1
|
Tawara MH, Correa J, Leire E, Delgado Gonzalez B, Parcero-Bouzas S, Liko F, Fernandez-Megia E. Bioactive Polymeric Scaffolds: Multivalent Functionalization by Thermal Azide-Alkyne Cycloaddition with Alkynyl Dicarbamates. Biomacromolecules 2025; 26:2553-2564. [PMID: 40138543 DOI: 10.1021/acs.biomac.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Multivalency enables interactions with higher affinities and specificities than monovalent interactions. The strategy exploited by nature to modulate biorecognition has inspired the design of multivalent conjugates with therapeutic properties. However, chemical functionalization often requires coupling agents, additives, or metal catalysts that complicate isolation and purification. Herein, azide-alkyne cycloaddition (AAC) with alkynyl dicarbamates (Alk-R) is presented as a flexible, reliable, atom-economical, and user-friendly strategy for the multivalent functionalization of polymeric scaffolds. Alk-R functionalized with biologically relevant ligands have been prepared and used for the multivalent AAC functionalization of azide-bearing dendrimers and block copolymers. The resulting polymers with double multivalency reveal a platform for the development of bioinspired functional systems with promising applications in drug delivery: block copolymer micelles and multifunctional nanocarriers with synergistically integrated probes-ligands-drugs. The extension of this strategy to other ligands and scaffolds is expected to open up a wide range of therapeutic and diagnostic opportunities.
Collapse
Affiliation(s)
- Maun H Tawara
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Juan Correa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Emma Leire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Bruno Delgado Gonzalez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Samuel Parcero-Bouzas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Flonja Liko
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Fernández-Mariño I, Anfray C, Crecente-Campo J, Maeda A, Ummarino A, Teijeiro-Valiño C, Blanco-Martinez D, Mpambani F, Poul L, Devalliere J, Germain M, Correa J, Fernandez-Villamarin M, Allavena P, Fernandez-Megia E, Alonso MJ, Andón FT. Mannose-modified hyaluronic acid nanocapsules for the targeting of tumor-associated macrophages. Drug Deliv Transl Res 2023; 13:1896-1911. [PMID: 36472784 PMCID: PMC10238357 DOI: 10.1007/s13346-022-01265-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Tumor-associated macrophages (TAMs), a class of immune cells that play a key role in tumor immunosuppression, are recognized as important targets to improve cancer prognosis and treatment. Consequently, the engineering of drug delivery nanocarriers that can reach TAMs has acquired special relevance. This work describes the development and biological evaluation of a panel of hyaluronic acid (HA) nanocapsules (NCs), with different compositions and prepared by different techniques, designed to target macrophages. The results showed that plain HA NCs did not significantly influence the polarization of M0 and M2-like macrophages towards an M1-like pro-inflammatory phenotype; however, the chemical functionalization of HA with mannose (HA-Man) led to a significant increase of NCs uptake by M2 macrophages in vitro and to an improved biodistribution in a MN/MNCA1 fibrosarcoma mouse model with high infiltration of TAMs. These functionalized HA-Man NCs showed a higher accumulation in the tumor compared to non-modified HA NCs. Finally, the pre-administration of the liposomal liver occupying agent Nanoprimer™ further increased the accumulation of the HA-Man NCs in the tumor. This work highlights the promise shown by the HA-Man NCs to target TAMs and thus provides new options for the development of nanomedicine and immunotherapy-based cancer treatments.
Collapse
Affiliation(s)
- Iago Fernández-Mariño
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain
| | - Clément Anfray
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy
| | - Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain
| | - Akihiro Maeda
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy
| | - Aldo Ummarino
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy
| | - Carmen Teijeiro-Valiño
- Nanomag Laboratory, Applied Physics Department, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Dario Blanco-Martinez
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain
| | | | - Laurence Poul
- , Curadigm 60 rue de Wattignies, Paris, 75012, France
| | | | | | - Juan Correa
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, 15782, Spain
| | - Marcos Fernandez-Villamarin
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, 15782, Spain
| | - Paola Allavena
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy
| | - Eduardo Fernandez-Megia
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, Santiago de Compostela, 15782, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706, Spain
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
- Laboratory of Cellular Immunology, IRCCS Humanitas Research Hospital, Rozzano-Milan, 20072, Italy.
