1
|
Scarpi-Luttenauer M, Galentino K, Orvain C, Fluck A, Cecchini M, Mellitzer G, Gaiddon C, Mobian P. Platinum(II) and ruthenium(II) coordination complexes equipped with an anchoring site for binding the protein kinase enzyme pockets: synthesis, molecular docking and biological assays. Dalton Trans 2025; 54:8270-8286. [PMID: 40243115 DOI: 10.1039/d4dt02984d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
To mimic the structural aspects of staurosporine, a potent but unspecific kinase inhibitor, several coordination compounds based on two readily available diimine ligands containing hydrogen bonding donor/acceptor sites (NH-CO fragment) have been designed and synthesized. These complexes are constructed around Ru(II) and Pt(II) metal centers. A total of 9 compounds, named Ru(1)-(5) and Pt(1)-(4), were obtained through straightforward synthetic approaches. The cytotoxicity of the compounds was evaluated on AGS gastric cancer cells (GC) through standard MTT assays. All ruthenium and platinum complexes with low toxicity, i.e.Ru(3), Ru(5), Pt(3) and Pt(4), were docked in the ATP binding pocket of two protein kinases (S6K1 and MST2). The docking scores highlighted a preferred affinity of Ru(5) for the MST2 binding pocket, whereas the platinum compounds are predicted to bind stronger to the S6K1 binding site. Inhibitory activity of the metal complexes on the MST2 and S6K1 signaling pathways was evaluated by analyzing via western blot experiments the phosphorylation state of YAP, a downstream component of the Hippo pathway and the protein expression of S6 and its phosphorylated analogue p-S6. A clear difference of behavior between the Pt(II) and the Ru(II) complexes depending on the type of kinase was observed.
Collapse
Affiliation(s)
| | - Katia Galentino
- Université de Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| | | | - Audrey Fluck
- Université de Strasbourg, CNRS, UMR 7140, F-67000 Strasbourg, France.
| | - Marco Cecchini
- Université de Strasbourg, CNRS, UMR 7177, F-67000 Strasbourg, France
| | | | | | - Pierre Mobian
- Université de Strasbourg, CNRS, UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
2
|
Nešić MD, Dučić T, Gemović B, Senćanski M, Algarra M, Gonçalves M, Stepić M, Popović IA, Kapuran Đ, Petković M. Prediction of Protein Targets in Ovarian Cancer Using a Ru-Complex and Carbon Dot Drug Delivery Therapeutic Nanosystems: A Bioinformatics and µ-FTIR Spectroscopy Approach. Pharmaceutics 2024; 16:997. [PMID: 39204341 PMCID: PMC11359177 DOI: 10.3390/pharmaceutics16080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
We predicted the protein therapeutic targets specific to a Ru-based potential drug and its combination with pristine and N-doped carbon dot drug delivery systems, denoted as RuCN/CDs and RuCN/N-CDs. Synchrotron-based FTIR microspectroscopy (µFTIR) in addition to bioinformatics data on drug structures and protein sequences were applied to assess changes in the protein secondary structure of A2780 cancer cells. µFTIR revealed the moieties of the target proteins' secondary structure changes only after the treatment with RuCN and RuCN/N-CDs. A higher content of α-helices and a lower content of β-sheets appeared in A2780 cells after RuCN treatment. Treatment with RuCN/N-CDs caused a substantial increase in parallel β-sheet numbers, random coil content, and tyrosine residue numbers. The results obtained suggest that the mitochondrion-related proteins NDUFA1 and NDUFB5 are affected by RuCN either via overexpression or stabilisation of helical structures. RuCN/N-CDs either induce overexpression of the β-sheet-rich protein NDUFS1 and affect its random coil structure or interact and stabilise its structure via hydrogen bonding between -NH2 groups from N-CDs with protein C=O groups and -OH groups of serine, threonine, and tyrosine residues. The N-CD nanocarrier tunes this drug's action by directing it toward a specific protein target, changing this drug's coordination ability and inducing changes in the protein's secondary structures and function.
Collapse
Affiliation(s)
- Maja D. Nešić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Tanja Dučić
- ALBA-CELLS Synchrotron, 08290 Cerdanyola del Vallès, Spain
| | - Branislava Gemović
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (B.G.); (M.S.)
| | - Milan Senćanski
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (B.G.); (M.S.)
| | - Manuel Algarra
- INAMAT2—Institute for Advanced Materials and Mathematics, Department of Science, Public University of Navarre, Campus de Arrosadia, 31006 Pamplona, Spain;
| | - Mara Gonçalves
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Milutin Stepić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Iva A. Popović
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Đorđe Kapuran
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Marijana Petković
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| |
Collapse
|
3
|
Zengin Kurt B, Öztürk Civelek D, Çakmak EB, Kolcuoğlu Y, Şenol H, Sağlık Özkan BN, Dag A, Benkli K. Synthesis of Sorafenib-Ruthenium Complexes, Investigation of Biological Activities and Applications in Drug Delivery Systems as an Anticancer Agent. J Med Chem 2024; 67:4463-4482. [PMID: 38471014 PMCID: PMC10983010 DOI: 10.1021/acs.jmedchem.3c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Sorafenib, a multiple kinase inhibitor, is widely used as a first-line treatment for hepatocellular carcinoma. However, there is a need for more effective alternatives when sorafenib proves insufficient. In this study, we aimed to design a structure that surpasses sorafenib's efficacy, leading us to synthesize sorafenib-ruthenium complexes for the first time and investigate their properties. Our results indicate that the sorafenib-ruthenium complexes exhibit superior epidermal growth factor receptor (EGFR) inhibition compared to sorafenib alone. Interestingly, among these complexes, Ru3S demonstrated high activity against various cancer cell lines including sorafenib-resistant HepG2 cells while exhibiting significantly lower cytotoxicity than sorafenib in healthy cell lines. Further evaluation of cell cycle, cell apoptosis, and antiangiogenic effects, molecular docking, and molecular dynamics studies revealed that Ru3S holds great potential as a drug candidate. Additionally, when free Ru3S was encapsulated into polymeric micelles M1, enhanced cytotoxicity on HepG2 cells was observed. Collectively, these findings position Ru3S as a promising candidate for EGFR inhibition and warrant further exploration for drug development purposes.
