1
|
Nabi N, Alam J, Riaz U. Synthesis, Characterization, and In Silico Studies of Cysteine Modified Polyaniline Against Bovine Serum and Human Serum Albumin. LUMINESCENCE 2025; 40:e70184. [PMID: 40309912 DOI: 10.1002/bio.70184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 03/21/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
In this paper, oligomers of polyaniline (PANI) modified with cysteine (Cys) were synthesized via using different mole ratios of aniline: Cysteine (80:20, 50:50, and 20:80) followed by ultrasound-assisted polymerization of PANI. The structure and morphological properties of Cys-PANI were confirmed from FTIR and scanning electron microscopy (SEM). Fluorescence quenching of bovine serum albumin (BSA) and human serum albumin (HSA) was carried out using different concentrations of the Cys-PANI oligomers. There was a slight difference in the static quenching of HSA as compared to BSA, which was attributed to the different structures of the two serum albumins. The quenching rate constant was found to increase with cysteine content in the polymer, showing that the loading of higher amount of Cys increased the solubility of the Cys-PANI oligomers. This led to electrostatic attraction between the water molecules shielding the serum albumins and the Cys-PANI oligomers. The docking studies confirmed the binding to be hydrogen bonding, π-alkyl and π-amide stacked interactions. The binding energy of the Cys-PANI oligomers with mole ratio 50:50 and 20:80 was found to be better as compared to the Cys-PANI oligomer. The binding energy values showed that these polymers could potentially be used in fabricating protein sensors.
Collapse
Affiliation(s)
- Nuzhat Nabi
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Javed Alam
- King Abdullah Institute of Nanotechnology, Riyadh, Saudi Arabia
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
- Department of Chemistry and Biochemistry, North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Sivagnanam S, Mahato P, Das P. An overview on the development of different optical sensing platforms for adenosine triphosphate (ATP) recognition. Org Biomol Chem 2023; 21:3942-3983. [PMID: 37128980 DOI: 10.1039/d3ob00209h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adenosine triphosphate (ATP), one of the biological anions, plays a crucial role in several biological processes including energy transduction, cellular respiration, enzyme catalysis and signaling. ATP is a bioactive phosphate molecule, recognized as an important extracellular signaling agent. Apart from serving as a universal energy currency for various cellular events, ATP is also considered a factor responsible for numerous physiological activities. It regulates cellular metabolism by breaking phosphoanhydride bonds. Several diseases have been reported widely based on the levels and behavior of ATP. The variation of ATP concentration usually causes a foreseeable impact on mitochondrial physiological function. Mitochondrial dysfunction is responsible for the occurrence of many severe diseases such as angiocardiopathy, malignant tumors and Parkinson's disease. Therefore, there is high demand for developing a sensitive, fast-responsive, nontoxic and versatile detection platform for the detection of ATP. To this end, considerable efforts have been employed by several research groups throughout the world to develop specific and sensitive detection platforms to recognize ATP. Although a repertoire of optical chemosensors (both colorimetric and fluorescent) for ATP has been developed, many of them are not arrayed appropriately. Therefore, in this present review, we focused on the design and sensing strategy of some chemosensors including metal-free, metal-based, sequential sensors, aptamer-based sensors, nanoparticle-based sensors etc. for ATP recognition via diverse binding mechanisms.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| | - Prasenjit Mahato
- Department of Chemistry, Raghunathpur College, Sidho-Kanho-Birsha University, Purulia, West Bengal-723133, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| |
Collapse
|
3
|
Colorimetric Detection of ATP by a Chlorophosphonazo III -based Mg 2+ Complex in Aqueous Solution via Indicator Displacement Approach. J Fluoresc 2023; 33:255-260. [PMID: 36401733 DOI: 10.1007/s10895-022-03063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/27/2022] [Indexed: 11/20/2022]
Abstract
A simple and effective colorimetric detection of adenosine 5-triphosphate (ATP) in 100% aqueous media was developed based on an indicator displacement approach (IDA). A commercially available dye, Chlorophosphonazo III (CPA), was utilized as the indicator and the ATP detection was achieved using the complex of CPA with Mg2+ in a 2:1 stoichiometric ratio (CPA2-Mg2+) through the regeneration of CPA by the binding of ATP to Mg2+. Upon addition of a series of anions to the CPA2-Mg2+ complex, only the appearance of the solution of the complex with ATP exhibited a color change from blue to purple which can be detected by the naked eye. Moreover, the ATP recognition was not hampered by the presence of other anions. Hence, CPA2-Mg2+ is efficient in ATP highly selective and sensitive colorimetric detection in 100% aqueous media.
Collapse
|
4
|
Biological Evaluation of Platinum(II) Sulfonamido Complexes: Synthesis, Characterization, Cytotoxicity, and Biological Imaging. Bioinorg Chem Appl 2022; 2022:7821284. [PMID: 36147773 PMCID: PMC9489406 DOI: 10.1155/2022/7821284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/11/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Platinum-based compounds are actively used in clinical trials as anticancer agents. In this study, two novel platinum complexes, (C1 = [PtCl2(N(SO2quin)dpa)], C2 = [PtCl2(N(SO2azobenz)dpa)]) containing quinoline and azobenzene appended dipicolylamine sulfonamide ligands were synthesized in good yield. The singlet attributable to methylene CH2 protons of the ligands of C1 and C2 appears as two doublets in 1H NMR spectra, which confirms the presence of magnetically nonequivalent protons upon coordination to platinum. Structural data of N(SO2quin)dpa (L1), N(SO2azobenz)dpa (L2) and PtCl2(N(SO2quin)dpa) confirmed the formation of the desired compounds. Time-dependent density functional theory calculations suggested that the excitation of L1 show quin-unit-based π⟶π∗ excitations (i.e., ligand-centered charge transfer, LC), while C1 shows the metal-ligand-to-ligand charge-transfer (MLLCT) character. L1 displays intense fluorescence from the 1LC excited state, while C1 gives phosphorescence from the 3LC state. Mammalian cell toxicity of ligands and complexes was assessed with NCI–H292 nonsmall-cell lung cancer cells. Further, C1 and C2 showed significantly low IC50 values compared with N(SO2azobenz)dpa and PtCl2(N(SO2quin)dpa). Fluorescence imaging data of both ligands and complexes revealed the potential fluorescence activity of these compounds for biological imaging. All four compounds are promising novel candidates that can be further investigated on their usage as potential anticancer agents and cancer cell imaging agents.
