiers from short (tetra) peptides that have tunability (i.e., the surface activity of the emulsion can be tuned according to the peptide primary sequence). This design process is achieved by applying coarse grain molecular dynamics simulation to consecutively reduce the molecular search space from the 83,521 candidates initially considered in the screen to four top ranking candidates that were then studied experimentally. The results of the experimental study correspond well to the predicted results from the computational screening verifying the potential of this screening methodology to be applied to a range of different molecular systems.
Collapse
Affiliation(s)
- Gary G. Scott
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Tim Börner
- Institute of Materials Sciences, Nestlé Research Center, Lausanne, Switzerland
| | - Martin E. Leser
- Institute of Materials Sciences, Nestlé Research Center, Lausanne, Switzerland
| | - Tim J. Wooster
- Institute of Materials Sciences, Nestlé Research Center, Lausanne, Switzerland
| | - Tell Tuttle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
- *Correspondence: Tell Tuttle,
| |
Collapse
|
26
|
Micro- and Nanocapsules Based on Artificial Peptides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041373. [PMID: 35209164 PMCID: PMC8875475 DOI: 10.3390/molecules27041373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/03/2023]
Abstract
The encapsulation of active ingredients into solid capsules from biodegradable materials has received significant attention over the last decades. In this short review, we focus on the formation of micro- and nano-sized capsules and emulsions based on artificial peptides as a fully degradable material. It deals with various approaches for the preparation of peptide-based capsules as well as with their crucial properties such as size and stability. We categorize all preparation procedures into three basic approaches: self-assembly, polymerization and crosslinking, and layer-by-layer technology. This article is meant to offer a short overview over all successful methods suitable for obtaining access to these very promising carrier systems.
Collapse
|
27
|
Impacts of preparation conditions on the structure and emulsifying properties of casein-alginate conjugates produced by transacylation reaction. Int J Biol Macromol 2022; 201:242-253. [PMID: 34998878 DOI: 10.1016/j.ijbiomac.2021.12.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022]
Abstract
The Maillard reaction is often used to glycate proteins but produces undesirable byproducts. In this study, the transacylation reaction was used for the first time to prepare protein-polysaccharide conjugates from sodium caseinate (NaCas) and propylene glycol alginate (PGA) as novel emulsifiers. By mixing NaCas and PGA (1% w/v) at mass ratios of 1:2, 1:1, and 2:1 for 2 h with pH maintained at 11.0, NaCas-alginate conjugates with 52.8%, 66.2%, and 76.5% NaCas were prepared, respectively. The purified conjugates resulted in the preparation of oil-in-water emulsions with a low surfactant-to-oil ratio of 0.75:100 (w:v), and the resultant emulsions were stable against environmental stresses of pH, ionic strength, and thermal pasteurization. Structural analyses showed the role of NaCas content in reducing droplet size and the role of the alginate moiety stabilizing oil droplets via the electrostatic and steric mechanisms. This work may be significant to prepare protein-polysaccharide conjugates with high emulsifying capacity and tunable functionalities using a scalable and green method.
Collapse
|
28
|
Booth R, Insua I, Ahmed S, Rioboo A, Montenegro J. Supramolecular fibrillation of peptide amphiphiles induces environmental responses in aqueous droplets. Nat Commun 2021; 12:6421. [PMID: 34741043 PMCID: PMC8571317 DOI: 10.1038/s41467-021-26681-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/17/2021] [Indexed: 02/02/2023] Open
Abstract
One-dimensional (1D) supramolecular polymers are commonly found in natural and synthetic systems to prompt functional responses that capitalise on hierarchical molecular ordering. Despite amphiphilic self-assembly being significantly studied in the context of aqueous encapsulation and autopoiesis, very little is currently known about the physico-chemical consequences and functional role of 1D supramolecular polymerisation confined in aqueous compartments. Here, we describe the different phenomena that resulted from the chemically triggered supramolecular fibrillation of synthetic peptide amphiphiles inside water microdroplets. The confined connection of suitable dormant precursors triggered a physically autocatalysed chemical reaction that resulted in functional environmental responses such as molecular uptake, fusion and chemical exchange. These results demonstrate the potential of minimalistic 1D supramolecular polymerisation to modulate the behaviour of individual aqueous entities with their environment and within communities.