Collapse
Affiliation(s)
- Belma Zengin Kurt
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | - Dilek Öztürk Civelek
- Faculty
of Pharmacy, Department of Pharmacology, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | | | - Yakup Kolcuoğlu
- Faculty
of Science, Department of Chemistry, Karadeniz
Technical University, 61080 Trabzon, Türkiye
| | - Halil Şenol
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | | | - Aydan Dag
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, 34093 Istanbul, Türkiye
| | - Kadriye Benkli
- Badakbas
Pharmacy, Altintepe str.
Koknarli 6/C, Maltepe, 34840 Istanbul, Türkiye
| |
Collapse
|
4
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Vollgraff T, Sundermeyer J. Highly Selective Ortho-Directed Dicarboxylation of Cyclopentadiene by Methylcarbonates and CO 2 or COS - First Insight into Co-ordination Chemistry of New Ambident Ligands. Chemistry 2021; 27:8517-8527. [PMID: 33851453 PMCID: PMC8252773 DOI: 10.1002/chem.202100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/25/2022]
Abstract
This research presents the highly regioselective syntheses of 1,2-dicarboxylated cyclopentadienide salts [Cat]2 [C5 H3 (CO2 )2 H] by reaction of a variety of organic cation methylcarbonate salts [Cat]OCO2 Me (Cat=NR4 + , PR4 + , Im+ ) with cyclopentadiene (CpH) or by simply reacting organic cation cyclopentadienides Cat[Cp] (Cat=NR4 + , PR4 + , Im+ ) with CO2 . One characteristic feature of these dianionic ligands is the acidic proton delocalized in an intramolecular hydrogen bridge (IHB) between the two carboxyl groups, as studied by 1 H NMR spectroscopy and XRD analyses. The reaction cannot be stopped after the first carboxylation. Therefore, we propose a Kolbe-Schmitt phenol-carboxylation related mechanism where the acidic proton of the monocarboxylic acid intermediate plays an ortho-directing and CO2 activating role for the second kinetically accelerated CO2 addition step exclusively in ortho position. The same and related thiocarboxylates [Cat]2 [C5 H3 (COS)2 H] are obtained by reaction of COS with Cat[Cp] (Cat=NR4 + , PR4 + , Im+ ). A preliminary study on [Cat]2 [C5 H3 (CO2 )2 H] reveals, that its soft and hard coordination sites can selectively be addressed by soft Lewis acids (Mo0 , Ru2+ ) and hard Lewis acids (Al3+ , La3+ ).
Collapse
Affiliation(s)
- Tobias Vollgraff
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW)Philipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
6
|
Machado JF, Correia JDG, Morais TS. Emerging Molecular Receptors for the Specific-Target Delivery of Ruthenium and Gold Complexes into Cancer Cells. Molecules 2021; 26:3153. [PMID: 34070457 PMCID: PMC8197480 DOI: 10.3390/molecules26113153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Cisplatin and derivatives are highly effective in the treatment of a wide range of cancer types; however, these metallodrugs display low selectivity, leading to severe side effects. Additionally, their administration often results in the development of chemoresistance, which ultimately results in therapeutic failure. This scenario triggered the study of other transition metals with innovative pharmacological profiles as alternatives to platinum, ruthenium- (e.g., KP1339 and NAMI-A) and gold-based (e.g., Auranofin) complexes being among the most advanced in terms of clinical evaluation. Concerning the importance of improving the in vivo selectivity of metal complexes and the current relevance of ruthenium and gold metals, this review article aims to survey the main research efforts made in the past few years toward the design and biological evaluation of target-specific ruthenium and gold complexes. Herein, we give an overview of the inorganic and organometallic molecules conjugated to different biomolecules for targeting membrane proteins, namely cell adhesion molecules, G-protein coupled receptors, and growth factor receptors. Complexes that recognize the progesterone receptors or other targets involved in metabolic pathways such as glucose transporters are discussed as well. Finally, we describe some complexes aimed at recognizing cell organelles or compartments, mitochondria being the most explored. The few complexes addressing targeted gene therapy are also presented and discussed.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - Tânia S. Morais
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| |
Collapse
|
7
|
Alsaeedi MS, Babgi BA, Abdellattif MH, Jedidi A, Humphrey MG, Hussien MA. DNA-Binding Capabilities and Anticancer Activities of Ruthenium(II) Cymene Complexes with (Poly)cyclic Aromatic Diamine Ligands. Molecules 2020; 26:molecules26010076. [PMID: 33375289 PMCID: PMC7795900 DOI: 10.3390/molecules26010076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Ruthenium(II) arene complexes of the general formula [RuCl(η6-p-cymene)(diamine)]PF6 (diamine = 1,2-diaminobenzene (1), 2,3-diaminonaphthalene (2), 9,10-diaminophenanthrene (3), 2,3-diaminophenazine (4), and 1,2-diaminoanthraquinone (5) were synthesized. Chloro/aqua exchange was evaluated experimentally for complexes 1 and 2. The exchange process was investigated theoretically for all complexes, revealing relatively fast exchange with no significant influence from the polycyclic aromatic diamines. The calf thymus DNA (CT-DNA) binding of the complexes increased dramatically upon extending the aromatic component of the diamines, as evaluated by changes in absorption spectra upon titration with different concentrations of CT-DNA. An intercalation binding mode was established for the complexes using the increase in the relative viscosity of the CT-DNA following addition of complexes 1 and 2. Theoretical studies showed strong preference for replacement of water by guanine for all the complexes, and relatively strong Ru-Nguanine bonds. The plane of the aromatic systems can assume angles that support non-classical interactions with the DNA and covalent binding, leading to higher binding affinities. The ruthenium arenes illustrated in this study have promising anticancer activities, with the half maximal inhibitory concentration (IC50) values comparable to or better than cisplatin against three cell lines.
Collapse
Affiliation(s)
- Mona S. Alsaeedi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.S.A.); (A.J.); (M.A.H.)
- Department of Chemistry, College of Science, Taif University, Al-Haweiah, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Bandar A. Babgi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.S.A.); (A.J.); (M.A.H.)
- Correspondence: ; Tel.: +966-555563702
| | - Magda H. Abdellattif
- Chemistry Department, Deanship of Scientific Research, College of Sciences, Taif University, Al-Haweiah, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Abdesslem Jedidi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.S.A.); (A.J.); (M.A.H.)
| | - Mark G. Humphrey
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia;
| | - Mostafa A. Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.S.A.); (A.J.); (M.A.H.)