Collapse
|
5
|
Giri D, Raut SK, Behera CK, Patra SK. Diketopyrrollopyrrole anchored carbazole-alt-thiophene based Fe3+-coordinated metallopolymer for the selective recognition of ATP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Lou J, Schuster JA, Barrera FN, Best MD. ATP-Responsive Liposomes via Screening of Lipid Switches Designed to Undergo Conformational Changes upon Binding Phosphorylated Metabolites. J Am Chem Soc 2022; 144:3746-3756. [PMID: 35171601 DOI: 10.1021/jacs.2c00191] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Liposomal delivery vehicles can dramatically enhance drug transport. However, their clinical application requires enhanced control over content release at diseased sites. For this reason, triggered release strategies have been explored, although a limited toolbox of stimuli has thus far been developed. Here, we report a novel strategy for stimuli-responsive liposomes that release encapsulated contents in the presence of phosphorylated small molecules. Our formulation efforts culminated in selective cargo release driven by ATP, a universal energy source that is upregulated in diseases such as cancer. Specifically, we developed lipid switches 1a-b bearing two ZnDPA units designed to undergo substantial conformational changes upon ATP binding, thereby disrupting membrane packing and triggering the release of encapsulated contents. Dye leakage assays using the hydrophobic dye Nile red validated that ATP-driven release was selective over 11 similar phosphorylated metabolites, and release of the hydrophilic dye calcein was also achieved. Multiple alternative lipid switch structures were synthesized and studied (1c-d and 2), which provided insights into the structural features that render 1a-b selective toward ATP-driven release. Importantly, analysis of cellular delivery using fluorescence microscopy in conjunction with pharmacological ATP manipulation showed that liposome delivery was specific, as it increased upon intracellular ATP accumulation, and was inhibited by ATP downregulation. Our new approach shows strong prospects for enhancing the selectivity of release and payload delivery to diseased cells driven by metabolites such as ATP, providing an exciting new paradigm for controlled release.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jennifer A Schuster
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Zheng G, Zhao L, Yuan D, Li J, Yang G, Song D, Miao H, Shu L, Mo X, Xu X, Li L, Song X, Zhao Y. A genetically encoded fluorescent biosensor for monitoring ATP in living cells with heterobifunctional aptamers. Biosens Bioelectron 2022; 198:113827. [PMID: 34861524 DOI: 10.1016/j.bios.2021.113827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Visualizing the dynamics of ATP in living cells is key to understanding cellular energy metabolism and related diseases. However, the live-cell applications of current methods are still limited due to challenges in biological compatibility and sensitivity to pH. Herein, a novel label-free fluorescent " turn-on " biosensor for monitoring ATP in living bacterias and mammalian cells was developed. This biosensor (Broc-ATP) employed heterobifunctional aptamers to detect ATP with high sensitivity in vitro. In our system, a very useful tandem method was established by combining four Broc-ATPs with 3 × F30 three-way junction scaffold to construct an intracellular biosensor that achieves sufficient fluorescence to respond to intracellular ATP. This intracellular biosensor can be used for sensitive and specific dynamic imaging of ATP in mammalian cells. Hence, this genetically encoded biosensor provides a robust and efficient tool for the detection of intracellular ATP dynamics and 3 × F30 tandem method expands the application of heterobifunctional aptamers in mammalian cells.
Collapse
Affiliation(s)
- Guoliang Zheng
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Liang Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Deyu Yuan
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jia Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Gang Yang
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Danxia Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hui Miao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Linjuan Shu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Ling Li
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Xu Song
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Yongyun Zhao
- Center for Functional Genomics and Bioinformatics, College of Life Science, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
8
|
Zhang P, Guo X, Gao J, Liu H, Wan C, Li J, Zhang Q, Song Y, Ding C. A Dual-Control Strategy by Phosphate Ions and Local Microviscosity for Tracking Adenosine Triphosphate Metabolism in Mitochondria and Cellular Activity Dynamically. ACS Sens 2021; 6:4225-4233. [PMID: 34709795 DOI: 10.1021/acssensors.1c01850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine triphosphate (ATP) acts as the main energy source for growth and development in organisms, and the disorder reflects the mitochondrial damage to a large extent. Therefore, an efficient tool for the evaluation of the ATP metabolic level is important to track mitochondrial health, providing an additional perspective for an in-depth long-term study on living activities. Herein, a twisted intramolecular charge transfer (TICT) framework is utilized to build up a sensitive receptor, Mito-VP, with a negligible background to target mitochondrial ATP metabolism by monitoring the phosphate ion (Pi) level upon ATP hydrolysis under the overall consideration of the structural and functional features of mitochondria. The responsive fluorescence could be lighted on under the dual control of Pi and local microviscosity, and the two steps of ATP hydrolysis could be captured through fluorescence. In addition to the well-behaved mitochondrial targeting, the energy metabolism at cellular and organism levels has been clarified via mitosis and zebrafish development, respectively.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xinjie Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haihong Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Chenyang Wan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiajia Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yuqing Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
9
|
Kim NH, Kim BW, Moon H, Yoo H, Kang RH, Hur JK, Oh Y, Kim BM, Kim D. AIEgen-based nanoprobe for the ATP sensing and imaging in cancer cells and embryonic stem cells. Anal Chim Acta 2021; 1152:338269. [PMID: 33648642 DOI: 10.1016/j.aca.2021.338269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 11/29/2022]
Abstract
A turn-on fluorescent nanoprobe (named AAP-1), based on an aggregation-induced emission luminogen (AIEgen), is disclosed for the detection of adenosine triphosphate (ATP), which is an essential element in the biological system. Organic fluorophore (named TPE-TA) consists of tetraphenylethylene (TPE, sensing and signaling moiety) and mono-triamine (TA, sensing moiety), and it forms an aggregated form in aqueous media as a nanoprobe AAP-1. The nanoprobe AAP-1 has multiple electrostatic interactions as well as hydrophobic interactions with ATP, and it displays superior selectivity toward ATP, reliable sensitivity, with a detection limit around 0.275 ppb, and fast responsive (signal within 10 s). Such a fluorescent probe to monitor ATP has been actively pursued throughout fundamental and translational research areas. In vitro assay and a successful cellular ATP imaging application was demonstrated in cancer cells and embryonic stem cells. We expect that our work warrants further ATP-related studies throughout a variety of fields.
Collapse
Affiliation(s)
- Na Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hajung Yoo
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Rae Hyung Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junho K Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea.
