1
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor-Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2023; 62:e202214390. [PMID: 36322458 PMCID: PMC10099577 DOI: 10.1002/anie.202214390] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 11/05/2022]
Abstract
A novel class of highly activated donor-acceptor cyclopropanes bearing only a single, vinylogous acceptor is presented. These strained moieties readily undergo cycloadditions with aldehydes, ketones, thioketones, nitriles, naphth-2-ols and various other substrates to yield the corresponding carbo- and heterocycles. Diastereocontrol can be achieved through the choice of catalyst (Brønsted or Lewis acid). The formation of tetrahydrofurans was shown to be highly enantiospecific when chiral cyclopropanes are employed. A series of mechanistic and kinetic experiments was conducted to elucidate a plausible catalytic cycle and to rationalize the stereochemical outcome.
Collapse
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Oliver Hergert
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität FreiburgInstitute of Organic ChemistryAlbertstraße 2179104Freiburg (Breisgau)Germany
| |
Collapse
|
2
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor‐Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Oliver Hergert
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität Freiburg Institute of Organic Chemistry Albertstraße 21 79104 Freiburg (Breisgau) Germany
| |
Collapse
|
3
|
Mori T, Abe I. Structural basis for endoperoxide-forming oxygenases. Beilstein J Org Chem 2022; 18:707-721. [PMID: 35821691 PMCID: PMC9235837 DOI: 10.3762/bjoc.18.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Endoperoxide natural products are widely distributed in nature and exhibit various biological activities. Due to their chemical features, endoperoxide and endoperoxide-derived secondary metabolites have attracted keen attention in the field of natural products and organic synthesis. In this review, we summarize the structural analyses, mechanistic investigations, and proposed reaction mechanisms of endoperoxide-forming oxygenases, including cyclooxygenase, fumitremorgin B endoperoxidase (FtmOx1), and the asnovolin A endoperoxygenase NvfI.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Kassin VEH, Toupy T, Petit G, Bianchi P, Salvadeo E, Monbaliu JCM. Metal-free hydroxylation of tertiary ketones under intensified and scalable continuous flow conditions. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00073-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
5
|
Affiliation(s)
- Hoang M. Le
- Department of Chemistry and Center for New Directions in Organic Synthesis; Hanyang University; Sungdong-Gu 04763 Seoul South Korea
| | - Hung D. Mac
- Faculty of Chemistry; Vietnam National University-Hanoi University of Science; 19 Le Thanh Tong, Hoan Kiem Ha Noi Vietnam
| | - Chang Ho Oh
- Department of Chemistry and Center for New Directions in Organic Synthesis; Hanyang University; Sungdong-Gu 04763 Seoul South Korea
| | - Dung T. Do
- Faculty of Chemistry; Vietnam National University-Hanoi University of Science; 19 Le Thanh Tong, Hoan Kiem Ha Noi Vietnam
| |
Collapse
|
6
|
Bityukov OV, Vil' VA, Sazonov GK, Kirillov AS, Lukashin NV, Nikishin GI, Terent'ev AO. Kharasch reaction: Cu-catalyzed and non-Kharasch metal-free peroxidation of barbituric acids. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Li Y, Li L, Lu X, Bai Y, Wang Y, Wu Y, Zhong F. Bioinspired radical cyclization of tryptamines: synthesis of peroxypyrroloindolenines as potential anti-cancer agents. Chem Commun (Camb) 2019; 55:63-66. [DOI: 10.1039/c8cc08866g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspired by the heme iron-catalyzed radical insertion of dioxygen to the tryptophan indole ring, herein we utilize alkylperoxy radical species as a coupling partner to trigger a peroxycyclization of readily accessible tryptophan derivatives and enable the first synthesis of peroxypyrroloindolenines.