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
| |
Collapse
|
8
|
Maikoo S, Makayane D, Booysen IN, Ngubane P, Khathi A. Ruthenium compounds as potential therapeutic agents for type 2 diabetes mellitus. Eur J Med Chem 2020; 213:113064. [PMID: 33279292 DOI: 10.1016/j.ejmech.2020.113064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder which is globally responsible for millions of fatalities per year. Management of T2DM typically involves orally administered anti-hyperglycaemic drugs in conjunction with dietary interventions. However, the current conventional therapy seems to be largely ineffective as patients continue to develop complications such as cardiovascular diseases, blindness and kidney failure. Existing alternative treatment entails the administration of organic therapeutic pharmaceuticals, but these drugs have various side effects such as nausea, headaches, weight gain, respiratory and liver damage. Transition metal complexes have shown promise as anti-diabetic agents owing to their diverse mechanisms of activity. In particular, selected ruthenium compounds have exhibited intriguing biological behaviours as Protein Tyrosine Phosphatase (PTP) 1B and Glycogen Synthase Kinase 3 (GSK-3) inhibitors, as well as aggregation suppressants for the human islet amyloid polypeptide (hIAPP). This focussed review serves as a survey on studies pertaining to ruthenium compounds as metallo-drugs for T2DM. Herein, we also provide perspectives on directions to fully elucidate in vivo functions of this class of potential metallopharmaceuticals. More specifically, there is still a need to investigate the pharmacokinetics of ruthenium drugs in order to establish their biodistribution patterns which will affirm whether these metal complexes are substitutionally inert or serve as pro-drugs. In addition, embedding oral-administered ruthenium complexes into bio-compatible polymers can be a prospective means of enhancing stability during drug delivery.
Collapse
Affiliation(s)
- Sanam Maikoo
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Daniel Makayane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin Noel Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Kellert M, Sárosi I, Rajaratnam R, Meggers E, Lönnecke P, Hey-Hawkins E. Ruthenacarborane-Phenanthroline Derivatives as Potential Metallodrugs. Molecules 2020; 25:molecules25102322. [PMID: 32429279 PMCID: PMC7287719 DOI: 10.3390/molecules25102322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 01/28/2023] Open
Abstract
Ruthenium-based complexes have received much interest as potential metallodrugs. In this work, four RuII complexes bearing a dicarbollide moiety, a carbonyl ligand, and a phenanthroline-based ligand were synthesized and characterized, including single crystal diffraction analysis of compounds 2, 4, and 5 and an observed side product SP1. Complexes 2-5 are air and moisture stable under ambient conditions. They show excellent solubility in organic solvents, but low solubility in water.
Collapse
Affiliation(s)
- Martin Kellert
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
| | - Imola Sárosi
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
| | - Rajathees Rajaratnam
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany; (R.R.); (E.M.)
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany; (R.R.); (E.M.)
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (M.K.); (I.S.); (P.L.)
- Correspondence: ; Tel.: +49-341-97-36151
| |
Collapse
|
10
|
Chen Q, Wang Y, Shi S, Li K, Zhang L, Gao J. Insights into the Interaction Mechanisms of the Proviral Integration Site of Moloney Murine Leukemia Virus (Pim) Kinases with Pan-Pim Inhibitors PIM447 and AZD1208: A Molecular Dynamics Simulation and MM/GBSA Calculation Study. Int J Mol Sci 2019; 20:E5410. [PMID: 31671637 PMCID: PMC6862308 DOI: 10.3390/ijms20215410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Based on the up-regulation of the proviral integration site of the Moloney murine leukemia virus (Pim) kinase family (Pim1, 2, and 3) observed in several types of leukemias and lymphomas, the development of pan-Pim inhibitors is an attractive therapeutic strategy. While only PIM447 and AZD1208 have entered the clinical stages. To elucidate the interaction mechanisms of three Pim kinases with PIM447 and AZD1208, six Pim/ligand systems were studied by homology modeling, molecular docking, molecular dynamics (MD) simulation and molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy calculation. The residues of the top group (Leu44, Val52, Ala65, Lys67, and Leu120 in Pim1) dominated the pan-Pim inhibitors binding to Pim kinases. The residues of the bottom group (Gln127, Asp128, and Leu174 in Pim1) were crucial for Pims/PIM447 systems, while the contributions of these residues were decreased sharply for Pims/AZD1208 systems. It is likely that the more potent pan-Pim inhibitors should be bound strongly to the top and bottom groups. The residues of the left, right and loop groups were located in the loop regions of the binding pocket, however, the flexibility of these regions triggered the protein interacting with diverse pan-Pim inhibitors efficiently. We hope this work can provide valuable information for the design of novel pan-Pim inhibitors in the future.
Collapse
Affiliation(s)
- Qingqing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Shanshan Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Kaihang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
11
|
Ruthenium(II) Complexes as Potential Apoptosis Inducers in Cancer Therapy. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2019-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The compound cis-diamminedichloroplatinum(II) (cisplatin) is the most widely used anticancer drug, but due to its serious side effects (including gastrointestinal symptoms, renal tubular injury, neuromuscular complications, and ototoxicity), clinical applications of cisplatin are limited. Therefore, these limitations have provided an encouragement for further research into other transition metal complexes, with an aim to overcome the disadvantages related with cisplatin therapy. In the search for effective complexes that can be targeted against tumor cells, many research groups synthesized various ruthenium( II) complexes with different ligands. Also, newly synthesized ruthenium(II) complexes showed selective anticancer activity against different types of cancer cells. Activity of ruthenium(II) complexes in some cases was even higher than that of cisplatin against the same cells. Precise mechanism of action of ruthenium(II) complexes is not fully understood. The different examples mentioned in this review showed that ruthenium(II) complexes decreased viability of cancer cells by induction of apoptosis and/or by cell cycle arrest which implies their different mechanism of action against different types of cancer cells.