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
10
|
A Novel Fluorescent Probe for ATP Detection Based on Synergetic Effect of Aggregation-induced Emission and Counterion Displacement. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-0400-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Li X, Zhao Z, Hu L, Wei D, Liu Q. Tetraphenylethylene-Based Tetradentate Azolium Salts: Synthesis and Selective Recognition for Ions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202103011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Affiliation(s)
- Arundhati Nag
- Carlson School of Chemistry and Biochemistry Clark University Worcester MA 01610 Phone: 15084213897 Fax: 15087937117
| | - Samir Das
- Carlson School of Chemistry and Biochemistry Clark University Worcester MA 01610
| |
Collapse
|
13
|
Naked eye detection of moisture in organic solvents and development of alginate polymer beads and test cassettes as a portable kit. Anal Chim Acta 2020; 1136:178-186. [PMID: 33081942 DOI: 10.1016/j.aca.2020.09.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
New dabsyl-thiophene based receptor DABT and its mercury complex DABT-Hg is reported as a colorimetric sensor for rapid and sensitive detection of trace amount of water in aprotic solvents. Based on intramolecular charge transfer in the excited state, the receptor dabsyl-thiophene (yellow color) binds with the mercury ions (magenta color) to stimulate a colorimetric response. The mercury complex is used as a moisture sensor in THF, acetone, and acetonitrile due to its instability in moisture containing organic solvents. The probe exhibits higher sensitivity towards water in THF (LOD = 0.0041% w/w), acetone (LOD = 0.0144% w/w) and acetonitrile (LOD = 0.1008% w/w). The dissociation of mercury from probe DABT-Hg in the presence of water is accountable for the colorimetric response as proven by the 1H NMR and ESI-MS studies. DABT-Hg is the first mercury based complex for the detection of moisture in organic solvents. Test paper strip and PVA thin film doped with the probe were successfully used to detect moisture content in organic solvents. DABT-Hg incorporated alginate beads are prepared to determine the water content in triethylamine and ethylene glycol. Portable test cassettes are developed for the on-site detection of distilled and undistilled wet solvents in the chemical laboratory through naked-eye detection.
Collapse
|
14
|
Darshani T, Weldeghiorghis TK, Fronczek FR, Perera T. The first structurally characterized sulfonamide derivatized Zn(II)-dipicolylamine complexes with eight membered chelate rings. Synthetic and structural studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Sarkar A, Chakraborty A, Chakraborty T, Purkait S, Samanta D, Maity S, Das D. A Chemodosimetric Approach for Fluorimetric Detection of Hg 2+ Ions by Trinuclear Zn(II)/Cd(II) Schiff Base Complex: First Case of Intermediate Trapping in a Chemodosimetric Approach. Inorg Chem 2020; 59:9014-9028. [PMID: 32573221 DOI: 10.1021/acs.inorgchem.0c00857] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The present work discloses the application of two fluorescent zinc and cadmium complexes (1 and 2) for sensing of Hg(II) ions through a chemodosimetric approach. The ligand under consideration in this work is a N2O donor Schiff base ligand (E)-4-bromo-2-(((2-morpholinoethyl)imino)methyl)phenol (HL), which has been harnessed to generate complexes [Zn3L2(OAc)4] (1) and [Cd3L2(OAc)4] (2). X-ray single crystal diffraction studies unveil the trinuclear skeleton of complexes 1 and 2. Both complexes have been found to be highly fluorescent in nature. However, the quantum efficiency of Zn(II) complex (1) dominates over the Cd(II) analogue (2). The absorption and emission spectroscopic properties of the complexes have been investigated by density functional theory. Complexes 1 and 2 can detect Hg2+ ions selectively by fluorescence quenching, and it is noteworthy to mention that the mechanism of sensing is unique as well as interesting. In the presence of Hg2+ ions, complexes 1 and 2 are transformed to mononuclear mercuric intermediate complex (3) and finally to a trinuclear mercuric complex (4) by hydrolysis. We have successfully trapped the intermediate complex 3, and we characterized it with the aid of X-ray crystallography. Transformation of complexes 1 and 2 to intermediate complex 3 and finally to 4 has been established by UV-vis spectroscopy, fluorescence spectroscopy, ESI-MS spectroscopy, 1H NMR spectroscopy, and X-ray crystallography. The spontaneity of the above conversion is well supported by thermodynamic aspects as reflected from density functional theoretical calculations.
Collapse
Affiliation(s)
- Abani Sarkar
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Aratrika Chakraborty
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Tonmoy Chakraborty
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Suranjana Purkait
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Debabrata Samanta
- Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur 208016, India
| | - Suvendu Maity
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700 103, India
| | - Debasis Das
- Department of Chemistry, University College of Science, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
16
|
Kanagaraj K, Xiao C, Rao M, Fan C, Borovkov V, Cheng G, Zhou D, Zhong Z, Su D, Yu X, Yao J, Hao T, Wu W, Chruma JJ, Yang C. A Quinoline-Appended Cyclodextrin Derivative as a Highly Selective Receptor and Colorimetric Probe for Nucleotides. iScience 2020; 23:100927. [PMID: 32169819 PMCID: PMC7066246 DOI: 10.1016/j.isci.2020.100927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/18/2020] [Accepted: 02/13/2020] [Indexed: 01/03/2023] Open
Abstract
The design and development of specific recognition and sensing systems for biologically important anionic species has received growing attention in recent years, as they play significant roles in biology, pharmacy, and environmental sciences. Herein, a new supramolecular sensing probe L1 was developed for highly selective differentiation of nucleotides. L1 displayed extremely marked absorption and emission differentiation upon binding with nucleotide homologs of AMP, ADP, and ATP, due to the divergent spatial orientations of guests upon binding, which allowed for a naked-eye colorimetric differentiation for nucleotides. A differentiating mechanism was unambiguously rationalized by using various spectroscopic studies and theoretical calculations. Furthermore, we successfully demonstrated that L1 can be applied to the real-time monitoring of the enzyme-catalyzed phosphorylation/dephosphorylation processes and thus demonstrated an unprecedented visualizable strategy for selectively differentiating the structurally similar nucleotides and real-time monitoring of biological processes via fluorescent and colorimetric changes.
Collapse
Affiliation(s)
- Kuppusamy Kanagaraj
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Chao Xiao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Chunying Fan
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Victor Borovkov
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Dayang Zhou
- Comprehensive Analysis Center, ISIR, Osaka University, Japan
| | - Zhihui Zhong
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Dan Su
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Xingke Yu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Jiabin Yao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Taotao Hao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| | - Jason J Chruma
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical Center, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
17
|
Singh A, Mohan M, Trivedi DR. Design and synthesis of malonohydrazide based colorimetric receptors for discrimination of maleate over fumarate and detection of F -, AcO - and AsO 2- ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117883. [PMID: 31818641 DOI: 10.1016/j.saa.2019.117883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, we have designed and synthesized two new organic receptors R1 and R2 based on malonohydrazide for the recognition of biologically important anions. The receptor R1 capable of colorimetric discrimination of maleate over fumarate ion, exhibit significant color change from pale yellow to wine red due to intermolecular hydrogen bond between the R1 and maleate ion, supported by 1HNMR titration, where the peak at δ12.0 ppm attributed to the NH proton experiences a downfield shift upon binding with maleate ion. Receptor R1, equipped with two electron-withdrawing NO2 moieties as the chromogenic signaling unit enhance the hydrogen bonding tendency and acidity, and thus when comparing with receptor R2, R1 displayed substantial higher redshift (∆λmax) of 148 nm, 143 nm, and 140 nm towards F-, AcO-, and maleate anion in the DMSO. In addition, the synthesized receptors R1 and R2 are able to detect F-, AcO-, and AsO2- ions as their sodium salts in an aqueous solution with visual color change. Receptor R1 exhibit electrochemical response towards F- and AcO- ions. The receptors R1 and R2 are successfully applied for quantitative detection of F- ion in the toothpaste solution in an aqueous medium. Additionally, R1 and R2 exhibit fluorescence enhancement towards F- and AcO- ions in the DMSO. As well, R1 and R2 demonstrate to be potentially useful colorimetric chemosensor for sensing maleate ion using the test strip. The theoretical calculation based on TD-DFT corroborates well with the experimental results of the receptors R1 and R2 with fluoride, acetate and maleate.