Collapse
Affiliation(s)
- Richard Booth
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Sahnawaz Ahmed
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Alicia Rioboo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
29
|
Yang S, Qin W, He F, Zhao X, Zhou Q, Lin F, Gong H, Zhang S, Yu G, Feng Y, Li J. Tuning Supramolecular Polymers' Amphiphilicity via Host-Guest Interfacial Recognition for Stabilizing Multiple Pickering Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51661-51672. [PMID: 34696581 DOI: 10.1021/acsami.1c13715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular host-guest chemistry bridging the adjustable amphiphilicity and macromolecular self-assembly is well advanced in aqueous media. However, the interfacial self-assembled behaviors have not been further exploited. Herein, we designed a β-cyclodextrin-grafted alginate/azobenzene-functionalized dodecyl (Alg-β-CD/AzoC12) supra-amphiphilic system that possessed tunable amphiphilicity by host-guest interfacial self-assembly. Especially, supra-amphiphilic aggregates could be utilized as highly efficient soft colloidal emulsifiers for stabilizing water-in-oil-water (W/O/W) Pickering emulsions due to the excellent interfacial activity. Meanwhile, the assembled particle structures could be modulated by adjusting the oil-water ratio, resulting from the tunable aggregation behavior of supra-amphiphilic macromolecules. Additionally, the interfacial adsorption films could be partially destroyed/reconstructed upon ultraviolet/visible irradiation due to the stimuli-altering balance of amphiphilicity of Alg-β-CD/AzoC12 polymers, further constructing the stimulus-responsive Pickering emulsions. Therefore, the supramolecular interfacial self-assembly-mediated approach not only technologically advances the continued development of creative templates to construct multifunctional soft materials with anisotropic structures but also serves as a creative bridge between supramolecular host-guest chemistry, colloidal interface science, and soft material technology.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Feilin Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Houkui Gong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Siqi Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| |
Collapse
|
30
|
Liu WJ, Li XL, Xu BC, Zhang B. Self-Assembled Micellar Nanoparticles by Enzymatic Hydrolysis of High-Density Lipoprotein for the Formation and Stability of High Internal Phase Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11015-11025. [PMID: 34494822 DOI: 10.1021/acs.jafc.1c03070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, the influence of pH on the conformational state of EHT, which was obtained from the enzymatic hydrolysis of trypsin, and the stabilizing properties of high internal phase emulsions have been demonstrated. Critical micelle concentration and transmission electron microscopy results exhibited the formation of micellar nanoparticles with mean diameters ranging from 108 to 1359.5 nm. The results of solubility, surface hydrophobicity, and conformations indicated that EHT tended to act as particulate emulsifiers at pH 3, 5, and 7, while at alkaline pH, it was more like a polymeric emulsifier, which could be proven by confocal laser scanning microscopy. The EHT at pH 7 exhibited better stabilizing properties than those at pH 9 and 11 as influenced by storage, temperature, and ionic strength. These findings might be of great importance for broadening the range of sustainable applications of amphiphilic peptides in foods and pharmaceuticals.