Collapse
Affiliation(s)
- Yan Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Longjie Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Xunbo Lu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Yulong Bai
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Yufan Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- China
| |
Collapse
|
8
|
Chapuis C, Richard CA. A One Pot Synthesis of Dehydrohedione (DHH) from a Hedione
®
Precursor. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian Chapuis
- Corporate R&D Division, New Ingredients; Firmenich SA; P.O.Box 239 CH-1211 Geneva 8 Switzerland
| | - Claude-Alain Richard
- Corporate R&D Division, New Ingredients; Firmenich SA; P.O.Box 239 CH-1211 Geneva 8 Switzerland
| |
Collapse
|
9
|
Qiao X, Biswas S, Wu W, Zhu F, Tung CH, Wang Y. Selective endoperoxide formation by heterogeneous TiO 2 photocatalysis with dioxygen. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Asano Y, Nagasawa Y, Yamaguchi E, Itoh A. Aerobic Photooxidative Synthesis of β-Alkoxy Monohydroperoxides Using an Organo Photoredox Catalyst Controlled by a Base. Chem Asian J 2018; 13:409-412. [DOI: 10.1002/asia.201701742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Yuya Asano
- Department of Organic and Medicinal Chemistry; Gifu Pharmaceutical University; Gifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Yoshitomo Nagasawa
- Department of Organic and Medicinal Chemistry; Gifu Pharmaceutical University; Gifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Eiji Yamaguchi
- Department of Organic and Medicinal Chemistry; Gifu Pharmaceutical University; Gifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| | - Akichika Itoh
- Department of Organic and Medicinal Chemistry; Gifu Pharmaceutical University; Gifu Pharmaceutical University 1-25-4, Daigaku-nishi Gifu 501-1196 Japan
| |
Collapse
|
11
|
Affiliation(s)
- Martin Klussmann
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
12
|
Combe SH, Hosseini A, Song L, Hausmann H, Schreiner PR. Catalytic Halogen Bond Activation in the Benzylic C-H Bond Iodination with Iodohydantoins. Org Lett 2017; 19:6156-6159. [PMID: 29086567 DOI: 10.1021/acs.orglett.7b03034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This letter presents the side-chain iodination of electron-deficient benzylic hydrocarbons at rt using N-hydroxyphthalimide (NHPI) as radical initiator and 1,3-diiodo-5,5-dimethylhydantoin and 3-iodo-1,5,5-trimethylhydantoin (3-ITMH) as iodine source. Addition of a carboxylic acid increased the reactivity due to complex formation with and activation of 3-ITMH by proton transfer and halogen bond formation. No SEAr reactions were observed under the employed reaction conditions. Our method enables convenient product isolation and gives 50-72% yields of isolated products.
Collapse
Affiliation(s)
- Sascha H Combe
- Institute of Organic Chemistry, Justus-Liebig University , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Abolfazl Hosseini
- Institute of Organic Chemistry, Justus-Liebig University , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Lijuan Song
- Institute of Organic Chemistry, Justus-Liebig University , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Heike Hausmann
- Institute of Organic Chemistry, Justus-Liebig University , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus-Liebig University , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
13
|
Lan Y, Chang XH, Fan P, Shan CC, Liu ZB, Loh TP, Xu YH. Copper-Catalyzed Silylperoxidation Reaction of α,β-Unsaturated Ketones, Esters, Amides, and Conjugated Enynes. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02754] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yun Lan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xi-Hao Chang
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Cui-Cui Shan
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zi-Bai Liu
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Teck-Peng Loh
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute
of Advanced Synthesis, Jiangsu National Synergetic Innovation Center
for Advanced Materials, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637616
| | - Yun-He Xu
- Department
of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
14
|
Mierina I, Jure M, Zeberga S, Makareviciene V, Zicane D, Tetere Z, Ravina I. Novel type of carbon‐centered antioxidants arylmethyl Meldrum's acids − inhibit free radicals. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Inese Mierina
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| | - Mara Jure
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| | - Sindija Zeberga
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
- Latvian Institute of Organic SynthesisRigaLatvia
| | - Violeta Makareviciene
- Faculty of Forest Sciences and EcologyAleksandras Stulginskis UniversityAkademijaKaunas Distr.Lithuania