Collapse
|
12
|
Arrouchi H, Lakhlili W, Ibrahimi A. A review on PIM kinases in tumors. Bioinformation 2019; 15:40-45. [PMID: 31359998 PMCID: PMC6651028 DOI: 10.6026/97320630015040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 01/13/2023] Open
Abstract
The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases is serine/threonine kinases that promote growth and survival in multiple cell types, implicated in the pathogenesis of various diseases. Over expression of Pim-1 experimentally leads to tumor formation in mice, whereas there is no observable phenotype concerning the complete knockout of the protein. When it is over expressed it may lead to cancer development by three major ways; by inhibiting apoptosis, by promoting cell proliferation and also through promoting genomic instability. Expression in normal tissues is nearly undetectable. Recent improvements in the development of novel inhibitors of PIMs have been reviewed. Significant progress in the design of PIMs inhibitors, in which it displays selectivity versus other kinases, has been achieved within the last years. However, the development of isoform-selective PIM inhibitors is still an open task. As Pim-1 possesses oncogenic functions and is over expressed in various kinds of cancer diseases, its inhibition provides a new option in cancer therapy. A PubMed literature search was performed to review the currently available data on Pim-1 expression, regulation, and targets; its implication in different types of cancer and its impact on prognosis is described. Consequently, designing new inhibitors of PIMs is now a very active area of research in academic and industrial laboratories.
Collapse
Affiliation(s)
- Housna Arrouchi
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| | - Wiame Lakhlili
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| | - Azeddine Ibrahimi
- Laboratory of Biotechnology (MedBiotech),Rabat Medical and Pharmacy School,Mohammed V University in Rabat, Rabat,Morocco
| |
Collapse
|
13
|
Aradhyula BPR, Mawnai IL, Kollipara MR. Pyrazole Based Mono- and Di-Substituted Half Sandwich d 6
Platinum Group Metal Complexes: Synthesis and Spectral Characterization. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201800292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Ibaniewkor L. Mawnai
- Center for Advanced Studies in Chemistry; North-Eastern Hill University; 793 022 Shillong India
| | - Mohan Rao Kollipara
- Center for Advanced Studies in Chemistry; North-Eastern Hill University; 793 022 Shillong India
| |
Collapse
|
14
|
Muñoz-Osses M, Godoy F, Fierro A, Gómez A, Metzler-Nolte N. New organometallic imines of rhenium(i) as potential ligands of GSK-3β: synthesis, characterization and biological studies. Dalton Trans 2018; 47:1233-1242. [PMID: 29299575 DOI: 10.1039/c7dt04344a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Substituted amino-piperazine derivatives were synthesized and used as precursors for the preparation of a series of new organometallic Re(i) imine complexes with the general formula [(η5-C5H4CH[double bond, length as m-dash]N-(CH2)5-Pz-R)Re(CO)3] (Pz-R: -alkyl or aryl piperazine). The piperazine-based ligands were designed to be potential inhibitors of GSK-3β kinase. All the ligands and complexes were fully characterized and evaluated against the HT-29 and PT-45 cancer cell lines, in which GSK-3β plays a crucial role. In this context, we carried out biological evaluation using the MTT colorimetric assay. In terms of structure activity relationship, our findings indicated improved biological activity when aromaticity increased in the organic ligands (3d). In addition, the presence of the rhenium fragment in the imines (5a-d) leads to better activity with IC50 values in the range of 25-100 μM. In addition, our experimental studies were complemented by computational studies, where the volume and electrostatic surface of the organic ligands and organometallic compounds as well as their binding to the kinase protein are calculated.
Collapse
Affiliation(s)
- Michelle Muñoz-Osses
- Laboratory of Organometallic Chemistry, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Avda. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago, Chile.
| | | | | | | | | |
Collapse
|
15
|
Teixeira RG, Brás AR, Côrte-Real L, Tatikonda R, Sanches A, Robalo MP, Avecilla F, Moreira T, Garcia MH, Haukka M, Preto A, Valente A. Novel ruthenium methylcyclopentadienyl complex bearing a bipyridine perfluorinated ligand shows strong activity towards colorectal cancer cells. Eur J Med Chem 2018; 143:503-514. [DOI: 10.1016/j.ejmech.2017.11.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023]
|
16
|
Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Chen ZS. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev 2017; 46:5771-5804. [PMID: 28654103 PMCID: PMC5624840 DOI: 10.1039/c7cs00195a] [Citation(s) in RCA: 749] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Collapse
Affiliation(s)
- Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Tracking antitumor metallodrugs: promising agents with the Ru(II)- and Fe(II)-cyclopentadienyl scaffolds. Future Med Chem 2016; 8:527-44. [PMID: 27096164 DOI: 10.4155/fmc.16.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Research on the field of metal complexes for the treatment of cancer diseases has attracted increasing interest due to the urgency in finding more efficient and selective treatments. Owing to their wide structural diversity, organometallic complexes appear as potential alternatives to the design of new anticancer candidates. Herein, we review recent progress in our work toward the development of new drugs based on Ru(II)- and Fe(II)-cyclopentadienyl scaffolds. Their design and chemical properties are reviewed and correlated with their biological effects, in particular the key role that coligands play in the overall behavior of the complex.
Collapse
|
18
|
Jia WG, Zhang H, Zhang T, Xie D, Ling S, Sheng EH. Half-Sandwich Ruthenium Complexes with Schiff-Base Ligands: Syntheses, Characterization, and Catalytic Activities for the Reduction of Nitroarenes. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00933] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wei-Guo Jia
- College of Chemistry and
Materials Science, Center for Nano Science and Technology, The Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Hui Zhang
- College of Chemistry and
Materials Science, Center for Nano Science and Technology, The Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Tai Zhang
- College of Chemistry and
Materials Science, Center for Nano Science and Technology, The Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Dong Xie
- College of Chemistry and
Materials Science, Center for Nano Science and Technology, The Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Shuo Ling
- College of Chemistry and
Materials Science, Center for Nano Science and Technology, The Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - En-Hong Sheng
- College of Chemistry and
Materials Science, Center for Nano Science and Technology, The Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
19
|
Adeniyi AA, Ajibade PA. Development of ruthenium-based complexes as anticancer agents: toward a rational design of alternative receptor targets. REV INORG CHEM 2016. [DOI: 10.1515/revic-2015-0008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractIn the search for novel anticancer agents, the development of metal-based complexes that could serve as alternatives to cisplatin and its derivatives has received considerable attention in recent years. This becomes necessary because, at present, cisplatin and its derivatives are the only coordination complexes being used as anticancer agents in spite of inherent serious side effects and their limitation against metastasized platinum-resistant cancer cells. Although many metal ions have been considered as possible alternatives to cisplatin, the most promising are ruthenium (Ru) complexes and two Ru compounds, KP1019 and NAMI-A, which are currently in phase II clinical trials. The major obstacle against the rational design of these compounds is the fact that their mode of action in relation to their therapeutic activities and selectivity is not fully understood. There is an urgent need to develop novel metal-based anticancer agents, especially Ru-based compounds, with known mechanism of actions, probable targets, and pharmacodynamic activity. In this paper, we review the current efforts in developing metal-based anticancer agents based on promising Ru complexes and the development of compounds targeting receptors and then examine the future prospects.
