1
|
Liu W, Zeng C, Ge F, Yin Y, Wang C. Realization of reversible thermochromic polydiacetylene through silica nanoparticle surface modification. J Appl Polym Sci 2021. [DOI: 10.1002/app.49809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenwen Liu
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| | - Chanjuan Zeng
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| | - Fangqing Ge
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| | - Yunjie Yin
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| | - Chaoxia Wang
- Key Laboratory of Eco‐Textile, Ministry of Education, College of Textile Science and Engineering Jiangnan University Wuxi China
| |
Collapse
|
2
|
Wang C, Ding S, Wang S, Shi Z, Pandey NK, Chudal L, Wang L, Zhang Z, Wen Y, Yao H, Lin L, Chen W, Xiong L. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coord Chem Rev 2021; 426:213529. [DOI: 10.1016/j.ccr.2020.213529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Rosenthal M, Lindner JKN, Gerstmann U, Meier A, Schmidt WG, Wilhelm R. A photoredox catalysed Heck reaction via hole transfer from a Ru(ii)-bis(terpyridine) complex to graphene oxide. RSC Adv 2020; 10:42930-42937. [PMID: 35514879 PMCID: PMC9058128 DOI: 10.1039/d0ra08749a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
The attachment of homoleptic Ru bis-terpy complexes on graphene oxide significantly improved the photocatalytic activity of the complexes. These straightforward complexes were applied as photocatalysts in a Heck reaction. Due to covalent functionalization on graphene oxide, which functions as an electron reservoir, excellent yields were obtained. DFT investigations of the charge redistribution revealed efficient hole transfer from the excited Ru unit towards the graphene oxide.
Collapse
Affiliation(s)
- Marta Rosenthal
- Department of Chemistry, University of Paderborn Warburgerstr. 100 33098 Paderborn Germany
| | - Jörg K N Lindner
- Department Physics, Experimental Physics, University of Paderborn Warburgerstr. 100 33098 Paderborn Germany
| | - Uwe Gerstmann
- Department of Physics, Theoretical Physics, University of Paderborn Warburgerstr. 100 33098 Paderborn Germany
| | - Armin Meier
- Institute of Organic Chemistry, Clausthal University of Technology Leibnizstr. 6 38678 Clausthal-Zellerfeld Germany
| | - W Gero Schmidt
- Department of Physics, Theoretical Physics, University of Paderborn Warburgerstr. 100 33098 Paderborn Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology Leibnizstr. 6 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
4
|
Gschneidtner TA, Lerch S, Olsén E, Wen X, Liu ACY, Stolaś A, Etheridge J, Olsson E, Moth-Poulsen K. Constructing a library of metal and metal-oxide nanoparticle heterodimers through colloidal assembly. NANOSCALE 2020; 12:11297-11305. [PMID: 32420581 DOI: 10.1039/d0nr02787a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoparticle dimers composed of different metals or metal oxides, as well as different shapes and sizes, are of wide interest for applications ranging from nanoplasmonic sensing to nanooptics to biomedical engineering. Shaped nanoparticles, like triangles and nanorods, can be particularly useful in applications due to the strong localized plasmonic hot-spot that forms at the tips or corners. By placing catalytic, but traditionally weakly- or non-plasmonic nanoparticles, such as metal oxides and metals like palladium, in these hot-spots, an enhanced function for sensing, photocatalysis or optical use is predicted. Here, we present an electrostatic colloidal assembly strategy for nanoparticles, incorporating different sizes, shapes and metal or metal oxide compositions into heterodimers with smaller gaps than are achievable using nanofabrication techniques. This versatile method is demonstrated on 14 combinations, including a variety of shaped gold nanoparticles as well as palladium, iron oxide, and titanium oxide nanoparticles. These colloidal nanoparticles are stabilized with traditional surfactants, such as citrate, CTAB, PVP and oleic acid/oleylamines, indicating the wide applicability of our approach. Heterodimers of gold and palladium are further analyzed using cathodoluminescence to demonstrate the tunability of these "plasmonic molecules". Since systematically altering the absorption and emission of the plasmonic nanoparticles dimers is crucial to extending their functionality, and small gap sizes produce the strongest hot-spots, this method indicates that the electrostatic approach to heterodimer assembly can be useful in creating new nanoparticle dimers for many applications.