| | - Daina Zicane
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| | - Zenta Tetere
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| | - Irisa Ravina
- Institute of Technology of Organic ChemistryFaculty of Materials Science and Applied ChemistryRiga Technical UniversityRigaLatvia
| |
Collapse
|
15
|
Giarrusso J, Do DT, Johnson JS. Chemoselective and Diastereoconvergent Cu(II)-Catalyzed Aerobic Endoperoxidation of Polycarbonyls. Org Lett 2017; 19:3107-3110. [DOI: 10.1021/acs.orglett.7b01225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James Giarrusso
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Dung T. Do
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey S. Johnson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
16
|
Terent'ev AO, Vil' VA, Gorlov ES, Rusina ON, Korlyukov AA, Nikishin GI, Adam W. Selective Oxidative Coupling of 3H-Pyrazol-3-ones, Isoxazol-5(2H)-ones, Pyrazolidine-3,5-diones, and Barbituric Acids with Malonyl Peroxides: An Effective C-O Functionalization. ChemistrySelect 2017. [DOI: 10.1002/slct.201700720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
- All-Russian Research Institute for Phytopathology; B. Vyazyomy Moscow Region 143050 Russian Federation
| | - Vera A. Vil'
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
- All-Russian Research Institute for Phytopathology; B. Vyazyomy Moscow Region 143050 Russian Federation
| | - Evgenii S. Gorlov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
| | - Olga N. Rusina
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova ul Moscow 119991 Russian Federation
- Pirogov Russian National Research Medical University; Ostrovitianov str. 1 Moscow 117997 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
| | - Waldemar Adam
- Institute of Organic Chemistry; University of Würzburg; Am Hubland, D- 97074 Würzburg Germany
- Department of Chemistry, Faculty of Natural Sciences; University of Puerto Rico; Rio Piedras Puerto Rico 00931 USA
| |
Collapse
|
17
|
Liu H, Wang M, Li H, Luo N, Xu S, Wang F. New protocol of copper-catalyzed oxidative C(CO) C bond cleavage of aryl and aliphatic ketones to organic acids using O2 as the terminal oxidant. J Catal 2017. [DOI: 10.1016/j.jcat.2016.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Gandhi H, O'Reilly K, Gupta MK, Horgan C, O'Leary EM, O'Sullivan TP. Advances in the synthesis of acyclic peroxides. RSC Adv 2017. [DOI: 10.1039/c6ra28489b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This review summarises the many developments in the synthesis of acyclic peroxides, with a particular focus on the past 20 years, and seeks to update organic chemists about these new approaches.
Collapse
Affiliation(s)
- H. Gandhi
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - K. O'Reilly
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - M. K. Gupta
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - C. Horgan
- Department of Chemistry
- University College Cork
- Cork
- Ireland
| | - E. M. O'Leary
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| | - T. P. O'Sullivan
- Department of Chemistry
- University College Cork
- Cork
- Ireland
- Analytical and Biological Chemistry Research Facility
| |
Collapse
|
19
|
Zhao HW, Tian T, Pang HL, Li B, Chen XQ, Yang Z, Meng W, Song XQ, Zhao YD, Liu YY. Organocatalytic [3+2] Cycloadditions of Barbiturate-Based Olefins with 3-Isothiocyanato Oxindoles: Highly Diastereoselective and Enantioselective Synthesis of Dispirobarbiturates. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600270] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hong-Wu Zhao
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| | - Ting Tian
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| | - Hai-Liang Pang
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| | - Bo Li
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| | - Xiao-Qin Chen
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| | - Zhao Yang
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| | - Wei Meng
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| | - Xiu-Qing Song
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| | - Yu-Di Zhao
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| | - Yue-Yang Liu
- College of Life Science and Bio-engineering; Beijing University of Technology; Beijing 100124 People's Republic of China
| |
Collapse
|
20
|
Okada A, Nagasawa Y, Yamaguchi T, Yamaguchi E, Tada N, Miura T, Itoh A. Synthesis of 2-hydroxymalonic acid derivatives via tandem oxidation and rearrangement by photo organic catalysis. RSC Adv 2016. [DOI: 10.1039/c6ra07084a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This report describes a mild method for the direct transformation of β-oxoesters to the corresponding tartronic esters using singlet oxygen produced by a catalytic amount of methylene blue and visible light irradiation using fluorescent lamps.