Collapse
Affiliation(s)
- Archana Singh
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India
| | - Makesh Mohan
- Department of Physics, National Institute of Technology Karnataka (NITK), Surathkal, India
| | - Dharshak R Trivedi
- Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India.
| |
Collapse
|
18
|
Bansal D, Gupta R. Selective sensing of ATP by hydroxide-bridged dizinc(ii) complexes offering a hydrogen bonding cavity. Dalton Trans 2020; 48:14737-14747. [PMID: 31549128 DOI: 10.1039/c9dt02404b] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work illustrates the highly selective fluorescence detection of ATP in the presence of other competing anions, such as AMP, ADP, PPi and other phosphates by using a set of hydroxide-bridged dizinc(ii) complexes offering a cavity lined with hydrogen bonds and other interactive forces. ATP, as a whole, was recognized by the synergic combination of Zn-phosphate bonding, ππ stacking between the adenine ring of ATP and the pyridine ring of the dizinc complex and hydrogen bonding interactions that modulate the cavity structure of the dizinc complexes.
Collapse
Affiliation(s)
- Deepak Bansal
- Department of Chemistry, University of Delhi, Delhi - 110 007, India.
| | | |
Collapse
|
19
|
Ramesh G, P. RK, Pillegowda M, Periyasamy G, Suchetan PA, Butcher RJ, Foro S, Nagaraju G. Synthesis, crystal structures, photophysical, electrochemical studies, DFT and TD-DFT calculations and Hirshfeld analysis of new 2,2′:6′,2′′-terpyridine ligands with pendant 4′-(trimethoxyphenyl) groups and their homoleptic ruthenium complexes. NEW J CHEM 2020. [DOI: 10.1039/d0nj00046a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Ru(L1)2](PF6)2 (1) and [Ru(L2)2](PF6)2 (2): X-ray structures, CH⋯F/O, OH⋯F/N, CH⋯O/π, π⋯π interactions, absorption and emission spectra, DFT/TD-DFT, Hirshfeld analysis.
Collapse
Affiliation(s)
- Golla Ramesh
- Department of Studies and Research in Chemistry
- UCS
- Tumkur University
- Tumakuru
- India
| | - Raghavendra Kumar P.
- Department of Studies and Research in Chemistry
- UCS
- Tumkur University
- Tumakuru
- India
| | - Manohar Pillegowda
- Department of Chemistry
- Jnana Bharathi Campus
- Bangalore University
- Bangalore 560 056
- India
| | - Ganga Periyasamy
- Department of Chemistry
- Jnana Bharathi Campus
- Bangalore University
- Bangalore 560 056
- India
| | - P. A. Suchetan
- Department of Studies and Research in Chemistry
- UCS
- Tumkur University
- Tumakuru
- India
| | - R. J. Butcher
- Department of Chemistry
- Howard University
- Washington DC
- USA
| | - Sabine Foro
- Institute of Materials Science
- Darmstadt University of Technology
- Darmstadt
- Germany
| | - G. Nagaraju
- Department of Chemistry
- Siddaganga Institute of Technology
- Tumakuru
- India
| |
Collapse
|
20
|
Li X, Zhang H, Zhao Y, Lian L, Wang X, Gao W, Zhu B, Lou D. Design and Synthesis of Ag Nanocluster Molecular Beacon for Adenosine Triphosphate Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:2786156. [PMID: 31737403 PMCID: PMC6815610 DOI: 10.1155/2019/2786156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
This study presents a fluorescence method for detecting adenosine triphosphate (ATP) based on a label-free Ag nanocluster molecular beacon (MB) with high sensitivity. The sensor contains a hairpin-shaped MB, two short single-stranded DNA strands, and T4 DNA ligase. The MB consists of three parts, which are the template DNA sequence for synthesizing Ag nanoclusters at the 5' end, the middle DNA with a hairpin-shaped structure, and the guanine base-rich DNA sequence at the 3' end. The sensor exhibits high fluorescence intensity in the absence of ATP. However, when the probe is used for ATP detection, the two short DNA sequences in the sensor would form a long sequence by enzymatic ligation reaction; this long sequence opens the hairpin-shaped structure of the MB and decreases the fluorescence of the system. Under optimal analytical conditions, a clear linear relationship is observed between ATP concentration and fluorescence intensity in the range of 0.1-10 μM. The interference presented by other small molecules during ATP detection is evaluated, and results confirm the good selectivity of the proposed sensor. Compared with traditional methods, the sensor is label free, easy to operate, inexpensive, and highly sensitive.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Hao Zhang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Ying Zhao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Xiyue Wang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Wenxiu Gao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Bo Zhu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| |
Collapse
|
21
|
Conti G, Minneci M, Sattin S. Optimised Synthesis of the Bacterial Magic Spot (p)ppGpp Chemosensor PyDPA. Chembiochem 2019; 20:1717-1721. [PMID: 30843657 PMCID: PMC6618120 DOI: 10.1002/cbic.201900013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/05/2019] [Indexed: 01/23/2023]
Abstract
Guanosine penta- or tetraphosphate (pppGpp or ppGpp, respectively) is a nucleotide signalling molecule with a marked effect on bacterial physiology during stress. Its accumulation slows down cell metabolism and replication, supposedly leading to the formation of the antibiotic-tolerant persister phenotype. A specifically tailored fluorescent chemosensor, PyDPA, allows the detection of (p)ppGpp in solution with high selectivity, relative to that of other nucleotides. Herein, an optimised synthetic approach is presented that improves the overall yield from 9 to 67 % over 7 steps. The simplicity and robustness of this approach will allow groups investigating the many facets of (p)ppGpp easy access to this probe.