Collapse
Affiliation(s)
- Tina A Gschneidtner
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Sarah Lerch
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Erik Olsén
- Department of Physics, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Xin Wen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Amelia C Y Liu
- Monash Centre for Electron Microscopy, Monash University, VIC 3800, Australia. and School of Physics and Astronomy, Monash University, VIC 3800, Australia
| | - Alicja Stolaś
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Joanne Etheridge
- Monash Centre for Electron Microscopy, Monash University, VIC 3800, Australia. and Department of Materials Science and Metallurgy, Monash University, VIC 3800, Australia
| | - Eva Olsson
- Department of Physics, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| |
Collapse
|
5
|
Wang Y, Santos PJ, Kubiak JM, Guo X, Lee MS, Macfarlane RJ. Multistimuli Responsive Nanocomposite Tectons for Pathway Dependent Self-Assembly and Acceleration of Covalent Bond Formation. J Am Chem Soc 2019; 141:13234-13243. [PMID: 31357862 PMCID: PMC6727667 DOI: 10.1021/jacs.9b06695] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 12/22/2022]
Abstract
Nanocomposite tectons (NCTs) are a recently developed building block for polymer-nanoparticle composite synthesis, consisting of nanoparticle cores functionalized with dense monolayers of polymer chains that terminate in supramolecular recognition groups capable of linking NCTs into hierarchical structures. In principle, the use of molecular binding to guide particle assembly allows NCTs to be highly modular in design, with independent control over the composition of the particle core and polymer brush. However, a major challenge to realize an array of compositionally and structurally varied NCT-based materials is the development of different supramolecular bonding interactions to control NCT assembly, as well as an understanding of how the organization of multiple supramolecular groups around a nanoparticle scaffold affects their collective binding interactions. Here, we present a suite of rationally designed NCT systems, where multiple types of supramolecular interactions (hydrogen bonding, metal complexation, and dynamic covalent bond formation) are used to tune NCT assembly as a function of multiple external stimuli including temperature, small molecules, pH, and light. Furthermore, the incorporation of multiple orthogonal supramolecular chemistries in a single NCT system makes it possible to dictate the morphologies of the assembled NCTs in a pathway-dependent fashion. Finally, multistimuli responsive NCTs enable the modification of composite properties by postassembly functionalization, where NCTs linked by covalent bonds with significantly enhanced stability are obtained in a fast and efficient manner. The designs presented here therefore provide major advancement for the field of composite synthesis by establishing a framework for synthesizing hierarchically ordered composites capable of complicated assembly behaviors.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter J. Santos
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Joshua M. Kubiak
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xinheng Guo
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Margaret S. Lee
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert J. Macfarlane
- Department of Materials Science and
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Eklöf-Österberg J, Gschneidtner T, Tebikachew B, Lara-Avila S, Moth-Poulsen K. Parallel Fabrication of Self-Assembled Nanogaps for Molecular Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803471. [PMID: 30358919 DOI: 10.1002/smll.201803471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Single molecule electronics might be a way to add additional function to nanoscale devices and continue miniaturization beyond current state of the art. Here, a combined top-down and bottom-up strategy is employed to assemble single molecules onto prefabricated electrodes. Protodevices, which are self-assembled nanogaps composed by two gold nanoparticles linked by a single or a few molecules, are guided onto top-down prefabricated nanosized nickel electrodes with sandwiched palladium layers. It is shown that an optimized geometry of multilayered metallic (top-down) electrodes facilitates the assembly of (bottom-up) nanostructures by surface charge interactions. Moreover, such assembly process results in an electrode-nanoparticle interface free from linking molecules that enable electrical measurements to probe electron transport properties of the nanoparticle-molecule-nanoparticle protodevices.
