1
|
Watson EE. Strategies for the optimisation of troublesome peptide nucleic acid (PNA) sequences. Org Biomol Chem 2025. [PMID: 40391425 DOI: 10.1039/d5ob00589b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Through the use of a pseudo-peptidic backbone, peptide nucleic acids (PNA) mimic the functionality of native nucleic acids while enjoying improved binding affinity and metabolic stability. However, many aspects of the application of PNA to biological and medicinal settings still requires sequence specific optimisation. This review highlights key areas for refinement, including synthesis, tuning of physical properties, cell permeability and analysis, including common strategies for the pracitioner to apply in each area.
Collapse
Affiliation(s)
- Emma E Watson
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
de la Fuente MC, Ageitos L, Lages MA, Martínez-Matamoros D, Forero AM, Balado M, Lemos ML, Rodríguez J, Jiménez C. Structural Requirements for Ga 3+ Coordination in Synthetic Analogues of the Siderophore Piscibactin Deduced by Chemical Synthesis and Density Functional Theory Calculations. Inorg Chem 2023; 62:7503-7514. [PMID: 37140938 DOI: 10.1021/acs.inorgchem.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Stereoselective total synthesis of several analogues of piscibactin (Pcb), the siderophore produced by different pathogenic Gram-negative bacteria, was performed. The acid-sensitive α-methylthiazoline moiety was replaced by a more stable thiazole ring, differing in the configuration of the OH group at the C-13 position. The ability of these Pcb analogues to form complexes with Ga3+ as a mimic of Fe3+ showed that the configuration of the hydroxyl group at C-13 as 13S is crucial for the chelation of Ga3+ to preserve the metal coordination, while the presence of a thiazole ring instead of the α-methylthiazoline moiety does not affect such coordination. A complete 1H and 13C NMR chemical shift assignment of the diastereoisomer mixtures around C9/C10 was done for diagnostic stereochemical disposition. Additionally, density functional theory calculations were performed not only for confirming the stereochemistry of the Ga3+ complex among the six possible diastereoisomers but also for deducing the ability of these to form octahedral coordination spheres with gallium. Finally, the lack of antimicrobial activity of Pcb and Pcb thiazole analogue Ga3+ complexes against Vibrio anguillarum agrees with one of the roles of siderophores in protecting pathogens from metal ion toxicity. The efficient metal coordination shown by this scaffold suggests its possible use as a starting point for the design of new chelating agents or vectors for the development of new antibacterials that exploit the "Trojan horse" strategy using the microbial iron uptake mechanisms. The results obtained will be of great help in the development of biotechnological applications for these types of compounds.
Collapse
Affiliation(s)
- M Carmen de la Fuente
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Lucía Ageitos
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Marta A Lages
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Diana Martínez-Matamoros
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Abel M Forero
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Miguel Balado
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Manuel L Lemos
- Departamento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jaime Rodríguez
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| | - Carlos Jiménez
- CICA─Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña 15071, Spain
| |
Collapse
|
3
|
Dhami I, Thadke SA, Ly DH. Development of the Right- and Left-Handed Gamma Peptide Nucleic Acid Building Blocks for On-Resin Chemical Functionalization. J Org Chem 2022; 87:13873-13881. [PMID: 36190146 DOI: 10.1021/acs.joc.2c01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gamma peptide nucleic acids (PNAs) are a promising class of nucleic acid mimics that adopt either a right- or left-handed helical motif as individual strands and hybridize to DNA or RNA with high affinity and sequence specificity, or not at all, depending on the helical sense. They are attractive as antisense and antigene reagents, as well as building blocks for molecular self-assembly; however, they have not been widely adopted due to their relatively poor biophysical attributes and the challenge in chemical modifications. Here, we report the development of a set of universal monomers, four each for both the right- and left-handed conformers, that permit rapid and selective on-resin chemical functionalization and diversification. The system is modular, permitting incorporation of different chemical groups in the backbone without causing adverse effects on hybridization. The approach overcomes the need to prepare a new set of monomers each time a different chemical group is introduced in the backbone. The newly added synthetic flexibility, along with superior hybridization property, recognition orthogonality, and helical sense translational capability, significantly expands the scope of gamma PNA in biology, biotechnology, and molecular engineering.
Collapse
Affiliation(s)
- Isha Dhami
- Department of Chemistry and Institute for Bimolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Shivaji A Thadke
- Department of Chemistry and Institute for Bimolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Danith H Ly
- Department of Chemistry and Institute for Bimolecular Design and Discovery (IBD), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Gluhacevic von Krüchten D, Roth M, Seitz O. DNA-Templated Reactions with High Catalytic Efficiency Achieved by a Loss-of-Affinity Principle. J Am Chem Soc 2022; 144:10700-10704. [PMID: 35696276 DOI: 10.1021/jacs.2c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleic-acid-templated chemical reactions are currently explored for applications in DNA-encoded drug discovery, nucleic acid diagnostics, and theranostics. Of particular interest are reactions enabling the template to gain catalytic activity, so that enzymatic amplification of low copy targets would no longer be necessary. Herein, we introduce a new reaction design relying on the template-controlled cleavage of PNA-spermine conjugates. With turnover frequencies in the range of 3-10 min-1 and a kcat/KM = 1.3 × 106 M-1 s-1, the loss of affinity upon reaction provides a catalytic efficiency equal to most enzymatic conversions and superior to nucleic-acid-templated reactions reported to date.