| |
Collapse
|
3
|
Miranda A, Lopez-Blanco R, Lopes-Nunes J, Melo AM, Campello MPC, Paulo A, Oliveira MC, Mergny JL, Oliveira PA, Fernandez-Megia E, Cruz C. Gallic Acid-Triethylene Glycol Aptadendrimers Synthesis, Biophysical Characterization and Cellular Evaluation. Pharmaceutics 2022; 14:pharmaceutics14112456. [PMID: 36432647 PMCID: PMC9696068 DOI: 10.3390/pharmaceutics14112456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we describe the synthesis of an aptadendrimer by covalent bioconjugation of a gallic acid-triethylene glycol (GATG) dendrimer with the G-quadruplex (G4) AT11 aptamer (a modified version of AS1411) at the surface. We evaluated the loading and interaction of an acridine orange ligand, termed C8, that acts as an anticancer drug and binder/stabilizer of the G4 structure of AT11. Dynamic light scattering experiments demonstrated that the aptadendrimer was approximately 3.1 nm in diameter. Both steady-state and time-resolved fluorescence anisotropy evidenced the interaction between the aptadendrimer and C8. Additionally, we demonstrated that the iodine atom of the C8 ligand acts as an effective intramolecular quencher in solution, while upon complexation with the aptadendrimer, it adopts a more extended conformation. Docking studies support this conclusion. Release experiments show a delivery of C8 after 4 h. The aptadendrimers tend to localize in the cytoplasm of various cell lines studied as demonstrated by confocal microscopy. The internalization of the aptadendrimers is not nucleolin-mediated or by passive diffusion, but via endocytosis. MTT studies with prostate cancer cells and non-malignant cells evidenced high cytotoxicity mainly due to the C8 ligand. The rapid internalization of the aptadendrimers and the fluorescence properties make them attractive for the development of potential nanocarriers.
Collapse
Affiliation(s)
- André Miranda
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Roi Lopez-Blanco
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Jéssica Lopes-Nunes
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Ana M. Melo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Maria Cristina Oliveira
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Jean-Louis Mergny
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Paula A. Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
- Correspondence: (E.F.-M.); (C.C.)
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
- Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
- Correspondence: (E.F.-M.); (C.C.)
| |
Collapse
|
4
|
Lee SJ, Cho A, Kim KT. Morphological Diversity from the Solution Self‐assembly of Block Copolymer Blends Containing High Molecular‐weight Hydrophobic Blocks. Macromol Rapid Commun 2022; 43:e2100893. [DOI: 10.1002/marc.202100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Soo Jeong Lee
- Department of Chemistry Seoul National University Seoul 08826 Korea
| | - Arah Cho
- Department of Chemistry Seoul National University Seoul 08826 Korea
| | - Kyoung Taek Kim
- Department of Chemistry Seoul National University Seoul 08826 Korea
| |
Collapse
|
5
|
Wang J, Wen Y, Zhou SH, Zhang HW, Peng XQ, Zhang RY, Yin XG, Qiu H, Gong R, Yang GF, Guo J. Self-Adjuvanting Lipoprotein Conjugate αGalCer-RBD Induces Potent Immunity against SARS-CoV-2 and its Variants of Concern. J Med Chem 2022; 65:2558-2570. [PMID: 35073081 PMCID: PMC8806000 DOI: 10.1021/acs.jmedchem.1c02000] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Safe and effective vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are the best approach to successfully combat the COVID-19 pandemic. The receptor-binding domain (RBD) of the viral spike protein is a major target to develop candidate vaccines. α-Galactosylceramide (αGalCer), a potent invariant natural killer T cell (iNKT) agonist, was site-specifically conjugated to the N-terminus of the RBD to form an adjuvant-protein conjugate, which was anchored on the liposome surface. This is the first time that an iNKT cell agonist was conjugated to the protein antigen. Compared to the unconjugated RBD/αGalCer mixture, the αGalCer-RBD conjugate induced significantly stronger humoral and cellular responses. The conjugate vaccine also showed effective cross-neutralization to all variants of concern (B.1.1.7/alpha, B.1.351/beta, P.1/gamma, B.1.617.2/delta, and B.1.1.529/omicron). These results suggest that the self-adjuvanting αGalCer-RBD has great potential to be an effective COVID-19 vaccine candidate, and this strategy might be useful for designing various subunit vaccines.