Collapse
Affiliation(s)
- Gabriele Conti
- Department of ChemistryUniversità degli Studi di Milanovia Golgi, 1920133MilanoItaly
| | - Marco Minneci
- Department of ChemistryUniversità degli Studi di Milanovia Golgi, 1920133MilanoItaly
| | - Sara Sattin
- Department of ChemistryUniversità degli Studi di Milanovia Golgi, 1920133MilanoItaly
| |
Collapse
|
22
|
Zhang J, Zhang J, Yan Z, Xie J. Recent Progress in Fluorescent Probes for Adenosine Triphosphate Based on Small Organic Molecules. CHINESE J ORG CHEM 2019. [DOI: 10.6023/cjoc201905024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Farshbaf S, Anzenbacher P. Fluorimetric sensing of ATP in water by an imidazolium hydrazone based sensor. Chem Commun (Camb) 2019; 55:1770-1773. [PMID: 30666327 DOI: 10.1039/c8cc09857c] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bisantrene, a simple anthracene derivative carrying two imidazolium hydrazone moieties, has been used as a highly selective sensor of ATP in water.
Collapse
Affiliation(s)
- Sepideh Farshbaf
- Department of Chemistry and Center for Photochemical Sciences
- Bowling Green State University, Bowling Green
- Ohio 43403
- USA
| | - Pavel Anzenbacher
- Department of Chemistry and Center for Photochemical Sciences
- Bowling Green State University, Bowling Green
- Ohio 43403
- USA
| |
Collapse
|
24
|
Rhaman MM, Powell DR, Hossain MA. Supramolecular Assembly of Uridine Monophosphate (UMP) and Thymidine Monophosphate (TMP) with a Dinuclear Copper(II) Receptor. ACS OMEGA 2017; 2:7803-7811. [PMID: 29214233 PMCID: PMC5709781 DOI: 10.1021/acsomega.7b01293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/31/2017] [Indexed: 05/14/2023]
Abstract
Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate-covalent interactions with phosphates and π-π stackings with nucleobases and TMP through coordinate-covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay.
Collapse
Affiliation(s)
- Md Mhahabubur Rhaman
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Douglas R. Powell
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019, United
States
| | - Md. Alamgir Hossain
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
- E-mail:
| |
Collapse
|
25
|
Liu Q, Zhao X, Hu Z, Zhao Z, Wang H. Synthesis and structural studies of N-heterocyclic carbene Ag(I) and Hg(II) complexes and recognition of dihydrogen phosphate anion. Sci Rep 2017; 7:7534. [PMID: 28790367 PMCID: PMC5548890 DOI: 10.1038/s41598-017-07961-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/03/2017] [Indexed: 01/22/2023] Open
Abstract
Bis-benzimidazolium salt (S)-2,2'-bis[2″-(N-Et-benzimidazoliumyl)ethoxy]-1,1'-binaphthyl hexafluorophosphate [(S)-L1H2]·(PF6)2 and bis-imidazolium salts (S)-2,2'-bis[2″-(N-R-imidazoliumyl)ethoxy]-1,1'-binaphthyl hexafluorophosphate [(S)-L2H2]·(PF6)2 and [(S)-L3H2]·(PF6)2 (R = ethyl or benzyl), as well as their five N-heterocyclic carbene Hg(II) and Ag(I) complexes such as [(S)-L1Hg(HgBr4)] (1), [(S)-L2Hg(HgBr4)] (2), [(S)-L2Hg(HgI4)] (3), {[(S)-L2Ag](PF6)}n (4) and [(S)-L3Ag](PF6) (5) have been prepared and characterized. Each of complexes 1-3 consists of two rings (one 6-membered ring and one 11-membered ring), in which the oxygen atom in the ligand participates in coordination with Hg(II) ion. In complex 4, 1D helical polymeric chain is formed via biscarbene ligand (S)-L2 and Ag(I) ion. A 15-membered macrometallocycle is constructed through a ligand (S)-L3 and a Ag(I) ion in complex 5. Additionally, the selective recognition of H2PO4- using complex 5 as a receptor was investigated on the basis of fluorescence and UV/vis spectroscopic titrations. The results indicate that complex 5 can distinguish effectively H2PO4- from other anions.
Collapse
Affiliation(s)
- Qingxiang Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin, 300387, China.
| | - Xiaoqiang Zhao
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Zeliang Hu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Zhixiang Zhao
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Hong Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; Tianjin Key Laboratory of Structure and Performance for Functional Molecules; College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
26
|
Dey S, Sarkar T, Majumdar A, Pathak T, Ghosh K. 1,4-Disubstituted 1,2,3-Triazole- and 1,5-Disubstituted 1,2,3-Triazole-based Bis-Sulfonamides in Selective Fluorescence Sensing of ATP. ChemistrySelect 2017. [DOI: 10.1002/slct.201601933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Santu Dey
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur-721302 India
| | - Tanmay Sarkar
- Department of Chemistry; University of Kalyani; Kalyani-741235 India
| | - Anupam Majumdar
- Department of Chemistry; University of Kalyani; Kalyani-741235 India
| | - Tanmaya Pathak
- Department of Chemistry; Indian Institute of Technology Kharagpur; Kharagpur-721302 India
| | - Kumaresh Ghosh
- Department of Chemistry; University of Kalyani; Kalyani-741235 India
| |
Collapse
|
27
|
Zhang DC, Li X. A Zn(ii) complex with large channels based on 3′-nitro-biphenyl-3,5,4′-tricarboxylic acid: synthesis, crystal structure, fluorescence sensing of ATP, ADP, GTP, and UTP in aqueous solution and drug delivery. CrystEngComm 2017. [DOI: 10.1039/c7ce01618b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A 3D Zn(ii)–MOF with large cubic channels was synthesized. It showed fluorescence sensing of ATP, ADP, GTP, and UTP. Furthermore, it exhibited a remarkable capacity for and controlled release of 5-fluorouracil.