Collapse
Affiliation(s)
| | - Magdalena Roth
- Department of Chemistry, Humboldt University of Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University of Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
5
|
Suparpprom C, Vilaivan T. Perspectives on conformationally constrained peptide nucleic acid (PNA): insights into the structural design, properties and applications. RSC Chem Biol 2022; 3:648-697. [PMID: 35755191 PMCID: PMC9175113 DOI: 10.1039/d2cb00017b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide nucleic acid or PNA is a synthetic DNA mimic that contains a sequence of nucleobases attached to a peptide-like backbone derived from N-2-aminoethylglycine. The semi-rigid PNA backbone acts as a scaffold that arranges the nucleobases in a proper orientation and spacing so that they can pair with their complementary bases on another DNA, RNA, or even PNA strand perfectly well through the standard Watson-Crick base-pairing. The electrostatically neutral backbone of PNA contributes to its many unique properties that make PNA an outstanding member of the xeno-nucleic acid family. Not only PNA can recognize its complementary nucleic acid strand with high affinity, but it does so with excellent specificity that surpasses the specificity of natural nucleic acids and their analogs. Nevertheless, there is still room for further improvements of the original PNA in terms of stability and specificity of base-pairing, direction of binding, and selectivity for different types of nucleic acids, among others. This review focuses on attempts towards the rational design of new generation PNAs with superior performance by introducing conformational constraints such as a ring or a chiral substituent in the PNA backbone. A large collection of conformationally rigid PNAs developed during the past three decades are analyzed and compared in terms of molecular design and properties in relation to structural data if available. Applications of selected modified PNA in various areas such as targeting of structured nucleic acid targets, supramolecular scaffold, biosensing and bioimaging, and gene regulation will be highlighted to demonstrate how the conformation constraint can improve the performance of the PNA. Challenges and future of the research in the area of constrained PNA will also be discussed.
Collapse
Affiliation(s)
- Chaturong Suparpprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| | - Tirayut Vilaivan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Tah-Poe District, Muang Phitsanulok 65000 Thailand
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University Phayathai Road Pathumwan Bangkok 10330 Thailand
| |
Collapse
|
6
|
Periyalagan A, Hong IS. A novel synthetic method of peptide nucleic acid (
PNA
) oligomers using Boc/
Cbz‐protected PNA
trimer blocks in the solution phase. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alagarsamy Periyalagan
- Department of Chemistry College of Natural Science, Kongju National University Chungnam Republic of Korea
| | - In Seok Hong
- Department of Chemistry College of Natural Science, Kongju National University Chungnam Republic of Korea
| |
Collapse
|
7
|
Zavoiura O, Resch-Genger U, Seitz O. Reactive Quantum Dot-Based FRET Systems for Target-Catalyzed Detection of RNA. Methods Mol Biol 2021; 2105:187-198. [PMID: 32088871 DOI: 10.1007/978-1-0716-0243-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotide-templated reactions (OTRs) between two reactive hybridization probes allow for the detection of a DNA or RNA of interest by exploiting the target molecule as a catalyst of chemical reactions. The product of such a reaction commonly exhibits distinct fluorescence properties and can be detected by the means of fluorescence spectroscopy. The vast majority of OTR systems utilize organic dyes as fluorescent reporters. However, the use of brighter emitters, such as semiconductor quantum dots (QDs), has potential to improve the sensitivity of detection by providing brighter signals and permitting the use of probes at very low concentrations. Here we report an RNA-templated reaction between two fluorescently labeled peptide nucleic acid (PNA)-based probes, which proceeds on the surface of a QD. The QD-bound PNA probe bears a cysteine functionality, while the other PNA is functionalized with an organic dye as a thioester. OTR between these probes proceeds through a transfer of the organic dye to the QD and can be conveniently monitored via fluorescence resonance energy transfer (FRET) from the QD to the Cy5. The reaction was performed in a conventional fluorescence microplate reader and permits the detection of RNA in the picomolar range.
Collapse
Affiliation(s)
- Oleksandr Zavoiura
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany.,Department of Chemistry, Humboldt University of Berlin, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
8
|
Jin S, Brea RJ, Rudd AK, Moon SP, Pratt MR, Devaraj NK. Traceless native chemical ligation of lipid-modified peptide surfactants by mixed micelle formation. Nat Commun 2020; 11:2793. [PMID: 32493905 PMCID: PMC7270136 DOI: 10.1038/s41467-020-16595-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Biology utilizes multiple strategies, including sequestration in lipid vesicles, to raise the rate and specificity of chemical reactions through increases in effective molarity of reactants. We show that micelle-assisted reaction can facilitate native chemical ligations (NCLs) between a peptide-thioester – in which the thioester leaving group contains a lipid-like alkyl chain – and a Cys-peptide modified by a lipid-like moiety. Hydrophobic lipid modification of each peptide segment promotes the formation of mixed micelles, bringing the reacting peptides into close proximity and increasing the reaction rate. The approach enables the rapid synthesis of polypeptides using low concentrations of reactants without the need for thiol catalysts. After NCL, the lipid moiety is removed to yield an unmodified ligation product. This micelle-based methodology facilitates the generation of natural peptides, like Magainin 2, and the derivatization of the protein Ubiquitin. Formation of mixed micelles from lipid-modified reactants shows promise for accelerating chemical reactions in a traceless manner. Sequestration of reactants in lipid vesicles is a strategy prevalent in biological systems to raise the rate and specificity of chemical reactions. Here, the authors show that micelle-assisted reactions facilitate native chemical ligation between a peptide-thioester and a Cys-peptide modified by a lipid-like moiety.