Collapse
MESH Headings
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- COVID-19/therapy
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/therapeutic use
- Female
- Galactosylceramides/chemistry
- Galactosylceramides/immunology
- Galactosylceramides/therapeutic use
- Immunity, Humoral/drug effects
- Immunity, Innate/drug effects
- Interferon-gamma/metabolism
- Liposomes/chemistry
- Liposomes/immunology
- Liposomes/therapeutic use
- Mice, Inbred BALB C
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Peptide Fragments/therapeutic use
- Protein Domains
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/therapeutic use
- Vaccines, Conjugate/chemistry
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/therapeutic use
- Mice
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hai-Wei Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety,
Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Xiao-Qian Peng
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Xu-Guang Yin
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hong Qiu
- State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences,
Shanghai 201203, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety,
Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|
6
|
Tewari KM, Dondi R, Yaghini E, Pourzand C, MacRobert AJ, Eggleston IM. Peptide-targeted dendrimeric prodrugs of 5-aminolevulinic acid: A novel approach towards enhanced accumulation of protoporphyrin IX for photodynamic therapy. Bioorg Chem 2021; 109:104667. [PMID: 33611140 DOI: 10.1016/j.bioorg.2021.104667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Photodynamic therapy (PDT) is a promising approach for the targeted treatment of cancer and various other human disorders. An effective, clinically approved approach in PDT involves the administration of 5-aminolevulinic acid (ALA) to generate elevated levels of the natural photosensitiser protoporphyrin IX (PpIX). The development of prodrugs of ALA is of considerable interest as a means to enhance the efficiency and cell selectivity of PpIX accumulation for PDT applications. In this work a novel peptide-targeted dendrimeric prodrug of 5-aminolevulinic acid (ALA) 13 was synthesised which displays nine copies of ALA on a core structure that is linked to a homing peptide for targeted delivery to a specific cancer cell type. The synthesis was accomplished effectively via a flexible, modular solid phase and solution phase route, using a combination of solid phase peptide synthesis and copper-catalysed azide-alkyne cycloaddition chemistry. The prodrug system shows a sustained and enhanced production of protoporphyrin IX (PpIX) in the MDA-MB-231 cell line that over-expresses the epidernal growth factor receptor (EGFR+) in comparison to equimolar ALA and the corresponding non-targeted ALA dendrimer (nine copies of ALA). This study provides a proof of concept for the development of a new generation of prodrugs for ALA-based photodynamic therapy that can deliver an enhanced ALA payload to specific tissue types.
Collapse
Affiliation(s)
- K M Tewari
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - R Dondi
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - E Yaghini
- Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PE, UK
| | - C Pourzand
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - A J MacRobert
- Division of Surgery and Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PE, UK
| | - I M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
7
|
Alfei S, Marengo B, Zuccari G, Turrini F, Domenicotti C. Dendrimer Nanodevices and Gallic Acid as Novel Strategies to Fight Chemoresistance in Neuroblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1243. [PMID: 32604768 PMCID: PMC7353457 DOI: 10.3390/nano10061243] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 01/15/2023]
Abstract
Human neuroblastoma (NB), a pediatric tumor inclined to relapse, after an initial response to therapy, usually develops resistance. Since several chemotherapeutics exert anticancer effect by increasing reactive oxygen species (ROS), NB cells overproduce antioxidant compounds becoming drugs-resistant. A strategy to sensitize NB cells to chemotherapy involves reducing their antioxidant defenses and inducing ROS overproduction. Concerning this, although affected by several issues that limit their clinical application, antioxidant/pro-oxidant polyphenols, such as gallic acid (GA), showed pro-oxidant anti-cancer effects and low toxicity for healthy cells, in several kind of tumors, not including NB. Herein, for the first time, free GA, two GA-dendrimers, and the dendrimer adopted as GA reservoir were tested on both sensitive and chemoresistant NB cells. The dendrimer device, administered at the dose previously found active versus sensitive NB cells, induced ROS-mediated death also in chemoresistant cells. Free GA proved a dose-dependent ROS-mediated cytotoxicity on both cell populations. Intriguingly, when administered in dendrimer formulations at a dose not cytotoxic for NB cells, GA nullified any pro-oxidant activity of dendrimer. Unfortunately, due to GA, nanoformulations were inactive on NB cells, but GA resized in nanoparticles showed considerable ability in counteracting, at low dose, ROS production and oxidative stress, herein induced by the dendrimer.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (G.Z.); (F.T.)