Collapse
Affiliation(s)
- Akifumi Okada
- Gifu Pharmaceutical University 1-25-4
- Gifu 501-1196
- Japan
| | | | | | | | - Norihiro Tada
- Gifu Pharmaceutical University 1-25-4
- Gifu 501-1196
- Japan
| | - Tsuyoshi Miura
- Tokyo University of Pharmacy and Life Sciences
- Tokyo 192-0392
- Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University 1-25-4
- Gifu 501-1196
- Japan
| |
Collapse
|
21
|
Yang W, Cao J, Zhang M, Lan R, Zhu L, Du G, He S, Lee CS. Systemic study on the biogenic pathways of yezo’otogirins: total synthesis and antitumor activities of (±)-yezo’otogirin C and its structural analogues. J Org Chem 2015; 80:836-46. [PMID: 25517288 DOI: 10.1021/jo502267g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A systematic study of the biomimetic pathways to yezo’otogirin C under aerobic and anaerobic conditions has been investigated, and both are found to be feasible pathways to the natural product depending on the physiological conditions. Because of the lower activation energy, the aerobic process would be more favorable when the in vivo oxygen level is high. In the course of this study, a highly efficient synthetic route to (±)-yezo’otogirin C has been established in four steps (31% overall yield) from a readily available compound without using any protecting groups. The natural product and its structural analogues exhibited antitumor activities against several human cancer cell lines and appeared to arrest cell cycles in different phases.
Collapse
|
22
|
Fisher TJ, Mattson AE. Synthesis of α-peroxyesters via organocatalyzed O-H insertion of hydroperoxides and aryl diazoesters. Org Lett 2014; 16:5316-9. [PMID: 25265196 DOI: 10.1021/ol502494h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis of α-aryl peroxyesters, an unprecedented class of organic peroxide, via hydrogen-bond donor catalyzed O-H insertions of hydroperoxides and α-aryl diazoesters is reported. The method is applicable to a diverse set of substrates and the corresponding α-peroxyesters are typically isolated in high yield. Both thermogravimetric analysis and reactions with traditional peroxide reducing agents demonstrate the stability of α-peroxyesters.
Collapse
Affiliation(s)
- Thomas J Fisher
- Department of Chemistry and Biochemistry, The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | |
Collapse
|
23
|
Gesmundo NJ, Nicewicz DA. Cyclization-endoperoxidation cascade reactions of dienes mediated by a pyrylium photoredox catalyst. Beilstein J Org Chem 2014; 10:1272-81. [PMID: 24991279 PMCID: PMC4077508 DOI: 10.3762/bjoc.10.128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/06/2014] [Indexed: 11/23/2022] Open
Abstract
Triarylpyrylium salts were employed as single electron photooxidants to catalyze a cyclization-endoperoxidation cascade of dienes. The transformation is presumed to proceed via the intermediacy of diene cation radicals. The nature of the diene component was investigated in this context to determine the structural requirements necessary for successful reactivity. Several unique endoperoxide structures were synthesized in yields up to 79%.
Collapse
Affiliation(s)
- Nathan J Gesmundo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
24
|
He S, Yang W, Zhu L, Du G, Lee CS. Bioinspired Total Synthesis of (±)-Yezo’otogirin C. Org Lett 2013; 16:496-9. [DOI: 10.1021/ol403374h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuzhong He
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Wei Yang
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Lizhi Zhu
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Guangyan Du
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| | - Chi-Sing Lee
- Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China
| |
Collapse
|
25
|
Armstrong EL, Grover HK, Kerr MA. Scandium Triflate-Catalyzed Nucleophilic Additions to Indolylmethyl Meldrum’s Acid Derivatives via a Gramine-Type Fragmentation: Synthesis of Substituted Indolemethanes. J Org Chem 2013; 78:10534-40. [DOI: 10.1021/jo4017524] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erin L. Armstrong
- Department
of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Huck K. Grover
- Department
of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Michael A. Kerr
- Department
of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
26
|
Shul'pin GB. C–H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity. Dalton Trans 2013; 42:12794-818. [DOI: 10.1039/c3dt51004b] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|