Collapse
Affiliation(s)
- Shuaijiang Jin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Andrew K Rudd
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Stuart P Moon
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
10
|
Hsieh WC, Shaikh AY, Perera JDR, Thadke SA, Ly DH. Synthesis of ( R)- and ( S)-Fmoc-Protected Diethylene Glycol Gamma PNA Monomers with High Optical Purity. J Org Chem 2019; 84:1276-1287. [PMID: 30608165 PMCID: PMC11104511 DOI: 10.1021/acs.joc.8b02714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A robust synthetic route has been developed for preparing optically pure, Fmoc-protected diethylene glycol-containing ( R)- and ( S)-γPNA monomers. The strategy involves the application of 9-(4-bromophenyl)-9-fluorenyl as a temporary, safety-catch protecting group for the suppression of epimerization in the O-alkylation and reductive amination steps. The optical purities of the final monomers were determined to be greater than 99.5% ee, as assessed by 19F-NMR and HPLC. The new synthetic methodology is well-suited for large-scale monomer production, with most synthetic steps providing excellent chemical yields without the need for chromatographic purification other than a simple workup and precipitation.
Collapse
Affiliation(s)
- Wei-Che Hsieh
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ashif Y. Shaikh
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - J. Dinithi R. Perera
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Shivaji A. Thadke
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Danith H. Ly
- Institute for Biomolecular Design and Discovery (IBD) and Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Abstract
Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.
Collapse
|
12
|
Gupta A. Synthesis and characterization of novel α-monomers of peptide nucleic acid. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.jart.2017.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Kirillova Y, Boyarskaya N, Dezhenkov A, Tankevich M, Prokhorov I, Varizhuk A, Eremin S, Esipov D, Smirnov I, Pozmogova G. Polyanionic Carboxyethyl Peptide Nucleic Acids (ce-PNAs): Synthesis and DNA Binding. PLoS One 2015; 10:e0140468. [PMID: 26469337 PMCID: PMC4607454 DOI: 10.1371/journal.pone.0140468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022] Open
Abstract
New polyanionic modifications of polyamide nucleic acid mimics were obtained. Thymine decamers were synthesized from respective chiral α- and γ-monomers, and their enantiomeric purity was assessed. Here, we present the decamer synthesis, purification and characterization by MALDI-TOF mass spectrometry and an investigation of the hybridization properties of the decamers. We show that the modified γ-S-carboxyethyl-T10 PNA forms a stable triplex with polyadenine DNA.
Collapse
Affiliation(s)
- Yuliya Kirillova
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- * E-mail:
| | - Nataliya Boyarskaya
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Andrey Dezhenkov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Mariya Tankevich
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Ivan Prokhorov
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Anna Varizhuk
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
- Department of Structure-Functional Analysis of Biopolymers, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Sergei Eremin
- Department of Biotechnology and Bionanotechnology, Moscow State University of Fine Chemical Technologies, Moscow, Russia
| | - Dmitry Esipov
- Department of Bioorganic Chemistry, Biology Faculty, Moscow State University, Moscow, Russia
| | - Igor Smirnov
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| | - Galina Pozmogova
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
14
|
Sacui I, Hsieh WC, Manna A, Sahu B, Ly DH. Gamma Peptide Nucleic Acids: As Orthogonal Nucleic Acid Recognition Codes for Organizing Molecular Self-Assembly. J Am Chem Soc 2015; 137:8603-10. [PMID: 26079820 DOI: 10.1021/jacs.5b04566] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nucleic acids are an attractive platform for organizing molecular self-assembly because of their specific nucleobase interactions and defined length scale. Routinely employed in the organization and assembly of materials in vitro, however, they have rarely been exploited in vivo, due to the concerns for enzymatic degradation and cross-hybridization with the host's genetic materials. Herein we report the development of a tight-binding, orthogonal, synthetically versatile, and informationally interfaced nucleic acid platform for programming molecular interactions, with implications for in vivo molecular assembly and computing. The system consists of three molecular entities: the right-handed and left-handed conformers and a nonhelical domain. The first two are orthogonal to each other in recognition, while the third is capable of binding to both, providing a means for interfacing the two conformers as well as the natural nucleic acid biopolymers (i.e., DNA and RNA). The three molecular entities are prepared from the same monomeric chemical scaffold, with the exception of the stereochemistry or lack thereof at the γ-backbone that determines if the corresponding oligo adopts a right-handed or left-handed helix, or a nonhelical motif. These conformers hybridize to each other with exquisite affinity, sequence selectivity, and level of orthogonality. Recognition modules as short as five nucleotides in length are capable of organizing molecular assembly.
Collapse
Affiliation(s)
- Iulia Sacui
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Wei-Che Hsieh
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Arunava Manna
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Bichismita Sahu
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Danith H Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
15
|
Plöger TA, von Kiedrowski G. A self-replicating peptide nucleic acid. Org Biomol Chem 2015; 12:6908-14. [PMID: 25065957 DOI: 10.1039/c4ob01168f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While the non-enzymatic ligation and template-directed synthesis of peptide nucleic acids (PNA) have been reported since 1995, a case of self-replication of PNA has not been achieved yet. Here, we present evidence for autocatalytic feedback in a template directed synthesis of a self-complementary hexa-PNA from two trimeric building blocks. The course of the reaction was monitored in the presence of increasing initial concentrations of the product by RP-HPLC. Kinetic modeling with the SimFit program revealed parabolic growth characteristics. The observed template effect, as well as the rate of ligation, was significantly influenced by nucleophilic catalysts, pH value, and uncharged co-solvents. Systematic optimization of the reaction conditions allowed us to increase the autocatalytic efficiency of the system by two orders of magnitude. Our findings contribute to the hypothesis that PNA may have served as a primordial genetic molecule and was involved in a potential precursor of a RNA world.