| | - Barbara Marengo
- Department of Experimental Medicine—DIMES, University of Genoa, Via Alberti L.B., 16132 Genoa, Italy; (B.M.); (C.D.)
| | - Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (G.Z.); (F.T.)
| | - Federica Turrini
- Department of Pharmacy (DiFAR), University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (G.Z.); (F.T.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine—DIMES, University of Genoa, Via Alberti L.B., 16132 Genoa, Italy; (B.M.); (C.D.)
| |
Collapse
|
8
|
Nanovesicles displaying functional linear and branched oligomannose self-assembled from sequence-defined Janus glycodendrimers. Proc Natl Acad Sci U S A 2020; 117:11931-11939. [PMID: 32424105 PMCID: PMC7275670 DOI: 10.1073/pnas.2003938117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synthetic macromolecules that mimic glycolipids, named Janus glycodendrimers (JGDs), have been shown to self-assemble into nanoscale vesicles displaying glycans on their outer surface, similar to the glycocalyx coating of eukaryotic cells, bacteria, and viruses. Specifically, both linear and branched oligosaccharides synthesized by automated glycan assembly, with hydrophobic linkers, have been used to create JGDs via an isothiocyanate–amine coupling reaction. Surprisingly, in spite of the hydrophobic linker, these JGDs self-organize into nanovesicles exhibiting lamellar surface morphologies, which mimic the recognition structures of cell-surface glycans and viral glycoproteins. Therefore, they are likely to be useful in helping elucidate mechanisms of significance for translational medicine such as the camouflage functionality employed by viruses to evade recognition. Cell surfaces are often decorated with glycoconjugates that contain linear and more complex symmetrically and asymmetrically branched carbohydrates essential for cellular recognition and communication processes. Mannose is one of the fundamental building blocks of glycans in many biological membranes. Moreover, oligomannoses are commonly found on the surface of pathogens such as bacteria and viruses as both glycolipids and glycoproteins. However, their mechanism of action is not well understood, even though this is of great potential interest for translational medicine. Sequence-defined amphiphilic Janus glycodendrimers containing simple mono- and disaccharides that mimic glycolipids are known to self-assemble into glycodendrimersomes, which in turn resemble the surface of a cell by encoding carbohydrate activity via supramolecular multivalency. The synthetic challenge of preparing Janus glycodendrimers containing more complex linear and branched glycans has so far prevented access to more realistic cell mimics. However, the present work reports the use of an isothiocyanate-amine “click”-like reaction between isothiocyanate-containing sequence-defined amphiphilic Janus dendrimers and either linear or branched oligosaccharides containing up to six monosaccharide units attached to a hydrophobic amino-pentyl linker, a construct not expected to assemble into glycodendrimersomes. Unexpectedly, these oligoMan-containing dendrimers, which have their hydrophobic linker connected via a thiourea group to the amphiphilic part of Janus glycodendrimers, self-organize into nanoscale glycodendrimersomes. Specifically, the mannose-binding lectins that best agglutinate glycodendrimersomes are those displaying hexamannose. Lamellar “raft-like” nanomorphologies on the surface of glycodendrimersomes, self-organized from these sequence-defined glycans, endow these membrane mimics with high biological activity.