Collapse
Affiliation(s)
- Wen-Jie Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Xiao-Long Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, P. R. China
| |
Collapse
|
31
|
Piras CC, Patterson AK, Smith DK. Hybrid Self-Assembled Gel Beads for Tuneable pH-Controlled Rosuvastatin Delivery. Chemistry 2021; 27:13203-13210. [PMID: 34346527 PMCID: PMC8519141 DOI: 10.1002/chem.202101405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/11/2022]
Abstract
This article describes the fabrication of new pH-responsive hybrid gel beads combining the polymer gelator calcium alginate with two different low-molecular-weight gelators (LMWGs) based on 1,3 : 2,4-dibenzylidene-d-sorbitol: pH-responsive DBS-COOH and thermally responsive DBS-CONHNH2 , thus clearly demonstrating that different classes of LMWG can be fabricated into gel beads by using this approach. We also demonstrate that self-assembled multicomponent gel beads can be formed by using different combinations of these gelators. The different gel bead formulations exhibit different responsiveness - the DBS-COOH network can disassemble within those beads in which it is present upon raising the pH. To exemplify preliminary data for a potential application for these hybrid gel beads, we explored aspects of the delivery of the lipid-lowering active pharmaceutical ingredient (API) rosuvastatin. The release profile of this statin from the hybrid gel beads is pH-dependent, with greater release at pH 7.4 than at pH 4.0 - primary control of this process results from the pKa of the API. The extent of pH-mediated API release is also significantly further modified according to gel bead composition. The DBS-COOH/alginate beads show rapid, highly effective drug release at pH 7.4, whereas the three-component DBS-COOH/DBS-CONHNH2 /alginate system shows controlled slow release of the API under the same conditions. These initial results indicate that such gel beads constitute a promising, versatile and easily tuned platform suitable for further development for controlled drug-delivery applications.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| | | | - David K. Smith
- Department of ChemistryUniversity of YorkHeslington, YorkYO10 5DDUK
| |
Collapse
|
32
|
Lai Z, Li A, Peng S, Sessler JL, He Q. Trimacrocyclic hexasubstituted benzene linked by labile octahedral [X(CHCl 3) 6] - clusters. Chem Sci 2021; 12:11647-11651. [PMID: 34659699 PMCID: PMC8442620 DOI: 10.1039/d1sc03713g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Crystalline supramolecular architectures mediated by cations, anions, ion pairs or neutral guest species are well established. However, the robust crystallization of a well-designed receptor mediated by labile anionic solvate clusters remains unexplored. Herein, we describe the synthesis and crystalline behaviors of a trimacrocyclic hexasubstituted benzene 2 in the presence of guanidium halide salts and chloroform. Halide hexasolvate clusters, viz. [Cl(CHCl3)6]-, [Br(CHCl3)6]-, and [I(CHCl3)6]-, were found to be critical to the crystallization process, as suggested by the single-crystal structures, X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and NMR spectroscopy. This study demonstrates the hitherto unexpected role that labile ionic solvate clusters can play in stabilizing supramolecular architectures.
Collapse
Affiliation(s)
- Zhenzhen Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin 105 East 24th Street, Stop A5300 Austin Texas 78712 USA
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
33
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
34
|
Li L, Xie L, Zheng R, Sun R. Self-Assembly Dipeptide Hydrogel: The Structures and Properties. Front Chem 2021; 9:739791. [PMID: 34540806 PMCID: PMC8440803 DOI: 10.3389/fchem.2021.739791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 01/20/2023] Open
Abstract
Self-assembly peptide-based hydrogels are well known and popular in biomedical applications due to the fact that they are readily controllable and have biocompatibility properties. A dipeptide is the shortest self-assembling motif of peptides. Due to its small size and simple synthesis method, dipeptide can provide a simple and easy-to-use method to study the mechanism of peptides' self-assembly. This review describes the design and structures of self-assembly linear dipeptide hydrogels. The strategies for preparing the new generation of linear dipeptide hydrogels can be divided into three categories based on the modification site of dipeptide: 1) COOH-terminal and N-terminal modified dipeptide, 2) C-terminal modified dipeptide, and 3) uncapped dipeptide. With a deeper understanding of the relationship between the structures and properties of dipeptides, we believe that dipeptide hydrogels have great potential application in preparing minimal biocompatible materials.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Li Xie
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
35
|
Yang S, Qin W, Zhao X, He F, Gong H, Liu Y, Feng Y, Zhou Y, Yu G, Li J. Interfacial self-assembled behavior of pH/light-responsive host-guest alginate-based supra-amphiphiles for controlling emulsifying property. Carbohydr Polym 2021; 266:118121. [PMID: 34044937 DOI: 10.1016/j.carbpol.2021.118121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Soft emulsifiers with relatively suitable structural controllability are necessarily required for the preparation of multifunctional Pickering emulsions. Herein, a β-cyclodextrin-grafted alginate/azobenzene-functionalized dodecyl (Alg-β-CD/AzoC. 12) polymeric supra-amphiphile was designed based on the host-guest interfacial self-assembly. As compared with Alg-β-CD amphiphilic polymers, the interfacial tension of Alg-β-CD/AzoC12 supra-amphiphilic assemblies reduced from 29.57 mN/m to 0.18 mN/m, indicating the great amphiphilicity derived from Alg-β-CD/AzoC12 supra-amphiphilic assemblies. With the increase of pH, the interfacial microstructures transformed from flocculated structures, spherical structures into deformed structures. Especially, the spherical microstructures with the highest interfacial viscoelasticity and thickness demonstrated the highest emulsifying efficiency due to the steric hindrance mechanism. Moreover, the interfacial elastic modulus of adsorbed layers exhibited ~4 times of that upon the ultraviolet illumination. These results disclosed that the interfacial microstructures could be readily regulated by the tunable amphiphilicity of Alg-β-CD/AzoC12 assemblies, which would be useful for the applications of Pickering emulsions in numerous fields.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Houkui Gong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan Province, China.