Collapse
Affiliation(s)
- Tobias A Plöger
- Ruhr-Universität Bochum, Chair of Organic Chemistry I - Bioorganic Chemistry, 44780 Bochum, Germany.
| | | |
Collapse
|
16
|
Manna A, Rapireddy S, Sureshkumar G, Ly DH. Synthesis of optically pure γPNA monomers: a comparative study. Tetrahedron 2015; 71:3507-3514. [PMID: 30792557 PMCID: PMC6379906 DOI: 10.1016/j.tet.2015.03.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We report a systematic study examining two synthetic routes, reductive amination and Mitsunobu coupling, for preparation of chiral γ-peptide nucleic acid (γPNA) monomers and oligomers. We found that the reductive amination route is prone to epimerization, even under mild experimental conditions. The extent of epimerization could be minimized by utilizing a bulky protecting group such as PhFl; however, it is difficult to remove in the subsequent oligomer synthesis stage. On the other hand, we found that the Mitsunobu route produced optically superior products using standard carbamate protecting groups.
Collapse
Affiliation(s)
- Arunava Manna
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Srinivas Rapireddy
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Gopalsamy Sureshkumar
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400
Fifth Avenue, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
17
|
Moccia M, Adamo MFA, Saviano M. Insights on chiral, backbone modified peptide nucleic acids: Properties and biological activity. ARTIFICIAL DNA, PNA & XNA 2014; 5:e1107176. [PMID: 26752710 PMCID: PMC5329900 DOI: 10.1080/1949095x.2015.1107176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/02/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022]
Abstract
PNAs are emerging as useful synthetic devices targeting natural miRNAs. In particular 3 classes of structurally modified PNAs analogs are herein described, namely α, β and γ, which differ by their backbone modification. Their mode and binding affinity for natural nucleic acids and their use in medicinal chemistry as potential miRNA binders is discussed.
Collapse
Affiliation(s)
- Maria Moccia
- Consiglio Nazionale delle Ricerche-Institute of Cristallography; Bari, Italy
| | - Mauro F A Adamo
- Centre for Synthesis and Chemical Biology (CSCB); Department of Pharmaceutical & Medicinal Chemistry; Royal College of Surgeons in Ireland; Dublin, Ireland
| | - Michele Saviano
- Consiglio Nazionale delle Ricerche-Institute of Cristallography; Bari, Italy
| |
Collapse
|
18
|
Brea RJ, Cole CM, Devaraj NK. In situ vesicle formation by native chemical ligation. Angew Chem Int Ed Engl 2014; 53:14102-5. [PMID: 25346090 PMCID: PMC4418804 DOI: 10.1002/anie.201408538] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 01/07/2023]
Abstract
Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non-enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water-soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self-assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.
Collapse
Affiliation(s)
- Roberto J. Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| | - Christian M. Cole
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Building: Urey Hall 4120, La Jolla, CA 92093, USA, Fax: (+1) 858-534-9503, Homepage: http://devarajgroup.ucsd.edu
| |
Collapse
|
19
|
Singhal A, Bagnacani V, Corradini R, Nielsen PE. Toward peptide nucleic acid (PNA) directed peptide translation using ester based aminoacyl transfer. ACS Chem Biol 2014; 9:2612-20. [PMID: 25192412 DOI: 10.1021/cb5005349] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peptide synthesis is a fundamental feature of life. However, it still remains unclear how the contemporary translation apparatus evolved from primitive prebiotic systems and at which stage of the evolution peptide synthesis emerged. Using simple molecular architectures, in which aminoacyl transfer of phenylalanine occurs either between two ends of a PNA stem loop structure, between two PNAs in a duplex, or between two PNAs assembled on a PNA template, we show that bona fide template instructed phenylalanine transfer can take place. Thus, we have identified conditions which allow template assisted intermolecular aminoacyl transfer using simple ester aminolysis chemistry primitively analogous to the ribosomal peptidyl transferase reaction in the absence of anchimeric assistance from ribose and ribosome catalysis. These results help define the minimum chemical boundary conditions for the translation process and also give insight into the possibilities for the prebiotic emergence of RNA-independent translation.
Collapse
Affiliation(s)
| | - Valentina Bagnacani
- Department
of Chemistry, University of Parma, Parco Area Delle Scienze 17/a, 43124 Parma, Italy
| | - Roberto Corradini
- Department
of Chemistry, University of Parma, Parco Area Delle Scienze 17/a, 43124 Parma, Italy
| | | |
Collapse
|
20
|
Brea RJ, Cole CM, Devaraj NK. In Situ Vesicle Formation by Native Chemical Ligation. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Shibata A, Uzawa T, Nakashima Y, Ito M, Nakano Y, Shuto S, Ito Y, Abe H. Very rapid DNA-templated reaction for efficient signal amplification and its steady-state kinetic analysis of the turnover cycle. J Am Chem Soc 2013; 135:14172-8. [PMID: 24015779 DOI: 10.1021/ja404743m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotide-templated reactions are powerful tools for the detection of nucleic acid sequences. One of the major scientific challenges associated with this technique is the rational design of non-enzyme-mediated catalytic templated reactions capable of multiple turnovers that provide high levels of signal amplification. Herein, we report the development of a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe underwent a rapid templated reaction without any of the undesired background reactions. The fluorogenic reaction conducted in the presence of a template provided a 223-fold increase in fluorescence after 30 s compared with the nontemplated reaction. The probe provided an efficient level of signal amplification that ultimately enabled particularly sensitive levels of detection. Assuming a simple model for the templated reactions, it was possible to estimate the rate constants of the chemical reaction in the presence and in the absence of the template. From these kinetic analyses, it was possible to confirm that an efficient turnover cycle had been achieved, on the basis of the dramatic enhancement in the rate of the chemical reaction considered to be the rate-determining step. With maximized turnover efficiency, it was demonstrated that the probe could offer a high turnover number of 1500 times to enable sensitive levels of detection with a detection limit of 0.5 pM in the catalytic templated reactions.