Collapse
Affiliation(s)
- Johnas Eklöf-Österberg
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Tina Gschneidtner
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Behabitu Tebikachew
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Samuel Lara-Avila
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, 412 96, Sweden
- National Physical Laboratory, Teddington, TW11 0LW, UK
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| |
Collapse
|
7
|
Ulfkjær A, Nielsen FW, Al-Kerdi H, Ruβ T, Nielsen ZK, Ulstrup J, Sun L, Moth-Poulsen K, Zhang J, Pittelkow M. A gold-nanoparticle stoppered [2]rotaxane. NANOSCALE 2018; 10:9133-9140. [PMID: 29722407 DOI: 10.1039/c8nr01622d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The construction of molecular machines has captured the imagination of scientists for decades. Despite significant progress in the synthesis and studies of the properties of small-molecule components (smaller than 2-5 kilo Dalton), challenges regarding the incorporation of molecular components into real devices are still eminent. Nano-sized molecular machines operate the complex biological machinery of life, and the idea of mimicking the amazing functions using artificial nano-structures is intriguing. Both in small-molecule molecular machine components and in many naturally occurring molecular machines, mechanically interlocked molecules and structures are key functional components. In this work, we describe our initial efforts to interface mechanically-interlocked molecules and gold-nanoparticles (AuNPs); the molecular wire connecting the AuNPs is covered in an insulating rotaxane-layer, thus mimicking the macroscopic design of a copper wire. Taking advantage of recent progress in the preparation of supramolecular complexes of the cucurbit[7]uril (CB[7]) macrocycle, we have prepared a bis-thiol functionalised pseudo-rotaxane that enables us to prepare a AuNP-stoppered [2]rotaxane in water. The pseudo-rotaxane is held together extremely tightly (Ka > 1013 M-1), Ka being the association constant. We have studied the solution and gas phase guest-host chemistry using NMR spectroscopy, mass spectroscopy, and electrochemistry. The bis-thiol functionalised pseudo-rotaxane holds further a ferrocene unit in the centre of the rotaxane; this ferrocene unit enables us to address the system in detail with and without CB[7] and AuNPs using electrochemical methods.
Collapse
Affiliation(s)
- Anne Ulfkjær
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mayence A, Wéry M, Tran DT, Wetterskog E, Svedlindh P, Tai CW, Bergström L. Interfacial strain and defects in asymmetric Fe-Mn oxide hybrid nanoparticles. NANOSCALE 2016; 8:14171-14177. [PMID: 27385323 DOI: 10.1039/c6nr01373b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Asymmetric Fe-Mn oxide hybrid nanoparticles have been obtained by a seed-mediated thermal decomposition-based synthesis route. The use of benzyl ether as the solvent was found to promote the orientational growth of Mn1-xO onto the iron oxide nanocube seeds yielding mainly dimers and trimers whereas 1-octadecene yields large nanoparticles. HRTEM imaging and HAADF-STEM tomography performed on dimers show that the growth of Mn1-xO occurs preferentially along the edges of iron oxide nanocubes where both oxides share a common crystallographic orientation. Fourier filtering and geometric phase analysis of dimers reveal a lattice mismatch of 5% and a large interfacial strain together with a significant concentration of defects. The saturation magnetization is lower and the coercivity is higher for the Fe-Mn oxide hybrid nanoparticles compared to the iron oxide nanocube seeds.
Collapse
Affiliation(s)
- Arnaud Mayence
- Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu M, Fang L, Li Y, Gong M, Xu A, Deng Z. "Flash" preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag + soldering: toward effective plasmonic tuning of solution-assembled nanomaterials. Chem Sci 2016; 7:5435-5440. [PMID: 30034682 PMCID: PMC6021751 DOI: 10.1039/c6sc01407k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/01/2016] [Indexed: 01/09/2023] Open
Abstract
Noble metal nanoparticle oligomers are important in applications including plasmonics, catalysis, and molecular sensing. These nanostructural units featuring abundant inter-particle junctions are helpful for a physical/chemical understanding of structure-activity relationships of self-assembled metamaterials. A simple, rapid, and potentially general strategy for the preparation of monodisperse nanoparticle clusters in a homogeneous solution is highly desired for fundamental research toward liquid metamaterials and chemical/biological applications, but this is however very challenging. Here we report an Ag+ soldering strategy to prepare strongly coupled plasmonic (Au) and catalytic (Pt, Au@Pd (Au core with a Pd shell)) nanoparticle clusters almost instantly (<1 min) in a solution without special synthetic efforts, complicated surface decorations, or structure-directing templates. The resulting clusters are isolatable by agarose gel electrophoresis, resulting in mechanically stable products in high purity. The optical extinctions of Au nanodimers (the simplest and most basic form of a coupled structure) exhibit prominent longitudinal plasmonic coupling for nanoparticles down to 13.3 nm in diameter. Theoretical simulations attribute the strong coupling to the existence of a sub-nm gap (c.a. 0.76 nm) between soldered particles, suggesting an ideal (stable, soluble, monodisperse, and weakly passivated) substrate for surface enhanced Raman scattering (SERS) applications.