Collapse
Affiliation(s)
- De-chun Zhang
- School of Life Sciences
- Capital Normal University
- Beijing 100048
- P.R. China
- Deparment of Chemistry
| | - Xia Li
- Deparment of Chemistry
- Capital Normal University
- Beijing 100048
- P. R. China
| |
Collapse
|
28
|
Yoo S, Kim S, Eom MS, Kang S, Lim SH, Han MS. Development of a highly sensitive colorimetric thymidine triphosphate chemosensor using gold nanoparticles and the p-xylyl-bis(Hg2+-cyclen) complex: improved selectivity by metal ion tuning. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Fang W, Liu C, Yu F, Liu Y, Li Z, Chen L, Bao X, Tu T. Macroscopic and Fluorescent Discrimination of Adenosine Triphosphate via Selective Metallo-hydrogel Formation: A Visual, Practical, and Reliable Rehearsal toward Cellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20583-20590. [PMID: 27420773 DOI: 10.1021/acsami.6b05804] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With use of simple terpyridine zinc nitrate complexes, intriguing visual recognition of adenosine triphosphate (ATP) via selective coordination assembly leading to two-component metallo-hydrogel formation has been realized. With intensive fluorescent study and density functional theory calculations, it may be inferred, besides the selective metal-ligand interaction between Zn center and phosphate groups, the intramolecular π-stacking between the planar nucleobases of ATP and the metal-hybrid aromatic ring of pincer complex strongly affected the geometry of the coordinated adducts and possible molecular self-assembly process, which constitute a completely new sensing strategy in comparison with the conventional approaches. Furthermore, in light of extreme sensitivity of pincer zinc complexes toward ATP at micromolar scale (1.85 μM) and remarkable fluorescent enhancement (ca. 44-fold) upon ATP addition, the feasibility of the low cytotoxicity pincer zinc complexes in monitoring ATP in HeLa cells has been fulfilled with confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Weiwei Fang
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Cong Liu
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Fabiao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Yaoqi Liu
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Zhenhua Li
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, China
| | - Xiaoling Bao
- Institute of Quality Inspection of Food and Cosmetics, Shanghai Institute of Quality Inspection and Technical Research , 381 Cangwu Road, Shanghai 200233, China
| | - Tao Tu
- Department of Chemistry, Fudan University , 220 Handan Road, Shanghai 200433, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China
| |
Collapse
|
30
|
Mahapatra AK, Maji R, Maiti K, Mondal S, Ali SS, Manna SK, Sahoo P. Carbazole-driven ratiometric fluorescence turn on for dual ion recognition of Zn2+ and Hg2+ by thiophene-pyridyl conjugate in HEPES buffer medium: spectroscopy, computational, microscopy and cellular studies. Supramol Chem 2016. [DOI: 10.1080/10610278.2016.1202412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Rajkishor Maji
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Kalipada Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Sanchita Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Syed Samim Ali
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Saikat Kumar Manna
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, India
| |
Collapse
|
31
|
Zhao T, Lin C, Yao Q, Chen X. A label-free electrochemiluminescent sensor for ATP detection based on ATP-dependent ligation. Talanta 2016; 154:492-7. [PMID: 27154705 DOI: 10.1016/j.talanta.2016.03.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/26/2022]
Abstract
In this work, we describe a new label-free, sensitive and highly selective strategy for the electrochemiluminescent (ECL) detection of ATP at the picomolar level via ATP-induced ligation. The molecular-beacon like DNA probes (P12 complex) are self-assembled on a gold electrode. The presence of ATP leads to the ligation of P12 complex which blocks the digestion by Exonuclease III (Exo III). The protected P12 complex causes the intercalation of numerous ECL indicators (Ru(phen)3(2+)) into the duplex DNA grooves, resulting in significantly amplified ECL signal output. Since the ligating site of T4 DNA ligase and the nicking site of Exo III are the same, it involves no long time of incubation for conformation change. The proposed strategy combines the amplification power of enzyme and the inherent high sensitivity of the ECL technique and enables picomolar detection of ATP. The developed strategy also shows high selectivity against ATP analogs, which makes our new label-free and highly sensitive ligation-based method a useful addition to the amplified ATP detection arena.
Collapse
Affiliation(s)
| | - Chunshui Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Qiuhong Yao
- Xiamen Huaxia University, Xiamen 361024, China
| | - Xi Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
32
|
1,8-naphthalimide modified [12]aneN₃ compounds as selective and sensitive probes for Cu²⁺ ions and ATP in aqueous solution and living cells. Talanta 2016; 152:438-46. [PMID: 26992540 DOI: 10.1016/j.talanta.2016.02.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 01/13/2023]
Abstract
A new fluorescent probe 1 featuring one 1,8-naphthalimide and two [12]aneN3 units was synthesized. In the presence of Cu(2+) ions, the fluorescence emission of 1 was quenched by a factor of 127-fold and no interference by other metal ions was observed under physiological conditions. By means of titration and a Job's plot it was established that 1 forms a complex with Cu(2+) ions in a 1:2 ratio. The fluorescence of the 1-Cu(2+) complex was recovered by the addition of Adenosine-5'-triphosphate (ATP) in aqueous solution. Due to its low cytotoxicity, good water solubility, and high sensitivity, probe 1 was successfully applied in the sequential recognition of Cu(2+) and ATP in aqueous solution and HeLa cells. The highly selective and sensitive ability of 1-Cu(2+) complex to detect ATP even enables its bio-analytical applications in real-time imaging in living cells.
Collapse
|
33
|
Minamiki T, Minami T, Koutnik P, Anzenbacher P, Tokito S. Antibody- and Label-Free Phosphoprotein Sensor Device Based on an Organic Transistor. Anal Chem 2016; 88:1092-5. [DOI: 10.1021/acs.analchem.5b04618] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tsukuru Minamiki
- Research
Center for Organic Electronics, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tsuyoshi Minami
- Research
Center for Organic Electronics, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Petr Koutnik
- Department
of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Pavel Anzenbacher
- Department
of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Shizuo Tokito
- Research
Center for Organic Electronics, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
34
|
Mandal L, Majumder S, Mohanta S. Syntheses, crystal structures and steady state and time-resolved fluorescence properties of a PET based macrocycle and its dinuclear ZnII/CdII/HgII complexes. Dalton Trans 2016; 45:17365-17381. [DOI: 10.1039/c6dt02631a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present report deals with solution spectroscopic (absorption and emission) and colorimetric studies of a Robson type tetraaminodiphenol macrocyclic ligand and its ZnII2, CdII2 and HgII2 compounds.
Collapse
Affiliation(s)
- Leena Mandal
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
| | - Samit Majumder
- Department of Chemistry
- University of Calcutta
- Kolkata 700 009
- India
| | | |
Collapse
|
35
|
Fang BY, Yao MH, Wang CY, Wang CY, Zhao YD, Chen F. Detection of adenosine triphosphate in HeLa cell using capillary electrophoresis-laser induced fluorescence detection based on aptamer and graphene oxide. Colloids Surf B Biointerfaces 2015; 140:233-238. [PMID: 26764106 DOI: 10.1016/j.colsurfb.2015.12.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 12/20/2022]
Abstract
A method for ATP quantification based on dye-labeled aptamer/graphene oxide (aptamer/GO) using capillary electrophoresis-laser induced fluorescence (CE-LIF) detecting technique has been established. In this method, the carboxyfluorescein (FAM)-labelled ATP aptamers were adsorbed onto the surface of GO, leading to the fluorescence quenching of FAM; after the incubation with a limited amount of ATP, stronger affinity between ATP aptamer and ATP resulted in the desorption of aptamers and the fluorescence restoration of FAM. Then, aptamer-ATP complex and excess of aptamer/GO and GO were separated and quantified by CE-LIF detection. It was shown that a linear relation was existing in the CE-LIF peak intensity of aptamer-ATP and ATP concentration in range of 10-700 μM, the regression equation was F=1.50+0.0470C(ATP) (R(2)=0.990), and the limit of detection was 1.28 μM (3S/N, n=5), which was one order magnitude lower than that of detection in solution by fluorescence method. The approach with excellent specificity and reproducibility has been successfully applied to detecting concentration of ATP in HeLa cell.