Collapse
Affiliation(s)
- Aya Shibata
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute , 2-1, Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Synthesis of novel peptides through Ugi-ligation and their anti-cancer activities. Amino Acids 2013; 45:975-81. [PMID: 23864432 DOI: 10.1007/s00726-013-1554-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/28/2013] [Indexed: 10/26/2022]
Abstract
Proline-rich heptapeptide was synthesized and its structure was modified through Ugi-ligation. The desired pseudopeptides were separated as diastereomers and their anti-cancer activities were investigated. Their in vitro anti-cancer activities were investigated by treating HL60 (leukemia cancer cells), MCF7 (breast cancer cells) and A549 (lung cancer cells) cells with appropriate amounts of synthesized peptides. Our in vitro studies suggest that compounds 11a-b, 11i-j, and 11e had little or no effect on cancer cells viabilities.
Collapse
|
23
|
Wang T, Pfisterer A, Kuan SL, Wu Y, Dumele O, Lamla M, Müllen K, Weil T. Cross-conjugation of DNA, proteins and peptides via a pH switch. Chem Sci 2013. [DOI: 10.1039/c3sc22015j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
24
|
Sugiyama T, Kittaka A. Chiral peptide nucleic acids with a substituent in the N-(2-aminoethy)glycine backbone. Molecules 2012; 18:287-310. [PMID: 23271467 PMCID: PMC6269907 DOI: 10.3390/molecules18010287] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 11/16/2022] Open
Abstract
A peptide nucleic acid (PNA) is a synthetic nucleic acid mimic in which the sugar-phosphate backbone is replaced by a peptide backbone. PNAs hybridize to complementary DNA and RNA with higher affinity and superior sequence selectivity compared to DNA. PNAs are resistant to nucleases and proteases and have a low affinity for proteins. These properties make PNAs an attractive agent for biological and medical applications. To improve the antisense and antigene properties of PNAs, many backbone modifications of PNAs have been explored under the concept of preorganization. This review focuses on chiral PNAs bearing a substituent in the N-(2-aminoethyl)glycine backbone. Syntheses, properties, and applications of chiral PNAs are described.
Collapse
Affiliation(s)
- Toru Sugiyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-3-5465-8743
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo 173-8605, Japan; E-Mail:
| |
Collapse
|
25
|
Hemantha HP, Narendra N, Sureshbabu VV. Total chemical synthesis of polypeptides and proteins: chemistry of ligation techniques and beyond. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Bol'shakov O, Kovacs J, Chahar M, Ha K, Khelashvili L, Katritzky AR. S- toN-Acyl transfer inS-acylcysteine isopeptides via 9-, 10-, 12-, and 13-membered cyclic transition states. J Pept Sci 2012; 18:704-9. [DOI: 10.1002/psc.2438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Oleg Bol'shakov
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Judit Kovacs
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Mamta Chahar
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Khanh Ha
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | - Levan Khelashvili
- Center for Heterocyclic Compounds, Department of Chemistry; University of Florida; Gainesville; FL; 32611-7200; USA
| | | |
Collapse
|
27
|
Mitra R, Ganesh KN. Aminomethylene peptide nucleic acid (am-PNA): synthesis, regio-/stereospecific DNA binding, and differential cell uptake of (α/γ,R/S)am-PNA analogues. J Org Chem 2012; 77:5696-704. [PMID: 22676429 DOI: 10.1021/jo300860f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inherently chiral, cationic am-PNAs having pendant aminomethylene groups at α(R/S) or γ(S) sites on PNA backbone have been synthesized. The modified PNAs are shown to stabilize duplexes with complementary cDNA in a regio- and stereo-preferred manner with γ(S)-am PNA superior to α(R/S)-am PNAs and α(R)-am PNA better than the α(S) isomer. The enhanced stabilization of am-PNA:DNA duplexes is accompanied by a greater discrimination of mismatched bases. This seems to be a combined result of both electrostatic interactions and conformational preorganization of backbone favoring the cDNA binding. The am-PNAs are demonstrated to effectively traverse the cell membrane, localize in the nucleus of HeLa cells, and exhibit low toxicity to cells.
Collapse
Affiliation(s)
- Roopa Mitra
- Organic Chemistry Division, National Chemical Laboratory, Pune 411008, India
| | | |
Collapse
|
28
|
Umezawa T, Sueda M, Kamura T, Kawahara T, Han X, Okino T, Matsuda F. Synthesis and biological activity of kalkitoxin and its analogues. J Org Chem 2011; 77:357-70. [PMID: 22111947 DOI: 10.1021/jo201951s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Total syntheses of kalkitoxin, isolated from the Caribbean Lyngbya majuscula, and its analogues, 3-epi-, 7-epi-, 8-epi-, 10-epi-, 10-nor-, and 16-nor-kalkitoxin, were achieved via oxazolidinone-based diastereoselective 1,4-addition reaction of a methyl group and efficient TiCl(4)-mediated thiazoline ring formation as the key steps. The biological activities of synthetic kalkitoxin and its analogues were evaluated with brine shrimp.