Collapse
|
20
|
|
21
|
Targeting protein kinase and DNA molecules by diimine–phthalate complexes in antiproliferative activity. Int J Biol Macromol 2015; 79:837-55. [DOI: 10.1016/j.ijbiomac.2015.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 02/08/2023]
|
22
|
Mollin S, Riedel R, Harms K, Meggers E. Octahedral rhodium(III) complexes as kinase inhibitors: Control of the relative stereochemistry with acyclic tridentate ligands. J Inorg Biochem 2015; 148:11-21. [DOI: 10.1016/j.jinorgbio.2015.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 01/29/2023]
|
23
|
Abstract
Ruthenium compounds are highly regarded as potential drug candidates. The compounds offer the potential of reduced toxicity and can be tolerated in vivo. The various oxidation states, different mechanism of action, and the ligand substitution kinetics of ruthenium compounds give them advantages over platinum-based complexes, thereby making them suitable for use in biological applications. Several studies have focused attention on the interaction between active ruthenium complexes and their possible biological targets. In this paper, we review several ruthenium compounds which reportedly possess promising cytotoxic profiles: from the discovery of highly active compounds imidazolium [trans-tetrachloro(dmso)(imidazole)ruthenate(III)] (NAMI-A), indazolium [trans-tetrachlorobis(1H-indazole)ruthenate(III)](KP1019), and sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (NKP-1339) to the recent work based on both inorganic and organometallic ruthenium(II) compounds. Half-sandwich organometallic ruthenium complexes offer the opportunity of derivatization at the arene moiety, while the three remaining coordination sites on the metal centre can be functionalised with various coordination groups of various monoligands. It is clear from the review that these mononuclear ruthenium(II) compounds represent a strongly emerging field of research that will soon culminate into several ruthenium based antitumor agents.
Collapse
|
24
|
Abstract
Pim oncogenes are highly expressed in many types of hematological and solid cancers. Pim kinases regulate the network of signaling pathways that are critical for tumorigenesis and development, making Pim kinases the attractive drug targets. Currently, two approaches have been employed in designing Pim kinase inhibitors: ATP-mimetics and non-ATP mimetics; but all target the ATP-binding pocket and are ATP-competitive. In this review, we summarize the current progress in understanding the Pim-related structure and biology, and provide insights into the binding modes of some prototypical Pim-1 inhibitors. The challenges as well as opportunities are highlighted for development of Pim kinase inhibitors as potential anticancer agents.
Collapse
|
25
|
Anstaett P, Gasser G. Organometallic Complexes as Enzyme Inhibitors: A Conceptual Overview. BIOORGANOMETALLIC CHEMISTRY 2014:1-42. [DOI: 10.1002/9783527673438.ch01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
26
|
Traven K, Sinreih M, Stojan J, Seršen S, Kljun J, Bezenšek J, Stanovnik B, Turel I, Rižner TL. Ruthenium complexes as inhibitors of the aldo-keto reductases AKR1C1-1C3. Chem Biol Interact 2014; 234:349-59. [PMID: 25446855 DOI: 10.1016/j.cbi.2014.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/22/2014] [Accepted: 11/07/2014] [Indexed: 11/16/2022]
Abstract
The human aldo-keto reductases (AKRs) from the 1C subfamily are important targets for the development of new drugs. In this study, we have investigated the possible interactions between the recombinant AKR1C enzymes AKR1C1-AKR1C3 and ruthenium(II) complexes; in particular, we were interested in the potential inhibitory actions. Five novel ruthenium complexes (1a, 1b, 2a, 2b, 2c), two precursor ruthenium compounds (P1, P2), and three ligands (a, b, c) were prepared and included in this study. Two different types of novel ruthenium(II) complexes were synthesized. First, bearing the sulphur macrocycle [9]aneS3, S-bonded dimethylsulphoxide (dmso-S), and an N,N-donor ligand, with the general formula of [Ru([9]aneS3)(dmso)(N,N-ligand)](PF6)2 (1a, 1b), and second, with the general formula of [(η(6)-p-cymene)RuCl(N,N-ligand)]Cl (2a, 2b, 2c). All of these synthesized compounds were characterized by high-resolution NMR spectroscopy, X-ray crystallography (compounds a, b, c, 1a, 1b) and other standard physicochemical methods. To evaluate the potential inhibitory actions of these compounds on the AKR1C enzymes, we followed enzymatically catalyzed oxidation of the substrate 1-acenaphthenol by NAD(+) in the absence and presence of various micromolar concentrations of the individual compounds. Among 10 compounds, one ruthenium complex (2b) and two precursor ruthenium compounds (P1, P2) inhibited all three AKR1C enzymes, and one ruthenium complex (2a) inhibited only AKR1C3. Ligands a, b and c revealed no inhibition of the AKR1C enzymes. All four of the active compounds showed multiple binding with the AKR1C enzymes that was characterized by an initial instantaneous inhibition followed by a slow quasi-irreversible step. To the best of our knowledge, this is the first study that has examined interactions between these AKR1C enzymes and ruthenium(II) complexes.
Collapse
Affiliation(s)
- Katja Traven
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Maša Sinreih
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Sara Seršen
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Jure Bezenšek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Branko Stanovnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia.
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Qin J, Rajaratnam R, Feng L, Salami J, Barber-Rotenberg JS, Domsic J, Reyes-Uribe P, Liu H, Dang W, Berger SL, Villanueva J, Meggers E, Marmorstein R. Development of organometallic S6K1 inhibitors. J Med Chem 2014; 58:305-14. [PMID: 25356520 PMCID: PMC4289024 DOI: 10.1021/jm5011868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Aberrant activation of S6 kinase
1 (S6K1) is found in many diseases,
including diabetes, aging, and cancer. We developed ATP competitive
organometallic kinase inhibitors, EM5 and FL772, which are inspired
by the structure of the pan-kinase inhibitor staurosporine, to specifically
inhibit S6K1 using a strategy previously used to target other kinases.