Collapse
|
9
|
Vukojicic P, Béhar G, Tawara MH, Fernandez-Villamarin M, Pecorari F, Fernandez-Megia E, Mouratou B. Multivalent Affidendrons with High Affinity and Specificity toward Staphylococcus aureus as Versatile Tools for Modulating Multicellular Behaviors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21391-21398. [PMID: 31120726 DOI: 10.1021/acsami.9b05702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multivalency is a widely occurring natural phenomenon often exploited in nanotechnology to enhance biorecognition. We report the preparation and characterization of versatile, multivalent Affitin-dendrimer conjugates (Affidendrons) showcased by a set targeting Staphylococcus aureus ( S. aureus), an opportunistic pathogen causing numerous hospital- and community-acquired infections. Affitins are small affinity proteins characterized by higher stability and lower cost-effective production than antibodies. The strategy presented provides a platform for the rational design of multivalent nanodevices that, retaining the ability of Affitins to recognize their target with high specificity, achieve a largely enhanced affinity. Affidendrons with precisely designed size and valency have been exploited to modulate complex multicellular behaviors of S. aureus, such as agglutination and biofilm formation. Agglutination assays showed that Affidendrons rapidly cross-link S. aureus strains with high bacterial cell selectivity. Moreover, remarkably low concentrations of Affidendrons were able to effectively prevent biofilm formation. Overall, Affidendrons represent a promising platform for the rapid and selective pathogen identification, infection imaging, and theranostic applications.
Collapse
Affiliation(s)
- Petar Vukojicic
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes , Nantes , France
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Ghislaine Béhar
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes , Nantes , France
| | - Maun H Tawara
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Marcos Fernandez-Villamarin
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Frédéric Pecorari
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes , Nantes , France
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Barbara Mouratou
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes , Nantes , France
| |
Collapse
|
10
|
Lopez-Blanco R, Fernandez-Villamarin M, Jatunov S, Novoa-Carballal R, Fernandez-Megia E. Polysaccharides meet dendrimers to fine-tune the stability and release properties of polyion complex micelles. Polym Chem 2019. [DOI: 10.1039/c9py00727j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dendritic-polysaccharide PIC micelles represent promising delivery systems where dendritic rigidity and polysaccharide stiffness synchronize to determine the stability of the micelles, their kinetics of intracellular drug release, and cytotoxicity.
Collapse
Affiliation(s)
- Roi Lopez-Blanco
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Marcos Fernandez-Villamarin
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Sorel Jatunov
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Ramon Novoa-Carballal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| |
Collapse
|
11
|
Meguro T, Yoshida S, Igawa K, Tomooka K, Hosoya T. Transient Protection of Organic Azides from Click Reactions with Alkynes by Phosphazide Formation. Org Lett 2018; 20:4126-4130. [DOI: 10.1021/acs.orglett.8b01692] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
12
|
Leiro V, Garcia JP, Moreno PMD, Spencer AP, Fernandez-Villamarin M, Riguera R, Fernandez-Megia E, Paula Pêgo A. Biodegradable PEG-dendritic block copolymers: synthesis and biofunctionality assessment as vectors of siRNA. J Mater Chem B 2017; 5:4901-4917. [PMID: 32264006 DOI: 10.1039/c7tb00279c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
One important drawback of most of the currently used dendrimers for biomedical applications is their high stability under physiological conditions that can result in cytotoxicity or complications induced by the accumulation of non-degradable synthetic materials in the organism. Particularly in the gene therapy field, vector stability can further hinder the intracellular release of the nucleic acid from the dendriplex, consequently leading to low transfection efficiencies. Therefore, biodegradable cationic dendritic structures have been eagerly awaited. However, the development of these dendritic nanocarriers is challenging because of the undesired and/or premature degradation observed during their synthesis and/or application. Here, we report new hybrid-biodegradable, biocompatible, non-toxic, and water-soluble azide-terminated PEG-GATGE dendritic block copolymers, based on a gallic acid (GA) core and triethylene glycol (TG) butanoate arms, incorporating ester bonds (E) at the dendritic arms/shell. Their successful functionalization by "click" chemistry with unprotected alkynated amines allowed complexation and delivery of siRNA. The hydrophobic character of the GATGE building unit confers to these hydrolyzable dendritic bionanomaterials a great ability to complex, protect and mediate the cellular internalization of siRNA. Moreover, the localization of the degradation points at the dendritic periphery, close to the complexed siRNA, was found to be important for nucleic acid release from the nanoparticles, rendering a significant improvement of the transfection efficiency compared to their hydrolytically stable PEG-GATG copolymer counterparts. The present study puts forward these biodegradable PEG-dendritic block copolymers not only as suitable vectors for nucleic acids, but also as new avenues for further developments exploring their use in theranostics.