Collapse
Affiliation(s)
- Taiki Umezawa
- Division of Environmental Materials Science, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Sahu B, Sacui I, Rapireddy S, Zanotti KJ, Bahal R, Armitage BA, Ly DH. Synthesis and characterization of conformationally preorganized, (R)-diethylene glycol-containing γ-peptide nucleic acids with superior hybridization properties and water solubility. J Org Chem 2011; 76:5614-27. [PMID: 21619025 PMCID: PMC3175361 DOI: 10.1021/jo200482d] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Developed in the early 1990s, peptide nucleic acid (PNA) has emerged as a promising class of nucleic acid mimic because of its strong binding affinity and sequence selectivity toward DNA and RNA and resistance to enzymatic degradation by proteases and nucleases; however, the main drawbacks, as compared to other classes of oligonucleotides, are water solubility and biocompatibility. Herein we show that installation of a relatively small, hydrophilic (R)-diethylene glycol ("miniPEG", R-MP) unit at the γ-backbone transforms a randomly folded PNA into a right-handed helix. Synthesis of optically pure (R-MP)γPNA monomers is described, which can be accomplished in a few simple steps from a commercially available and relatively cheap Boc-l-serine. Once synthesized, (R-MP)γPNA oligomers are preorganized into a right-handed helix, hybridize to DNA and RNA with greater affinity and sequence selectivity, and are more water soluble and less aggregating than the parental PNA oligomers. The results presented herein have important implications for the future design and application of PNA in biology, biotechnology, and medicine, as well as in other disciplines, including drug discovery and molecular engineering.
Collapse
Affiliation(s)
- Bichismita Sahu
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Iulia Sacui
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Srinivas Rapireddy
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Kimberly J. Zanotti
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Raman Bahal
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
31
|
Crawford MJ, Rapireddy S, Bahal R, Sacui I, Ly DH. Effect of Steric Constraint at the γ-Backbone Position on the Conformations and Hybridization Properties of PNAs. J Nucleic Acids 2011; 2011:652702. [PMID: 21776375 PMCID: PMC3138043 DOI: 10.4061/2011/652702] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/06/2011] [Accepted: 03/14/2011] [Indexed: 11/30/2022] Open
Abstract
Conformationally preorganized peptide nucleic acids (PNAs) have been synthesized through backbone modifications at the γ-position, where R = alanine, valine, isoleucine, and phenylalanine side chains. The effects of these side-chains on the conformations and hybridization properties of PNAs were determined using a combination of CD and UV-Vis spectroscopic techniques. Our results show that the γ-position can accommodate varying degrees of sterically hindered side-chains, reaffirming the bimodal function of PNAs as the true hybrids of “peptides” and “nucleic acids.”
Collapse
Affiliation(s)
- Matthew J Crawford
- Department of Chemistry, Center for Nucleic Acids Science and Technology (CNAST), Mellon Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
32
|
Scheibe C, Bujotzek A, Dernedde J, Weber M, Seitz O. DNA-programmed spatial screening of carbohydrate–lectin interactions. Chem Sci 2011. [DOI: 10.1039/c0sc00565g] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Mitra R, Ganesh KN. PNAs grafted with (α/γ, R/S)-aminomethylene pendants: regio and stereo specific effects on DNA binding and improved cell uptake. Chem Commun (Camb) 2010; 47:1198-200. [PMID: 21107493 DOI: 10.1039/c0cc03988h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PNAs grafted with cationic aminomethylene (am) pendants on the backbone at the glycyl (α) or ethylenediamine (γ) segments show regio (α/γ) and stereochemistry (R/S) dependent binding with complementary DNA. These are efficiently taken up by cells, with γ(S-am) aeg-PNA being the best in all properties.
Collapse
Affiliation(s)
- Roopa Mitra
- Division of Organic Chemistry, National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
34
|
Yeh JI, Shivachev B, Rapireddy S, Crawford MJ, Gil RR, Du S, Madrid M, Ly DH. Crystal structure of chiral gammaPNA with complementary DNA strand: insights into the stability and specificity of recognition and conformational preorganization. J Am Chem Soc 2010; 132:10717-27. [PMID: 20681704 PMCID: PMC2929025 DOI: 10.1021/ja907225d] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have determined the structure of a PNA-DNA duplex to 1.7 A resolution by multiple-wavelength anomalous diffraction phasing method on a zinc derivative. This structure represents the first high-resolution 3D view of a hybrid duplex containing a contiguous chiral PNA strand with complete gamma-backbone modification ("gammaPNA"). Unlike the achiral counterpart, which adopts a random-fold, this particular gammaPNA is already preorganized into a right-handed helix as a single strand. The new structure illustrates the unique characteristics of this modified PNA, possessing conformational flexibility while maintaining sufficient structural integrity to ultimately adopt the preferred P-helical conformation upon hybridization with DNA. The unusual structural adaptability found in the gammaPNA strand is crucial for enabling the accommodation of backbone modifications while constraining conformational states. In conjunction with NMR analysis characterizing the structures and substructures of the individual building blocks, these results provide unprecedented insights into how this new class of chiral gammaPNA is preorganized and stabilized, before and after hybridization with a cDNA strand. Such knowledge is crucial for the future design and development of PNA for applications in biology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Joanne I. Yeh
- Department of Structural Biology, University of Pittsburgh Medical School 1036 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260
| | - Boris Shivachev
- Department of Structural Biology, University of Pittsburgh Medical School 1036 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260
| | - Srinivas Rapireddy
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Mellon Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Matthew J. Crawford
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Mellon Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Roberto R. Gil
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Mellon Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Shoucheng Du
- Department of Structural Biology, University of Pittsburgh Medical School 1036 BST3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260
| | - Marcela Madrid
- Pittsburgh Supercomputing Center, Pittsburgh, Pennsylvania 15213