Biochemical data demonstrate that EM5 and FL772 inhibit the kinase
with IC50 value in the low nanomolar range at 100 μM
ATP and that the more potent FL772 compound has a greater than 100-fold
specificity over S6K2. The crystal structures of S6K1 bound to staurosporine,
EM5, and FL772 reveal that the EM5 and FL772 inhibitors bind in the
ATP binding pocket and make S6K1-specific contacts, resulting in changes
to the p-loop, αC helix, and αD helix when compared to
the staurosporine-bound structure. Cellular data reveal that FL772
is able to inhibit S6K phosphorylation in yeast cells. Together, these
studies demonstrate that potent, selective, and cell permeable S6K1
inhibitors can be prepared and provide a scaffold for future development
of S6K inhibitors with possible therapeutic applications.
Collapse
Affiliation(s)
- Jie Qin
- The Wistar Institute , 3601 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Martin EK, Pagano N, Sherlock ME, Harms K, Meggers E. Synthesis and anticancer activity of ruthenium half-sandwich complexes comprising combined metal centrochirality and planar chirality. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Ruthenium naphthalene complexes with a carboxy-substituted cyclopentadienyl ligand. MENDELEEV COMMUNICATIONS 2014. [DOI: 10.1016/j.mencom.2014.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Florindo P, Marques IJ, Nunes CD, Fernandes AC. Synthesis, characterization and cytotoxicity of cyclopentadienyl ruthenium(II) complexes containing carbohydrate-derived ligands. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2013.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Abstract
Class I PI3Ks are composed of four catalytic subunit variants (p110α, p110β, p110δ and p110γ). The PI3K pathway is among the most frequently activated pathways in many diseases, and has emerged as an attractive target for drug development, in particular for the treatment of many human cancers including breast, prostate, ovarian, gastric, colon and hepatocellular cancers. One of the challenges in the discovery of drugs that target kinases is designing small-molecule inhibitors that are sufficiently selective to minimize off-target activity and reduce the risk of potential toxicity. This review explores the current landscape of PI3K-selective inhibitor development and highlights recent advances in achieving selectivity for PI3Ks over other protein kinases, with an emphasis on available structural information.
Collapse
|
32
|
Synthesis of amino acid esters of the ruthenium naphthalene complex [(C5Me4CH2OH)Ru(C10H8)]+. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Morais TS, Santos FC, Jorge TF, Côrte-Real L, Madeira PJA, Marques F, Robalo MP, Matos A, Santos I, Garcia MH. New water-soluble ruthenium(II) cytotoxic complex: biological activity and cellular distribution. J Inorg Biochem 2013; 130:1-14. [PMID: 24145065 DOI: 10.1016/j.jinorgbio.2013.09.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022]
Abstract
A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=η(5)-cyclopentadienyl, mTPPMS=diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy=2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent.
Collapse
Affiliation(s)
- Tânia S Morais
- Centro de Ciências Moleculares e Materiais, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Prakash K, Nagarajan R. Synthesis of solid state fluorescent quino[2,3-b]carbazoles via copper(II) triflate-catalyzed heteroannulation: application to detection of TNT. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Morais TS, Santos F, Côrte-Real L, Marques F, Robalo MP, Madeira PJA, Garcia MH. Biological activity and cellular uptake of [Ru(η5-C5H5)(PPh3)(Me2bpy)][CF3SO3] complex. J Inorg Biochem 2013; 122:8-17. [PMID: 23416310 DOI: 10.1016/j.jinorgbio.2013.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 01/08/2023]
Abstract
Anticancer activity of the new [Ru(η(5)-C5H5)(PPh3)(Me2bpy)][CF3SO3] (Me2bpy = 4,4'-dimethyl-2,2'-bipyridine) complex was evaluated in vitro against several human cancer cell lines, namely A2780, A2780CisR, HT29, MCF7, MDAMB231 and PC3. Remarkably, the IC50 values, placed in the nanomolar and sub-micromolar range, largely exceeded the activity of cisplatin. Binding to human serum albumin, either HSA (human serum albumin) or HSA(faf) (fatty acid-free human serum albumin) does not affect the complex activity. Fluorescence studies revealed that the present ruthenium complex strongly quench the intrinsic fluorescence of albumin. Cell death by the [Ru(η(5)-C5H5)(PPh3)(Me2bpy)][CF3SO3] complex was reduced in the presence of endocytosis modulators and at low temperature, suggesting an energy-dependent mechanism consistent with endocytosis. On the whole, the biological activity evaluated herein suggests that the complex could be a promising anticancer agent.
Collapse
Affiliation(s)
- Tânia S Morais
- Centro de Ciências Moleculares e Materiais, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
36
|
Kilpin KJ, Dyson PJ. Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem Sci 2013. [DOI: 10.1039/c3sc22349c] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
37
|
Morais TS, Silva TJ, Marques F, Robalo MP, Avecilla F, Madeira PJA, Mendes PJ, Santos I, Garcia MH. Synthesis of organometallic ruthenium(II) complexes with strong activity against several human cancer cell lines. J Inorg Biochem 2012; 114:65-74. [DOI: 10.1016/j.jinorgbio.2012.04.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 11/15/2022]
|
38
|
A flexible-protein molecular docking study of the binding of ruthenium complex compounds to PIM1, GSK-3β, and CDK2/Cyclin A protein kinases. J Mol Model 2012; 19:371-82. [PMID: 22926267 DOI: 10.1007/s00894-012-1555-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
We employ ensemble docking simulations to characterize the interactions of two enantiomeric forms of a Ru-complex compound (1-R and 1-S) with three protein kinases, namely PIM1, GSK-3β, and CDK2/cyclin A. We show that our ensemble docking computational protocol adequately models the structural features of these interactions and discriminates between competing conformational clusters of ligand-bound protein structures. Using the determined X-ray crystal structure of PIM1 complexed to the compound 1-R as a control, we discuss the importance of including the protein flexibility inherent in the ensemble docking protocol, for the accuracy of the structure prediction of the bound state. A comparison of our ensemble docking results suggests that PIM1 and GSK-3β bind the two enantiomers in similar fashion, through two primary binding modes: conformation I, which is very similar to the conformation presented in the existing PIM1/compound 1-R crystal structure; conformation II, which represents a 180° flip about an axis through the NH group of the pyridocarbazole moiety, relative to conformation I. In contrast, the binding of the enantiomers to CDK2 is found to have a different structural profile including a suggested bound conformation, which lacks the conserved hydrogen bond between the kinase and the ligand (i.e., ATP, staurosporine, Ru-complex compound). The top scoring conformation of the inhibitor bound to CDK2 is not present among the top-scoring conformations of the inhibitor bound to either PIM1 or GSK-3β and vice-versa. Collectively, our results help provide atomic-level insights into inhibitor selectivity among the three kinases.