Collapse
Affiliation(s)
- Victoria Leiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Elliott EW, Ginzburg AL, Kennedy ZC, Feng Z, Hutchison JE. Single-Step Synthesis of Small, Azide-Functionalized Gold Nanoparticles: Versatile, Water-Dispersible Reagents for Click Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5796-5802. [PMID: 28521100 DOI: 10.1021/acs.langmuir.7b00632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoparticles possessing functional groups that can be readily conjugated (e.g., through click chemistry) are important precursors for the preparation of customized nanohybrid products. Such nanoparticles, if they are stable against agglomeration, are easily dispersible and have well-defined surface chemistry and size. As click-ready reagents, they can be stored until their time of use and then simply dispersed and reacted with an appropriate substrate. Gold nanoparticles (AuNPs) are excellent candidates for this purpose, and some clickable gold nanoparticles have been developed; however, AuNPs for use in aqueous systems are often prepared through difficult multistep processes and/or can be poorly dispersible in water. Here we report a single-step synthesis of clickable, water-dispersible AuNPs. The synthesis yields uniform, 3.5 nm diameter cores coated with a well-defined molecular ligand shell that makes the AuNPs stable and dispersible in water. The AuNP mixed ligand shell consists of hydroxyl-terminated ethylene glycol-based ligands to promote dispersion in water and a small number of azide-terminated ligands that readily undergo click reactions with alkynes. The use of a mesofluidic reactor affords fine control over the core size and ligand shell composition and ensures reproducible results (e.g., less than 0.1 nm variation in core diameter between batches). The purified reagents were successfully coupled to a variety of alkyne-containing substrates using both Cu-catalyzed and strain-promoted click reactions. Particle size, morphology, stability, and surface composition were thoroughly characterized using small-angle X-ray scattering, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis, and 1H NMR before and after the click reactions. Both the parent nanoparticles and their click chemistry products are stable during storage and remained dispersible for over a year in water, suggesting their potential for environmental, biological, and biomedical applications.
Collapse
Affiliation(s)
- Edward W Elliott
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon , Eugene, Oregon 97403-1253, United States
| | - Aurora L Ginzburg
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon , Eugene, Oregon 97403-1253, United States
| | - Zachary C Kennedy
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon , Eugene, Oregon 97403-1253, United States
| | - Zhenshuo Feng
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon , Eugene, Oregon 97403-1253, United States
| | - James E Hutchison
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon , Eugene, Oregon 97403-1253, United States
| |
Collapse
|
14
|
Fernandez-Villamarin M, Sousa-Herves A, Porto S, Guldris N, Martínez-Costas J, Riguera R, Fernandez-Megia E. A dendrimer–hydrophobic interaction synergy improves the stability of polyion complex micelles. Polym Chem 2017. [DOI: 10.1039/c7py00304h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Leire E, Amaral SP, Louzao I, Winzer K, Alexander C, Fernandez-Megia E, Fernandez-Trillo F. Dendrimer mediated clustering of bacteria: improved aggregation and evaluation of bacterial response and viability. Biomater Sci 2016; 4:998-1006. [PMID: 27127812 DOI: 10.1039/c6bm00079g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we evaluate how cationic gallic acid-triethylene glycol (GATG) dendrimers interact with bacteria and their potential to develop new antimicrobials. We demonstrate that GATG dendrimers functionalised with primary amines in their periphery can induce the formation of clusters in Vibrio harveyi, an opportunistic marine pathogen, in a generation dependent manner. Moreover, these cationic GATG dendrimers demonstrate an improved ability to induce cluster formation when compared to poly(N-[3-(dimethylamino)propyl]methacrylamide) [p(DMAPMAm)], a cationic linear polymer previously shown to cluster bacteria. Viability of the bacteria within the formed clusters and evaluation of quorum sensing controlled phenotypes (i.e. light production in V. harveyi) suggest that GATG dendrimers may be activating microbial responses by maintaining a high concentration of quorum sensing signals inside the clusters while increasing permeability of the microbial outer membranes. Thus, the reported GATG dendrimers constitute a valuable platform for the development of novel antimicrobial materials that can target microbial viability and/or virulence.