| |
Collapse
|
36
|
Zhang Z, Hao J. Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications. Adv Colloid Interface Sci 2021; 292:102408. [PMID: 33932827 DOI: 10.1016/j.cis.2021.102408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/08/2023]
Abstract
Since emerging in 1960, the artificial hydrogels have garnered enormous attentions in scientific community due to their high level of similarities to biological soft tissues in both structures and properties. With the proceeding of research, the concern of hydrogels is gradually shifted from fundamental investigation to abundant functionalization. In contrast to the natural soft tissues, the current artificial hydrogels still possess relatively simple structures and unsatisfactory environmental adaptability, extremely limiting their practical applications in complex environments. Enlightened by the prominent adaptability of biological organisms, the binary cooperative complementary principle is utilized to develop bioinspired organohydrogels by combining two components with opposite but cooperative physiochemical features. The present review provides the advanced progresses of bioinspired organohydrogels with sophisticated heterogeneous networks and desirably environmental adaptabilities. We clearly summarize the synthesizing strategies in regard to both corresponding mechanisms and typical examples, including macroscopic organohydrogels, organohydrogels with binary solvent, organohydrogels with heteronetworks, and emulsion-based organohydrogels. Meanwhile, the intriguing features of the reported organohydrogels, such as temperature resistance, switchable mechanics, adaptive wettability, and opposite components compatibility, are also clearly highlighted with a short overview of their promising applications. Ultimately, the current challenges and perspectives on the future development of bioinspired organohydrogels are also discussed.
Collapse
|
37
|
Ricardo F, Pradilla D, Cruz JC, Alvarez O. Emerging Emulsifiers: Conceptual Basis for the Identification and Rational Design of Peptides with Surface Activity. Int J Mol Sci 2021; 22:4615. [PMID: 33924804 PMCID: PMC8124350 DOI: 10.3390/ijms22094615] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Emulsifiers are gradually evolving from synthetic molecules of petrochemical origin to biomolecules mainly due to health and environmental concerns. Peptides represent a type of biomolecules whose molecular structure is composed of a sequence of amino acids that can be easily tailored to have specific properties. However, the lack of knowledge about emulsifier behavior, structure-performance relationships, and the implementation of different design routes have limited the application of these peptides. Some computational and experimental approaches have tried to close this knowledge gap, but restrictions in understanding the fundamental phenomena and the limited property data availability have made the performance prediction for emulsifier peptides an area of intensive research. This study provides the concepts necessary to understand the emulsifying behavior of peptides. Additionally, a straightforward description is given of how the molecular structure and conditions of the system directly impact the peptides' ability to stabilize emulsion droplets. Moreover, the routes to design and discover novel peptides with interfacial and emulsifying activity are also discussed, along with the strategies to address some of their major pitfalls and challenges. Finally, this contribution reviews methodologies to build and use data sets containing standard properties of emulsifying peptides by looking at successful applications in different fields.