Collapse
Affiliation(s)
- Miao Liu
- CAS Key Laboratory of Soft Matter Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Lingling Fang
- CAS Key Laboratory of Soft Matter Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Yulin Li
- CAS Key Laboratory of Soft Matter Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Ming Gong
- Engineering and Materials Science Experiment Center , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - An Xu
- Key Laboratory of Ion Beam Bioengineering , Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei , Anhui 230031 , China
| | - Zhaoxiang Deng
- CAS Key Laboratory of Soft Matter Chemistry & Collaborative Innovation Center of Suzhou Nano Science and Technology , Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| |
Collapse
|
10
|
Geng L, Li Y, Wang Z, Wang Y, Feng G, Pang X, Yu X. Selective and visual Ca(2+) ion recognition in solution and in a self-assembly organogel of the terpyridine-based derivative triggered by ultrasound. SOFT MATTER 2015; 11:8100-8104. [PMID: 26329796 DOI: 10.1039/c5sm01851j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new kind of terpyridine-based Ca(2+) sensor TS was designed and studied based on the internal charge transfer (ICT). In the diluted solution state, TS sensed Ca(2+) and Mg(2+) ions among test ions via an "off-on" approach as seen from fluorescence spectra of test ions. Moreover, TS was able to form stable fluorescent gels in organic solvents accelerated by ultrasound, indicating the ultrasound responsive properties of TS molecules. The S-gel of TS could be successfully used to selectively recognize Ca(2+) through fluorescent emission color and morphological changes, which was different from that of the solution state. It was predicated that the competition between the self-assembly of TS molecules and the host–guest interaction of TS with Ca(2+) or Mg(2+) was responsible for the sensing properties. To the best of our knowledge, this is the first example that organogels could selectively sense Ca2+ ions.
Collapse
Affiliation(s)
- Lijun Geng
- Hebei Research Center of Pharmaceutical and Chemical Engineering, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Dewi MR, Laufersky G, Nann T. Selective assembly of Au-Fe 3O 4 nanoparticle hetero-dimers. Mikrochim Acta 2015; 182:2293-2298. [PMID: 26388652 PMCID: PMC4569660 DOI: 10.1007/s00604-015-1571-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/13/2015] [Indexed: 01/21/2023]
Abstract
Hetero-dimeric magnetic nanoparticles of the type Au-Fe3O4 have been synthesised from separately prepared, differently shaped (spheres and cubes), monodisperse nanoparticles. This synthesis was achieved by the following steps: (a) Mono-functionalising each type of nanoparticles with aldehyde functional groups through a solid support approach, where nanoparticle decorated silica nanoparticles were fabricated as an intermediate step; (b) Derivatising the functional faces with complementary functionalities (e.g. amines and carboxylic acids); (c) Dimerising the two types of particles via amide bond formation. The resulting hetero-dimers were characterised by high-resolution TEM, Fourier transform IR spectroscopy and other appropriate methods. Nano-LEGO: Assembling two types of separately prepared nanoparticles into a hetero-dimer is the first step towards complex nano-architectures. This study shows a solid support approach to combine a gold and a magnetite nanocrystal. ![]()
Collapse
Affiliation(s)
- Melissa R Dewi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Ian Wark Research Institute, University of South Australia, Adelaide, SA 5095 Australia
| | - Geoffry Laufersky
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Ian Wark Research Institute, University of South Australia, Adelaide, SA 5095 Australia
| | - Thomas Nann
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Ian Wark Research Institute, University of South Australia, Adelaide, SA 5095 Australia
| |
Collapse
|