Collapse
Affiliation(s)
- Emma Leire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
Sousa-Herves A, Novoa-Carballal R, Riguera R, Fernandez-Megia E. GATG dendrimers and PEGylated block copolymers: from synthesis to bioapplications. AAPS JOURNAL 2014; 16:948-61. [PMID: 25004824 DOI: 10.1208/s12248-014-9642-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/20/2014] [Indexed: 12/18/2022]
Abstract
Dendrimers are synthetic macromolecules composed of repetitive layers of branching units that emerge from a central core. They are characterized by a tunable size and precise number of peripheral groups which determine their physicochemical properties and function. Their high multivalency, functional surface, and globular architecture with diameters in the nanometer scale makes them ideal candidates for a wide range of applications. Gallic acid-triethylene glycol (GATG) dendrimers have attracted our attention as a promising platform in the biomedical field because of their high tunability and versatility. The presence of terminal azides in GATG dendrimers and poly(ethylene glycol) (PEG)-dendritic block copolymers allows their efficient functionalization with a variety of ligands of biomedical relevance including anionic and cationic groups, carbohydrates, peptides, or imaging agents. The resulting functionalized dendrimers have found application in drug and gene delivery, as antiviral agents and for the treatment of neurodegenerative diseases, in diagnosis and as tools to study multivalent carbohydrate recognition and dendrimer dynamics. Herein, we present an account on the preparation and recent applications of GATG dendrimers in these fields.
Collapse
Affiliation(s)
- Ana Sousa-Herves
- Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
17
|
Chabre YM, Roy R. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chem Soc Rev 2013; 42:4657-708. [PMID: 23400414 DOI: 10.1039/c3cs35483k] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycan-protein interactions are of utmost importance in several biological phenomena. Although the variety of carbohydrate residues in mammalian cells is limited to less than a dozen different sugars, their spatial topographical presentation in what is now associated as the "glycocodes" provides the fundamental keys for specific and high affinity "lock-in" recognition events associated with a wide range of pathologies. Toward deciphering our understanding of these glycocodes, chemists have developed new creative tools that included dendrimer chemistry in order to provide monodisperse multivalent glycoconjugates. This review provides a survey of the numerous aromatic architectures generated for the multivalent presentation of relevant carbohydrates using covalent attachment or supramolecular self-assemblies. The basic concepts toward their controlled syntheses will be described using modern synthetic procedures with a particular emphasis on powerful organometallic methodologies. The large variety of dendritic aromatic scaffolds, together with a brief survey of their unique biophysical and biological properties will be critically reviewed. The distinctiveness of the resulting multivalent glycoarchitectures, encompassing glycoclusters, glycodendrimers and molecularly defined self-assemblies, in forming well organized cross-linked lattices with multivalent carbohydrate binding proteins (lectins) together with their photophysical, medical, and imaging properties will also be briefly highlighted. The topic will be presented in increasing order of aromatic backbone complexities and will end with fullerenes together with self-assembled nanostructures, thus complementing the various scaffolds described in this special thematic issue dedicated to multivalent glycoscience.