Collapse
Affiliation(s)
- Bi-Yun Fang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ming-Hao Yao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chun-Yuan Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chao-Yang Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Fang Chen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
36
|
A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron 2015; 78:315-320. [PMID: 26638040 DOI: 10.1016/j.bios.2015.11.043] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/13/2015] [Accepted: 11/14/2015] [Indexed: 12/16/2022]
Abstract
Adenosine triphosphate (ATP) is the most direct source of energy in organisms. This study is the first to demonstrate that ATP-aptamer complexes provide greater protection for unmodified gold nanoparticles (AuNPs) against salt-induced aggregation than either aptamer or ATP alone. This protective effect was confirmed using transmission electron microscopy, dynamic light scattering, Zeta potential measurement, and fluorescence polarization techniques. Utilizing controlled particle aggregation/dispersion as a gauge, a sensitive and selective aptasensor for colorimetric detection of ATP was developed using ATP-binding aptamers as the identification element and unmodified AuNPs as the probe. This aptasensor exhibited a good linear relationship between the absorbance and the logarithm concentration of ATP within a 50-1000 nM range. ATP analogs such as guanosine triphosphate, uridine triphosphate and cytidine triphosphate resulted in little or no interference in the determination of ATP.
Collapse
|
37
|
Jung J, Eom MS, Baek K, Lee WS, Chang SK, Han MS. Sensitive fluorescence chemosensor for detection of thymidine nucleotides using Hg2+-benzo[g]quinazoline-2,4-(1H,3H)-dione complex. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.08.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Xu K, Kong H, Li Q, Song P, Dai Y, Yang L. Novel anthracene-based fluorescent sensor for selective recognition of acetate anions in protic media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:957-961. [PMID: 25282025 DOI: 10.1016/j.saa.2014.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
Novel 9-substituted anthracene derivatives were synthesized and characterized by IR, HRMS, (1)H and (13)C NMR. The fluorescence titration experiments were explored to study the interaction between the compounds and some anions, such as H2PO4(-), P2O7(4-), F(-), Cl(-), Br(-), I(-), AcO(-) in H2O (0.01 M HEPES, pH=7.4) under imitated physiological conditions. One of these compounds, bearing a phenylalaninol unit, showed specific fluorescence enhancement with acetate anion. The sensor L1 was found to present good selective fluorescence sensing ability to acetate anion through photoinduced electron-transfer mechanism in protic media.
Collapse
Affiliation(s)
- Kuoxi Xu
- Institute of Fine Chemical and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China.
| | - Huajie Kong
- Institute of Fine Chemical and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Qian Li
- Institute of Fine Chemical and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Pan Song
- Institute of Fine Chemical and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Yanpeng Dai
- Institute of Fine Chemical and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Li Yang
- Institute of Fine Chemical and Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| |
Collapse
|
39
|
Srivastava P, Razi SS, Ali R, Srivastav S, Patnaik S, Srikrishna S, Misra A. Highly sensitive cell imaging "Off-On" fluorescent probe for mitochondria and ATP. Biosens Bioelectron 2015; 69:179-85. [PMID: 25727034 DOI: 10.1016/j.bios.2015.02.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/15/2015] [Accepted: 02/16/2015] [Indexed: 01/19/2023]
Abstract
A smart Off-On molecular scaffold/fluorescent probe 1 has been designed and synthesized. The probe has shown considerable photostability, cell permeability, organelle specificity and selectivity for ATP. The multicolor live cell imaging experiments in HeLa cells showed high selectivity of probe 1 for mitochondria with fluorescence "turn-on" response. As a proof of concept and promising prospects for application in biological sciences probe 1 has been utilized to detect ATP sensitively in a partial aqueous medium and intracellularly in HeLa cells. The favorable interaction between triphosphate unit of ATP and piperazine N atoms of probe 1 is attributed to synergistic effects of H-bonding and electrostatic interactions that encouraged the CH-π and π→π stacking between anthracene and purine rings. Consequently, the observed enhanced "turn-on" emission and a naked-eye sensitive blue-green color in the medium is attributable to arrest in photoinduced electron transfer (PET) process.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Syed S Razi
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rashid Ali
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Saurabh Srivastav
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Satyakam Patnaik
- Indian Institute of Toxicology and Research (IITR), Lucknow 226001, UP, India
| | - Saripella Srikrishna
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Arvind Misra
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
40
|
Ghosh K, Tarafdar D, Samadder A, Khuda-Bukhsh AR. Pyridinum-based flexible tripodal cleft: a case of fluorescence sensing of ATP and dihydrogenphosphate under different conditions and cell imaging. RSC Adv 2015. [DOI: 10.1039/c5ra04023j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pyridinium-based chemosensor 1 built on tris(aminomethyl)amine (tren) has been designed, synthesized and established as a chemosensor for ATP over ADP, AMP and a series of other anions in aqueous CH3CN at pH 6.5.
Collapse
Affiliation(s)
- Kumaresh Ghosh
- Department of Chemistry
- University of Kalyani
- Kalyani-741235
- India
| | | | - Asmita Samadder
- Department of Zoology
- University of Kalyani
- Kalyani-741235
- India
| | | |
Collapse
|
41
|
Muthuraj B, Chowdhury SR, Mukherjee S, Patra CR, Iyer PK. Aggregation deaggregation influenced selective and sensitive detection of Cu2+ and ATP by histidine functionalized water-soluble fluorescent perylene diimide under physiological conditions and in living cells. RSC Adv 2015. [DOI: 10.1039/c5ra00408j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel PDI-HIS probe detects Cu2+ to form aggregated nonfluorescent complex. Addition of 0.58 ppm ATP to this complex causes its rapid disaggregation thereby recovering the fluorescence by ∼99% in vitro and in A549 living cells.
Collapse
Affiliation(s)
| | - Sayan Roy Chowdhury
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Sudip Mukherjee
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Chitta Ranjan Patra
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Parameswar Krishnan Iyer
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Center for Nanotechnology
| |
Collapse
|
42
|
Kashyap S, Jayakannan M. Super LCST thermo-responsive nanoparticle assembly for ATP binding through the Hofmeister effect. J Mater Chem B 2015; 3:1957-1967. [DOI: 10.1039/c4tb01844c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ATP thermosensor: the first thermo-responsive super LCST amphiphile biomolecular probe was designed and developed for the detection of ATP based on the Hofmeister effect in aqueous medium.