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Mellon Institute, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
35
|
Zheng JS, Cui HK, Fang GM, Xi WX, Liu L. Chemical protein synthesis by kinetically controlled ligation of peptide O-esters. Chembiochem 2010; 11:511-5. [PMID: 20157912 DOI: 10.1002/cbic.200900789] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ji-Shen Zheng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
36
|
He W, Crawford MJ, Rapireddy S, Madrid M, Gil RR, Ly DH, Achim C. The structure of a gamma-modified peptide nucleic acid duplex. MOLECULAR BIOSYSTEMS 2010; 6:1619-29. [PMID: 20386807 DOI: 10.1039/c002254c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents the results of an NMR spectroscopy and distance-restrained molecular dynamics (MD) study of a gamma-methylated, palindromic, 8-base pair peptide nucleic acid (gamma-PNA) duplex. The goal of this study was to examine the impact of the gamma-backbone modification on the structure of the PNA duplex. The 2D NMR information involving the backbone methyl group, especially the NOEs between the methyl protons and those of the amide and methylene groups of the backbone, led to distance restraints useful in the elucidation of the structure of the backbone of gamma-PNA. Integration of the NOE peaks resulted in 138 inter-proton distance restraints, which were used in ten independent simulated annealing followed by 2 ns restrained MD runs. These simulations led to the conclusion that the gamma-PNA duplex adopts a general P-form helical structure similar to that observed for non-modified PNA but with a smaller base pair rise, which is an A-like helical feature, and a slight helical bending towards the major groove (PDB ID ). These properties of the gamma-PNA duplex may be induced by the gamma-methyl group. A similar effect of the methyl group was revealed by a previous NMR study of single stranded gamma-PNA [A. Dragulescu-Andrasi, S. Rapireddy, B. M. Frezza, C. Gayathri, R. R. Gil and D. H. Ly, J. Am. Chem. Soc., 2006, 128, 10258-10267]. It appears that the steric constraint exerted by the gamma-methyl on the backbone orientation is relatively independent of the base pairing and stacking and thus is likely to manifest when other substituents are introduced at the gamma-position of the PNA.
Collapse
Affiliation(s)
- Wei He
- Department of Chemistry, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Shibata A, Abe H, Ito M, Kondo Y, Shimizu S, Aikawa K, Ito Y. DNA templated nucleophilic aromatic substitution reactions for fluorogenic sensing of oligonucleotides. Chem Commun (Camb) 2009:6586-8. [PMID: 19865658 DOI: 10.1039/b912896d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an S(N)Ar reaction-triggered fluorescence probe using a new fluorogenic compound derivatized from 7-aminocoumarin for oligonucleotides detection.
Collapse
Affiliation(s)
- Aya Shibata
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1, Hirosawa, Wako-Shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Convergent synthesis of oligomers of triazole-linked DNA analogue (TLDNA) in solution phase. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.04.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Furukawa K, Abe H, Hibino K, Sako Y, Tsuneda S, Ito Y. Reduction-Triggered Fluorescent Amplification Probe for the Detection of Endogenous RNAs in Living Human Cells. Bioconjug Chem 2009; 20:1026-36. [DOI: 10.1021/bc900040t] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kazuhiro Furukawa
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroshi Abe
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kayo Hibino
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasushi Sako
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Satoshi Tsuneda
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, Cellar Informatics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama, 351-0198 Japan, and Department of Life Science and Medical Bio-Science, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
40
|
Sahu B, Chenna V, Lathrop KL, Thomas SM, Zon G, Livak KJ, Ly DH. Synthesis of conformationally preorganized and cell-permeable guanidine-based gamma-peptide nucleic acids (gammaGPNAs). J Org Chem 2009; 74:1509-16. [PMID: 19161276 PMCID: PMC2650244 DOI: 10.1021/jo802211n] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general method for preparing optically pure guanidine-based gamma-peptide nucleic acid (gammaGPNA) monomers for all four natural nucleobases (A, C, G, and T) is described. These second-generation gammaGPNAs differ from the first-generation GPNAs in that the guanidinium group is installed at the gamma- instead of the alpha-position of the N-(2-aminoethyl)glycine backbone unit. This positional switch enables GPNAs to be synthesized from relatively cheap L- as opposed to D-amino acids. Unlike their alpha-predecessors, which are randomly folded, gammaGPNAs prepared from L-amino acids are preorganized into a right-handed helix and bind to DNA and RNA with exceptionally high affinity and sequence selectivity and are readily taken up by mammalian cells.
Collapse
Affiliation(s)
- Bichismita Sahu
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Venugopal Chenna
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| | - Kira L. Lathrop
- Eye and Ear Institute, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, Pennsylvania 15261
| | - Sufi M. Thomas
- Department of Otolaryngology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213 and
| | - Gerald Zon
- Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404
| | - Kenneth J. Livak
- Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404
| | - Danith H. Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
41
|
Hackenberger C, Schwarzer D. Chemoselektive Ligations- und Modifikationsstrategien für Peptide und Proteine. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801313] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Hackenberger C, Schwarzer D. Chemoselective Ligation and Modification Strategies for Peptides and Proteins. Angew Chem Int Ed Engl 2008; 47:10030-74. [DOI: 10.1002/anie.200801313] [Citation(s) in RCA: 660] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Synthesis of novel Gn-RH analogues using Ugi-4MCR. Bioorg Med Chem Lett 2008; 19:887-90. [PMID: 19103486 DOI: 10.1016/j.bmcl.2008.11.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 11/21/2022]
Abstract
An efficient method for the synthesis of some Gn-RH analogues based on Ugi reaction has been developed. Four-component reaction of N- and C-terminus peptides, aromatic aldehydes and isocyanides affords novel Gn-RH analogues derived from triptorelin and gonadorelin. All of the products were purified using preparative HPLC and the structures were assigned according to MALDI-mass spectrometry data.