Collapse
|
39
|
Schmidt AW, Reddy KR, Knölker HJ. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem Rev 2012; 112:3193-328. [PMID: 22480243 DOI: 10.1021/cr200447s] [Citation(s) in RCA: 942] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Arndt W. Schmidt
- Department Chemie, Technische Universität Dresden,
Bergstrasse 66, 01069 Dresden, Germany
| | - Kethiri R. Reddy
- Department Chemie, Technische Universität Dresden,
Bergstrasse 66, 01069 Dresden, Germany
| | - Hans-Joachim Knölker
- Department Chemie, Technische Universität Dresden,
Bergstrasse 66, 01069 Dresden, Germany
| |
Collapse
|
40
|
Abstract
INTRODUCTION Inhibition of protein kinases has become a standard of modern clinical oncology. PIM1 belongs to a novel class of serine/threonine kinases with distinct molecular and biochemical features regulating various oncogenic pathways, for example hypoxia response, cell cycle progression and apoptosis resistance. PIM1 is overexpressed in human cancer diseases and has been associated with metastasis and overall treatment response; in experimental models, inhibition of PIM1 suppressed cell proliferation and migration, induced apoptotic cell death and synergized with other chemotherapeutic agents. AREAS COVERED A PubMed literature search was performed to review the currently available data on PIM1 expression, regulation and targets; its implication in different types of cancer and its impact on prognosis are described. We present ATP-competitive PIM1 inhibitors and the state of the art of PIM1 inhibitor design. Finally, we highlight the development of the unusual class of highly selective and potent organometallic PIM1 inhibitors. EXPERT OPINION As PIM1 possesses oncogenic functions and is overexpressed in various kinds of cancer diseases, its inhibition provides a new option in cancer therapy. Based on the ability of highly selective organometallic PIM1 inhibitors, promising in vivo applicability is expected.
Collapse
Affiliation(s)
- Anna Lena Merkel
- Philipps University Marburg, Institute for Surgical Research, Baldingerstrasse, Marburg, 35033, Germany
| | | | | |
Collapse
|
41
|
Abstract
The PIM genes represent a family of proto-oncogenes that encode three different serine/threonine protein kinases (PIM1, PIM2 and PIM3) with essential roles in the regulation of signal transduction cascades, which promote cell survival, proliferation and drug resistance. PIM kinases are overexpressed in several hematopoietic tumors and support in vitro and in vivo malignant cell growth and survival, through cell cycle regulation and inhibition of apoptosis. PIM kinases do not have an identified regulatory domain, which means that these proteins are constitutively active once transcribed. They appear to be critical downstream effectors of important oncoproteins and, when overexpressed, can mediate drug resistance to available agents, such as rapamycin. Recent crystallography studies reveal that, unlike other kinases, they possess a hinge region, which creates a unique binding pocket for ATP, offering a target for an increasing number of potent small-molecule PIM kinase inhibitors. Preclinical studies in models of various hematologic cancers indicate that these novel agents show promising activity and some of them are currently being evaluated in a clinical setting. In this review, we profile the PIM kinases as targets for therapeutics in hematologic malignancies.
Collapse
Affiliation(s)
- Yesid Alvarado
- Department of Hematology/Oncology, Cancer Therapy & Research Center, The University of Texas Health Science Center San Antonio, 7979 Wurzbach Road, MC8232, San Antonio, 78229, TX, USA
| | | | | |
Collapse
|
42
|
Dieckmann S, Riedel R, Harms K, Meggers E. Pyridocarbazole-Rhodium(III) Complexes as Protein Kinase Inhibitors. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101175] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Ren JX, Li LL, Zheng RL, Xie HZ, Cao ZX, Feng S, Pan YL, Chen X, Wei YQ, Yang SY. Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking. J Chem Inf Model 2011; 51:1364-75. [PMID: 21618971 DOI: 10.1021/ci100464b] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this investigation, we describe the discovery of novel potent Pim-1 inhibitors by employing a proposed hierarchical multistage virtual screening (VS) approach, which is based on support vector machine-based (SVM-based VS or SB-VS), pharmacophore-based VS (PB-VS), and docking-based VS (DB-VS) methods. In this approach, the three VS methods are applied in an increasing order of complexity so that the first filter (SB-VS) is fast and simple, while successive ones (PB-VS and DB-VS) are more time-consuming but are applied only to a small subset of the entire database. Evaluation of this approach indicates that it can be used to screen a large chemical library rapidly with a high hit rate and a high enrichment factor. This approach was then applied to screen several large chemical libraries, including PubChem, Specs, and Enamine as well as an in-house database. From the final hits, 47 compounds were selected for further in vitro Pim-1 inhibitory assay, and 15 compounds show nanomolar level or low micromolar inhibition potency against Pim-1. In particular, four of them were found to have new scaffolds which have potential for the chemical development of Pim-1 inhibitors.
Collapse
Affiliation(s)
- Ji-Xia Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Quirante J, Dubar F, González A, Lopez C, Cascante M, Cortés R, Forfar I, Pradines B, Biot C. Ferrocene–indole hybrids for cancer and malaria therapy. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2010.11.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Abstract
The highly conserved proto-oncogenic protein PIM1 is an unusual serine or threonine kinase, in part because it is constitutively active. Overexpression of PIM1 experimentally leads to tumor formation in mice, while complete knockout of the protein has no observable phenotype. It appears to contribute to cancer development in three major ways when it is overexpressed; by inhibiting apoptosis, by promoting cell proliferation and by promoting genomic instability. Expression in normal tissues is nearly undetectable. However, in hematopoietic malignancies and in a variety of solid tumors, increased PIM1 expression has been shown to correlate with the stage of disease. This characteristic suggests it can serve as a useful biomarker for cancer diagnosis and prognosis. Several specific and potent inhibitors of PIM1’s kinase activity have also been shown to induce apoptotic death of cancer cells, to sensitize cancer cells to chemotherapy and to synergize with other anti-tumor agents, thus making it an attractive therapeutic target.