Collapse
Affiliation(s)
- Yoann M Chabre
- Pharmaqam - Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | |
Collapse
|
18
|
de la Fuente M, Raviña M, Sousa-Herves A, Correa J, Riguera R, Fernandez-Megia E, Sánchez A, Alonso MJ. Exploring the efficiency of gallic acid-based dendrimers and their block copolymers with PEG as gene carriers. Nanomedicine (Lond) 2012; 7:1667-81. [DOI: 10.2217/nnm.12.51] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The synthesis of a new family of amino-functionalized gallic acid-triethylene glycol (GATG) dendrimers and their block copolymers with polyethylene glycol (PEG) has recently being disclosed. In addition, these dendrimers have shown potential for gene delivery applications, as they efficiently complex nucleic acids and form small and homogeneous dendriplexes. On this basis, the present study aimed to explore the interaction of the engineered dendriplexes with blood components, as well as their stability, cytotoxicity and ability to enter and transfect mammalian cells. Results show that GATG dendrimers can form stable dendriplexes, protect the associated pDNA from degradation, and are biocompatible with HEK-293T cells and erythrocytes. More importantly, dendriplexes are effectively internalized by HEK-293T cells, which are successfully transfected. Besides, PEGylation has a marked influence on the properties of the resulting dendriplexes. While PEGylated GATG dendrimers have improved biocompatibility, the long PEG chains limit their uptake by HEK-293T cells, and thus, their ability to transfect them. As a consequence, the degree of PEGylation in dendriplexes containing dendrimer/block copolymer mixtures emerges as an important parameter to be modulated in order to obtain an optimized stealth formulation able to effectively induce the expression of the encoded protein. Original submitted 29 November 2011; Revised submitted 8 March 2012; Published online 20 July 2012
Collapse
Affiliation(s)
- María de la Fuente
- Department of Pharmacy & Pharmaceutical Technology, Center for Molecular Medicine & Chronic Diseases, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuela Raviña
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Spain
| | - Ana Sousa-Herves
- Department of Organic Chemistry, Center for Research in Biological Chemistry & Molecular Materials (CIQUS), University of Santiago de Compostela, Spain
| | - Juan Correa
- Department of Organic Chemistry, Center for Research in Biological Chemistry & Molecular Materials (CIQUS), University of Santiago de Compostela, Spain
| | - Ricardo Riguera
- Department of Organic Chemistry, Center for Research in Biological Chemistry & Molecular Materials (CIQUS), University of Santiago de Compostela, Spain
| | - Eduardo Fernandez-Megia
- Department of Organic Chemistry, Center for Research in Biological Chemistry & Molecular Materials (CIQUS), University of Santiago de Compostela, Spain
| | - Alejandro Sánchez
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Spain
- Molecular Image Group, Instituto de Investigacion Sanitaria – Clinical Research Institute – of Santiago de Compostela (IDIS), Spain
| | - María José Alonso
- Department of Pharmacy & Pharmaceutical Technology, Center for Molecular Medicine & Chronic Diseases, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Quadir MA, Haag R. Biofunctional nanosystems based on dendritic polymers. J Control Release 2012; 161:484-95. [DOI: 10.1016/j.jconrel.2011.12.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/28/2011] [Accepted: 12/29/2011] [Indexed: 11/30/2022]
|
20
|
Albertazzi L, Fernandez-Villamarin M, Riguera R, Fernandez-Megia E. Peripheral functionalization of dendrimers regulates internalization and intracellular trafficking in living cells. Bioconjug Chem 2012; 23:1059-68. [PMID: 22482890 DOI: 10.1021/bc300079h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
GATG (gallic acid-triethylene glycol) dendrimers represent appealing nanostructures for biomedical applications. The incorporation of specific ligands and targeting and imaging agents on their surface has resulted in promising tools in diagnosis and drug delivery. With the aim to further explore the versatility of GATG dendrimers in the biomedical field, in this work we study the effect of peripheral substitution on their uptake and intracellular trafficking in living cells. To this end, peripheral groups with different physicochemical properties and biological relevance have been installed on the surface of GATG dendrimers, and their interactions, uptake efficacy, and specificity for certain cell populations studied by confocal microscopy. Finally, this information was used to design a pH-sensitive drug delivery system for the selective release of cargo molecules inside cells after lysosomal localization. These results along with the easy functionalization and modular architecture of GATG dendrimers reveal these systems as promising nanotools in biomedicine.
Collapse
Affiliation(s)
- Lorenzo Albertazzi
- NEST , Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | | | | | | |
Collapse
|