Collapse
|
44
|
Pensato S, Domenico D'Andrea L, Pedone C, Romanelli A. New Synthetic Route to γ-Mercaptomethyl PNA Monomers. SYNTHETIC COMMUN 2008. [DOI: 10.1080/00397910802219122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Soccorsa Pensato
- a University of Naples “Federico II,” Department of Biological Science , School of Biotechnological Sciences , Napoli, Italy
| | | | - Carlo Pedone
- a University of Naples “Federico II,” Department of Biological Science , School of Biotechnological Sciences , Napoli, Italy
| | - Alessandra Romanelli
- a University of Naples “Federico II,” Department of Biological Science , School of Biotechnological Sciences , Napoli, Italy
| |
Collapse
|
45
|
Sforza S, Tedeschi T, Corradini R, Marchelli R. Induction of Helical Handedness and DNA Binding Properties of Peptide Nucleic Acids (PNAs) with Two Stereogenic Centres. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700644] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Pensato S, Saviano M, Romanelli A. New peptide nucleic acid analogues: synthesis and applications. Expert Opin Biol Ther 2007; 7:1219-32. [PMID: 17696820 DOI: 10.1517/14712598.7.8.1219] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptide nucleic acids are oligonucleotide mimics characterised by high chemical and enzymatic stability, high specificity and affinity toward complementary DNA/RNA. The lack of charge and polar groups in the backbone decrease their solubility in aqueous environment and their ability to cross cell membranes, reducing their performance in in vivo applications. To improve solubility, increase affinity and specificity of binding and to control recognition between nucleic acids, several analogues bearing modifications on the nucleobase, nucleobase-backbone linker and on the backbone were synthesised. This paper describes the synthesis and applications of Peptide nucleic acid analogues and discusses the potential of analogues for which no application is reported.
Collapse
Affiliation(s)
- Soccorsa Pensato
- Università degli Studi di Napoli Federico II, Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Napoli, Italy
| | | | | |
Collapse
|
47
|
Dragulescu-Andrasi A, Rapireddy S, Frezza BM, Gayathri C, Gil RR, Ly DH. A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure. J Am Chem Soc 2007; 128:10258-67. [PMID: 16881656 DOI: 10.1021/ja0625576] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide nucleic acid (PNA) is a synthetic analogue of DNA and RNA, developed more than a decade ago in which the naturally occurring sugar phosphate backbone has been replaced by the N-(2-aminoethyl) glycine units. Unlike DNA or RNA in the unhybridized state (single strand) which can adopt a helical structure through base-stacking, although highly flexible, PNA does not have a well-defined conformational folding in solution. Herein, we show that a simple backbone modification at the gamma-position of the N-(2-aminoethyl) glycine unit can transform a randomly folded PNA into a helical structure. Spectroscopic studies showed that helical induction occurs in the C- to N-terminal direction and is sterically driven. This finding has important implication not only on the future design of nucleic acid mimics but also on the design of novel materials, where molecular organization and efficient electronic coupling are desired.
Collapse
Affiliation(s)
- Anca Dragulescu-Andrasi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
48
|
Dose C, Seitz O. Single nucleotide specific detection of DNA by native chemical ligation of fluorescence labeled PNA-probes. Bioorg Med Chem 2007; 16:65-77. [PMID: 17499998 DOI: 10.1016/j.bmc.2007.04.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/05/2007] [Accepted: 04/27/2007] [Indexed: 10/23/2022]
Abstract
DNA-directed chemical ligations provide the opportunity to diagnose DNA sequences with very high sequence specificity. Fluorescent labels have been attached to reactive probes to enable the homogeneous detection of DNA and RNA. However, it has frequently been found that the attachment of fluorescent labels results in decreases of ligation fidelity. Herein we describe the development of a fluorogenic ligation reaction that provides for 10(2)-fold to perfect sequence selectivity. The reaction is based on the isocysteine-mediated native chemical PNA ligation. It is shown that DNA-induced rate accelerations of approximately 43.000-fold can be obtained through subtle variations of the ligation conditions. PNA-thioesters and isocysteine-PNA conjugates were labeled with FAM and TMR fluorophores, respectively. For gaining rapid synthetic access, a convenient on-resin labeling approach was developed. A new PNA monomer featuring an Alloc-protected lysine side chain was synthesized and coupled in solid-phase PNA synthesis. In the event of a ligation reaction the two fluorophores are brought into proximity. It is shown that fluorescence resonance energy transfer provides a positive fluorescence signal which is specific for product formation rather than for loss of starting materials. Single base mutations can be detected within minutes and with very high sequence selectivity at optimized conditions.
Collapse
Affiliation(s)
- Christian Dose
- Institut für Chemie der Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | |
Collapse
|
49
|
Englund EA, Appella DH. Gamma-substituted peptide nucleic acids constructed from L-lysine are a versatile scaffold for multifunctional display. Angew Chem Int Ed Engl 2007; 46:1414-8. [PMID: 17133633 DOI: 10.1002/anie.200603483] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Englund E, Appella D. γ-Substituted Peptide Nucleic Acids Constructed fromL-Lysine are a Versatile Scaffold for Multifunctional Display. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200603483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|