Collapse
Affiliation(s)
- Nancy S Magnuson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Zeping Wang
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Gang Ding
- Medical College, Shanghai Jiaotong University, Shanghai, China
| | - Raymond Reeves
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| |
Collapse
|
46
|
Pagano N, Wong EY, Breiding T, Liu H, Wilbuer A, Bregman H, Shen Q, Diamond SL, Meggers E. From imide to lactam metallo-pyridocarbazoles: distinct scaffolds for the design of selective protein kinase inhibitors. J Org Chem 2010; 74:8997-9009. [PMID: 19886617 DOI: 10.1021/jo901641k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organometallic pyridocarbazole scaffolds are investigated as protein kinase inhibitors. Whereas our previous designs employed solely a maleimide pharmacophore for achieving the two crucial canonical hydrogen bonds to the hinge region of the ATP binding site, we have now extended our investigations to include the related lactam metallo-pyridocarbazoles. The synthetic access of the two regioisomeric lactam pyridocarbazoles is described, and the distinct biological properties of the two lactam scaffolds are revealed by employing a ruthenium half sandwich complex as a model system, resulting in organometallic lead structures for the inhibition of the protein kinases TrkA and CLK2. These new lactam metallo-pyridocarbazoles expand our existing molecular toolbox and assist toward the generation of metal complex scaffolds as lead structures for the design of selective inhibitors for numerous kinases of the human kinome.
Collapse
Affiliation(s)
- Nicholas Pagano
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010; 95:1004-15. [PMID: 20145274 DOI: 10.3324/haematol.2009.017079] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The identification as cooperating targets of Proviral Integrations of Moloney virus in murine lymphomas suggested early on that PIM serine/threonine kinases play an important role in cancer biology. Whereas elevated levels of PIM1 and PIM2 were mostly found in hematologic malignancies and prostate cancer, increased PIM3 expression was observed in different solid tumors. PIM kinases are constitutively active and their activity supports in vitro and in vivo tumor cell growth and survival through modification of an increasing number of common as well as isoform-specific substrates including several cell cycle regulators and apoptosis mediators. PIM1 but not PIM2 seems also to mediate homing and migration of normal and malignant hematopoietic cells by regulating chemokine receptor surface expression. Knockdown experiments by RNA interference or dominant-negative acting mutants suggested that PIM kinases are important for maintenance of a transformed phenotype and therefore potential therapeutic targets. Determination of the protein structure facilitated identification of an increasing number of potent small molecule PIM kinase inhibitors with in vitro and in vivo anticancer activity. Ongoing efforts aim to identify isoform-specific PIM inhibitors that would not only help to dissect the kinase function but hopefully also provide targeted therapeutics. Here, we summarize the current knowledge about the role of PIM serine/threonine kinases for the pathogenesis and therapy of hematologic malignancies and solid cancers, and we highlight structural principles and recent progress on small molecule PIM kinase inhibitors that are on their way into first clinical trials.
Collapse
Affiliation(s)
- Laurent Brault
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Mulcahy SP, Meggers E. Organometallics as Structural Scaffolds for Enzyme Inhibitor Design. TOP ORGANOMETAL CHEM 2010. [DOI: 10.1007/978-3-642-13185-1_6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Tao ZF, Hasvold LA, Leverson JD, Han EK, Guan R, Johnson EF, Stoll VS, Stewart KD, Stamper G, Soni N, Bouska JJ, Luo Y, Sowin TJ, Lin NH, Giranda VS, Rosenberg SH, Penning TD. Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent, highly selective, and orally bioavailable inhibitors of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM) kinases. J Med Chem 2009; 52:6621-36. [PMID: 19842661 DOI: 10.1021/jm900943h] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pim-1, Pim-2, and Pim-3 are a family of serine/threonine kinases which have been found to be overexpressed in a variety of hematopoietic malignancies and solid tumors. Benzothienopyrimidinones were discovered as a novel class of Pim inhibitors that potently inhibit all three Pim kinases with subnanomolar to low single-digit nanomolar K(i) values and exhibit excellent selectivity against a panel of diverse kinases. Protein crystal structures of the bound Pim-1 complexes of benzothienopyrimidinones 3b (PDB code 3JYA), 6e (PDB code 3JYO), and 12b (PDB code 3JXW) were determined and used to guide SAR studies. Multiple compounds exhibited potent antiproliferative activity in K562 and MV4-11 cells with submicromolar EC(50) values. For example, compound 14j inhibited the growth of K562 cells with an EC(50) value of 1.7 muM and showed K(i) values of 2, 3, and 0.5 nM against Pim-1, Pim-2, and Pim-3, respectively. These novel Pim kinase inhibitors efficiently interrupted the phosphorylation of Bad in both K562 and LnCaP-Bad cell lines, indicating that their potent biological activities are mechanism-based. The pharmacokinetics of 14j was studied in CD-1 mice and shown to exhibit bioavailability of 76% after oral dosing. ADME profiling of 14j suggested a long half-life in both human and mouse liver microsomes, good permeability, modest protein binding, and no CYP inhibition below 20 muM concentration.
Collapse
Affiliation(s)
- Zhi-Fu Tao
- Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Deslandes S, Chassaing S, Delfourne E. Marine pyrrolocarbazoles and analogues: synthesis and kinase inhibition. Mar Drugs 2009; 7:754-86. [PMID: 20098609 PMCID: PMC2810226 DOI: 10.3390/md7040754] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/18/2009] [Accepted: 11/27/2009] [Indexed: 12/15/2022] Open
Abstract
Granulatimide and isogranulatimide are alkaloids obtained from marine sources which have been shown to inhibit cell-cycle G2-checkpoint, targeting more particularly checkpoint 1 kinase (Chk1). At a structural level, they possess a characteristic pyrrolocarbazole framework also shared by the well-known rebeccamycin and staurosporine microbial metabolites which have been described to inhibit topoisomerase I and diverse kinases, respectively. This review reports precisely on the synthesis and kinase inhibitory activities of pyrrolocarbazole-based analogues of granulatimide.
Collapse
Affiliation(s)
- Sébastien Deslandes
- Laboratoire de Synthèse et Physicochimie de Molécules d’Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex 9, France; E-Mails:
(S.D.);
(S.C.)
| | - Stefan Chassaing
- Laboratoire de Synthèse et Physicochimie de Molécules d’Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex 9, France; E-Mails:
(S.D.);
(S.C.)
| | - Evelyne Delfourne
- Laboratoire de Synthèse et Physicochimie de Molécules d’Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cédex 9, France; E-Mails:
(S.D.);
(S.C.)
| |
Collapse
|