Collapse
Affiliation(s)
- Fabian Ricardo
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (F.R.); (D.P.)
| | - Diego Pradilla
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (F.R.); (D.P.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia;
| | - Oscar Alvarez
- Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (F.R.); (D.P.)
| |
Collapse
|
38
|
Piras CC, Kay AG, Genever PG, Smith DK. Self-assembled low-molecular-weight gelator injectable microgel beads for delivery of bioactive agents. Chem Sci 2021; 12:3958-3965. [PMID: 34163666 PMCID: PMC8179440 DOI: 10.1039/d0sc06296k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
We report the preparation of hybrid self-assembled microgel beads by combining the low molecular weight gelator (LMWG) DBS-CONHNH2 and the natural polysaccharide calcium alginate polymer gelator (PG). Microgel formulations based on LMWGs are extremely rare due to the fragility of the self-assembled networks and the difficulty of retaining any imposed shape. Our hybrid beads contain interpenetrated LMWG and PG networks, and are obtained by an emulsion method, allowing the preparation of spherical gel particles of controllable sizes with diameters in the mm or μm range. Microgels based on LMWG/alginate can be easily prepared with reproducible diameters <1 μm (ca. 800 nm). They are stable in water at room temperature for many months, and survive injection through a syringe. The rapid assembly of the LMWG on cooling plays an active role in helping control the diameter of the microgel beads. These LMWG microbeads retained the ability of the parent gel to deliver the bioactive molecule heparin, and in cell culture medium this enhanced the growth of human mesenchymal stem cells. Such microgels may therefore have future applications in tissue repair. This approach to fabricating LMWG microgels is a platform technology, which could potentially be applied to a variety of different functional LMWGs, and hence has wide-ranging potential.
Collapse
Affiliation(s)
- Carmen C Piras
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Alasdair G Kay
- Department of Biology, University of York Heslington York YO10 5DD UK
| | - Paul G Genever
- Department of Biology, University of York Heslington York YO10 5DD UK
| | - David K Smith
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| |
Collapse
|
39
|
Chen XW, Sun SD, Ma CG, Yang XQ. Oil-Water Interfacial-Directed Spontaneous Self-Assembly of Natural Quillaja Saponin for Controlling Interface Permeability in Colloidal Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13854-13862. [PMID: 33166459 DOI: 10.1021/acs.jafc.0c04431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assembly of amphiphiles at the interface of two immiscible fluids is of great scientific and technological interest in offering efficient routes to smart vehicles for functional deliveries. Natural Quillaja saponin (QS) has gathered widespread interest within the scientific community as a result of its unique interfacial properties. Herein, spontaneously interface-driven self-assembly (SIDSA) of QS at the oil-water interface was systematically studied by morphology and spectroscopy. It was found to self-assemble into a micrometer-scale network in helical fibers by combined intermolecular π-π stacking and hydrogen bonding among saponins at the liquid-liquid interface. From SIDSA, multilayer films on the surfaces of dispersed droplets were formed and enhanced emulsion stability. Interfacial QS-based films on droplet surfaces were also shown to confine interfacial diffusion processes by serving as transport barriers. Furthermore, they can be exploited to control the release of volatiles from the dispersed liquid phase by regulating the interface film, which is shown by molecular dynamics to occur through a hydrogen-bonded mechanism. These results provide new insight into the interfacial assembly structure that can enable unique controllable release in a broad range of applications in food, beverages, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Shang-De Sun
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chuan-Guo Ma
- Lipid Technology and Engineering, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xiao-Quan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
40
|
Pal N, Mandal A. Enhanced oil recovery performance of gemini surfactant-stabilized nanoemulsions functionalized with partially hydrolyzed polymer/silica nanoparticles. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115887] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
De Leon Rodriguez LM, Hemar Y. Prospecting the applications and discovery of peptide hydrogels in food. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
43
|
Li HT, Wang HF, Wang Y, Pan JZ, Fang Q. A minimalist approach for generating picoliter to nanoliter droplets based on an asymmetrical beveled capillary and its application in digital PCR assay. Talanta 2020; 217:120997. [DOI: 10.1016/j.talanta.2020.120997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022]
|
44
|
Ling L, Yu H, Ismail M, Zhu Y, Du Y, Qi J. Synthetic dimeric-drug phospholipid: a versatile liposomal platform for cancer therapy. Chem Commun (Camb) 2020; 56:7621-7624. [PMID: 32515754 DOI: 10.1039/d0cc03589k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amphiphilic dimeric-podophyllotoxin (PODO) phospholipid was synthesized to assemble into liposomes as a combination of prodrug and nanocarrier. The results have demonstrated that the cell membrane-like delivery system possessed an improved cellular uptake and favorable antitumor efficacy with reduced side-effects. This strategy provides a new effective platform in drug delivery for cancer chemotherapy.