Collapse
Affiliation(s)
- Smita Kashyap
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune 411008
- India
| | - Manickam Jayakannan
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune 411008
- India
| |
Collapse
|
43
|
Guo LE, Zhang JF, Liu XY, Zhang LM, Zhang HL, Chen JH, Xie XG, Zhou Y, Luo K, Yoon J. Phosphate ion targeted colorimetric and fluorescent probe and its use to monitor endogeneous phosphate ion in a hemichannel-closed cell. Anal Chem 2014; 87:1196-201. [PMID: 25511872 DOI: 10.1021/ac503818p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fluorescent probe 1, the first inorganic phosphate (Pi) targeted colorimetric and fluorescent probe to detect endogenous Pi in hemichannel-closed cells, has been developed. Probe 1 undergoes a unique Pi induced hydrolytic reaction in DMSO-HEPES (V/V = 9:1) buffered (0.02 M, pH 7.4) solutions that produces a colorimetric change associated with a 62 nm red-shift in the UV-vis absorption maximum and up to a 780-fold enhancement in the fluorescence intensity. The mechanistic proposal that these spectroscopic changes are associated with reaction Pi with 1 to form coumarin gains support from the results of theoretical calculations and mass spectrometry studies. Observations made in fluorescence imaging studies with HeLa cells and C. elegans show that 1 can be employed to monitor Pi production in vivo caused by apyrase-catalyzed ATP hydrolysis. Moreover, probe 1 was utilized to show that apoptosis of hemichannel-closed Sf9 cells is caused by Inx3 promoted dephosphorylation of Akt (RAC serine/threonine-protein kinase), leading to an elevation of the concentration of Pi. Overall, the study has produced the first fluorescent sensor 1 for endogenous inorganic phosphate. Moreover, the utility of 1 for measuring Pi release in vitro has been demonstrated and utilized to elucidate the mechanism of Inx3 action in hemichannel-closed Sf9 cells.
Collapse
Affiliation(s)
- Lin E Guo
- College of Chemical Science and Technology, Yunnan University , Kunming 650091, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tang JL, Li CY, Li YF, Zou CX. A ratiometric fluorescent probe with unexpected high selectivity for ATP and its application in cell imaging. Chem Commun (Camb) 2014; 50:15411-4. [PMID: 25350832 DOI: 10.1039/c4cc08044k] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Naphthalimide-rhodamine compound (NR) is developed as a ratiometric fluorescent probe for ATP detection based on the FRET mechanism. It shows an unexpected high selectivity for ATP over other anions, especially organic phosphate anions, due to simultaneous interactions of two recognition sites, which benefits fluorescence imaging in living cells.
Collapse
Affiliation(s)
- Jia-Liang Tang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | | | | | | |
Collapse
|
45
|
Viji M, Nair AK, Nandajan PC, Ramaiah D. Fluorescent chemodosimeter based on NHC complex for selective recognition of cyanide ions in aqueous medium. RSC Adv 2014. [DOI: 10.1039/c4ra09969a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Wang Y, Tang L, Li Z, Lin Y, Li J. In situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat Protoc 2014; 9:1944-55. [PMID: 25058642 DOI: 10.1038/nprot.2014.126] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we present a detailed protocol for in situ multiple fluorescence monitoring of adenosine-5'-triphosphate (ATP) and guanosine-5'-triphosphate (GTP) in MCF-7 breast cancer cells by using graphene oxide nanosheet (GO-nS) and DNA/RNA aptamers. FAM-labeled ATP aptamer and Cy5-modified GTP aptamer are used to construct the multiple aptamer/GO-nS sensing platform through 'π-π stacking' between aptamers and GO-nS. Binding of aptamers to GO-nS guarantees the fluorescence resonance energy transfer between fluorophores and GO-nS, resulting in 'fluorescence off'. When the aptamer/GO-nS are transported inside the cells via endocytosis, the conformation of the aptamers will change on interaction with cellular ATP and GTP. On the basis of the fluorescence 'off/on' switching, simultaneous sensing and imaging of ATP and GTP in vitro and in situ have been realized through fluorescence and confocal microscopy techniques. In this protocol, we describe the synthesis of GO and GO-nS, preparation of aptamer/GO-nS platform, in vitro detection of ATP and GTP, and how to use this platform to realize intracellular ATP and GTP imaging in cultured MCF-7 cells. The preparation of GO-nS is anticipated to take 7-14 d, and assays involving microscopy imaging and MCF-7 cells culturing can be performed in 2-3 d.
Collapse
Affiliation(s)
- Ying Wang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Longhua Tang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Zhaohui Li
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yuehe Lin
- 1] Pacific Northwest National Laboratory, Richland, Washington, USA. [2] School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Jinghong Li
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| |
Collapse
|
47
|
Shitanda I, Tanaka K, Hoshi Y, Itagaki M. Electrochemical monitoring systems of demembranated flagellate algal motility for ATP sensing. Analyst 2014; 139:721-3. [PMID: 24336166 DOI: 10.1039/c3an01678a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ATP-induced behavior of the unicellular flagellate alga Chlamydomonas reinhardtii was recorded as changes in the redox currents for a coexisting redox marker. The ATP concentration was estimated using the presented compact electrochemical system, which is based on monitoring of the motility of the flagellates.
Collapse
Affiliation(s)
- Isao Shitanda
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan.
| | | | | | | |
Collapse
|
48
|
Madhuprasad, Trivedi DR. Receptor with an Active Methylene Group as Binding Site for Extraction of Inorganic Fluoride Ions from Seawater. Chempluschem 2014. [DOI: 10.1002/cplu.201402018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Wu N, Lan J, Yan L, You J. A sensitive colorimetric and fluorescent sensor based on imidazolium-functionalized squaraines for the detection of GTP and alkaline phosphatase in aqueous solution. Chem Commun (Camb) 2014; 50:4438-41. [PMID: 24643794 DOI: 10.1039/c4cc00752b] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazolium-functionalized squaraine ImSQ8 is synthesized as a sensitive colorimetric and fluorescent chemosensor for GTP in aqueous solution. The detection limit of GTP reaches 5.4 ppb. Its applications in the live-cell imaging and enzyme activity assay have also been demonstrated.
Collapse
Affiliation(s)
- Ningjie Wu
- Key Laboratory of Green Chemistry, Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China.
| | | | | | | |
Collapse
|
50
|
Perylene diimide based ‘turn-on’ fluorescence sensor for detection of Pd2+ in mixed aqueous media. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.01.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|