Collapse
Affiliation(s)
- Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | | | | | | | | | | |
Collapse
|
45
|
Jones CD, Lewis AR, Jones DR, Ottley CJ, Liu K, Steed JW. Lilypad aggregation: localised self-assembly and metal sequestration at a liquid-vapour interface. Chem Sci 2020; 11:7501-7510. [PMID: 34123033 PMCID: PMC8159346 DOI: 10.1039/d0sc02190c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/07/2020] [Indexed: 11/23/2022] Open
Abstract
Spatially resolved soft materials, such as vesicles and microgels, have shown promise as selective adsorbents and microscale reaction vessels. However, spatiotemporal control of aggregation can be difficult to achieve. In this study, nickel(ii) chloride and a dipyridyl oligo(urea) ligand were combined in a vapour-diffusion setup to produce a localised spheroidal aggregate at the liquid-vapour interface. This aggregate forms via the self-assembly and fusion of monodisperse colloids and grows until its weight is no longer counterbalanced by surface tension. A simple physical model reveals that this process, termed lilypad aggregation, is possible only for surface energies that favour neither bulk aggregation nor the growth of an interfacial film. These surface energies dictate the final size and shape of the aggregate and may be estimated through visual monitoring of its changing morphology. Lilypad aggregates sequester metal from the surrounding sol and can be collected manually from the surface of the liquid.
Collapse
Affiliation(s)
| | - Aled R Lewis
- Systems and Process Engineering Centre (SPEC), Energy Safety Research Institute (ESRI), College of Engineering, University of Swansea Singleton Park Swansea SA2 8PP UK
| | - Daniel R Jones
- Systems and Process Engineering Centre (SPEC), Energy Safety Research Institute (ESRI), College of Engineering, University of Swansea Singleton Park Swansea SA2 8PP UK
| | | | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | | |
Collapse
|
46
|
Wychowaniec JK, Patel R, Leach J, Mathomes R, Chhabria V, Patil-Sen Y, Hidalgo-Bastida A, Forbes RT, Hayes JM, Elsawy MA. Aromatic Stacking Facilitated Self-Assembly of Ultrashort Ionic Complementary Peptide Sequence: β-Sheet Nanofibers with Remarkable Gelation and Interfacial Properties. Biomacromolecules 2020; 21:2670-2680. [DOI: 10.1021/acs.biomac.0c00366] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jacek K. Wychowaniec
- School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, Oxford Road, Manchester M13 9PL, United Kingdom
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - James Leach
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Rachel Mathomes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Vikesh Chhabria
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Yogita Patil-Sen
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Araida Hidalgo-Bastida
- Centre for Biosciences, Department of Life Science, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
- Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
- Centre for Advance Materials and Surface Engineering, Manchester Metropolitan University, Manchester, M1 5GD, United Kingdom
| | - Robert T. Forbes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Joseph M. Hayes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Mohamed A. Elsawy
- School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, Oxford Road, Manchester M13 9PL, United Kingdom
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
- Leicester Institute of Pharmaceutical Innovation, Leicester School of Pharmacy, De Monfort University, The Gateway, Leicester LE1 9BH, United Kingdom
| |
Collapse
|
47
|
Ren P, Li J, Zhao L, Wang A, Wang M, Li J, Jian H, Li X, Yan X, Bai S. Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21433-21440. [PMID: 32319760 DOI: 10.1021/acsami.0c03038] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dipeptide self-assembled hydrogels have potential biomedical applications because of their great biocompatibility, bioactivity, and tunable physicochemical properties, which can be modulated in the molecular level by design of amino acid sequences. Herein, a series of dipeptides (Fmoc-FL, -YL, -LL, and -YA) are designed to form shear-thinning hydrogels with self-healing and tunable mechanical properties by adjusting the synergetic effect of hydrophobic interactions (π-π stacking and hydrophobic effect) and hydrogen bonds of peptides through substitution of amino acid residues. The enhancement of hydrophobic interactions is a primary factor to promote mechanical rigidity of hydrogels, and strong hydrogen-bonding interactions between molecules contribute to the instantaneous self-healing property, which is supported by experimental studies (FTIR, CD, SEM, AFM, and rheology) and molecular dynamics simulations. The injectable dipeptide hydrogels were certified as an ideal endoscopic submucosal dissection filler to make operation convenient and secure in mice and living mini-pig's experiments with a longer duration time, higher stiffness, and lower inflammatory response than commercial clinical fillers.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingtao Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Meiyue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoou Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Datta LP, Manchineella S, Govindaraju T. Biomolecules-derived biomaterials. Biomaterials 2020; 230:119633. [DOI: 10.1016/j.biomaterials.2019.119633] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
|
49
|
Piras CC, Slavik P, Smith DK. Self-Assembling Supramolecular Hybrid Hydrogel Beads. Angew Chem Int Ed Engl 2020; 59:853-859. [PMID: 31697017 PMCID: PMC6973155 DOI: 10.1002/anie.201911404] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 12/11/2022]
Abstract
With the goal of imposing shape and structure on supramolecular gels, we combine a low-molecular-weight gelator (LMWG) with the polymer gelator (PG) calcium alginate in a hybrid hydrogel. By imposing thermal and temporal control of the orthogonal gelation methods, the system either forms an extended interpenetrating network or core-shell-structured gel beads-a rare example of a supramolecular gel formulated inside discrete gel spheres. The self-assembled LMWG retains its unique properties within the beads, such as remediating PdII and reducing it in situ to yield catalytically active Pd0 nanoparticles. A single PdNP-loaded gel bead can catalyse the Suzuki-Miyaura reaction, constituting a simple and easy-to-use reaction-dosing form. These uniquely shaped and structured LMWG-filled gel beads are a versatile platform technology with great potential in a range of applications.
Collapse
Affiliation(s)
- Carmen C. Piras
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Petr Slavik
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - David K. Smith
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
50
|
Yan T, Song B, Pei X, Cui Z, Binks BP, Yang H. Widely Adaptable Oil-in-Water Gel Emulsions Stabilized by an Amphiphilic Hydrogelator Derived from Dehydroabietic Acid. Angew Chem Int Ed Engl 2020; 59:637-641. [PMID: 31670436 DOI: 10.1002/anie.201907774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Indexed: 12/25/2022]
Abstract
A surfactant, R-6-AO, derived from dehydroabietic acid has been synthesized. It behaves as a highly efficient low-molecular-weight hydrogelator with an extremely low critical gelation concentration (CGC) of 0.18 wt % (4 mm). R-6-AO not only stabilizes oil-in-water (O/W) emulsions at concentrations above its critical micelle concentration (cmc) of 0.6 mm, but also forms gel emulsions at concentrations beyond the CGC with the oil volume fraction freely adjustable between 2 % and 95 %. Cryo-TEM images reveal that R-6-AO molecules self-assemble into left-handed helical fibers with cross-sectional diameters of about 10 nm in pure water, which can be turned to very stable hydrogels at concentrations above the CGC. The gel emulsions stabilized by R-6-AO can be prepared with different oils (n-dodecane, n-decane, n-octane, soybean oil, olive oil, tricaprylin) owing to the tricyclic diterpene hydrophobic structure in their molecules that enables them to adopt a unique arrangement in the fibers.
Collapse
Affiliation(s)
- Tingting Yan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Binglei Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Xiaomei Pei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, P. R. China
| | - Bernard P Binks
- Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, UK
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|