1
|
Mothahalli Raju NK, Paul B, Tn L, Bodduna S, Kandukuri NK. Sulfur-Controlled Modulation of Peptoid Atropisomeric Foldamers. J Org Chem 2025; 90:4796-4807. [PMID: 40177955 DOI: 10.1021/acs.joc.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We incorporated the hetero atoms (O/S) at the ortho-position to investigate the steric influence on controlling the rotational barrier around the C-N chiral axis and to elucidate the chiral attributes of sulfur-containing N-aryl peptoids. This study reports the simultaneous installation of a C-N chiral axis and the integration of sulfur-containing stereogenic elements in peptoid atropisomeric foldamers. By leveraging multiple chiral elements in peptoids, we demonstrated subtle structural variations, particularly by varying the sulfur oxidation states, that can lead to significant differences in the rotational energy barrier, as determined by dynamic HPLC. Additionally, we employed single-crystal X-ray crystallography to elucidate local conformational ordering and computational studies to identify noncovalent interactions in this class of atropisomers. Through these combined approaches, we explored sulfur-controlled modulation of N-aryl peptoid atropisomeric foldamers.
Collapse
Affiliation(s)
| | - Bishwajit Paul
- Department of Chemistry, Bangalore University, Jnana Bharathi Campus, Bangalore 560056, India
| | - Lohith Tn
- The National Institute of Engineering, Mysuru 570008 Karnataka, India
| | - Sandeep Bodduna
- YMC Application Lab, YMC India Pvt. Ltd., IDA Jeedimetla, Medchal-Malkajgiri, Telangana 500055, India
| | - Nagesh Kumar Kandukuri
- YMC Application Lab, YMC India Pvt. Ltd., IDA Jeedimetla, Medchal-Malkajgiri, Telangana 500055, India
| |
Collapse
|
2
|
Bordas Z, Faure S, Roy O, Taillefumier C. Solid-Phase Synthesis of Peptoid Oligomers Containing Crowded tert-Butyl Side Chains. J Org Chem 2025; 90:4291-4301. [PMID: 40059653 DOI: 10.1021/acs.joc.5c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
N-tert-butyl-glycine (NtBu) is a known peptoid structure-inducing monomer. The hindered tert-butyl group exerts a major effect on the cis/trans isomerization of the NX-NtBu peptoid-amide bond, which adopts exclusively the cis-geometry. Incorporating this monomer into peptoid oligomers is therefore an excellent way of promoting specific secondary structures such as turns and polyproline type-I helices. However, the steric hindrance of the tert-butyl group has so far prevented the solid-phase synthesis of peptoid oligomers incorporating NtBu monomers. We report here for the first time solid-phase syntheses of NtBu-containing peptoids using a modified submonomer protocol. We have found that the success of the critical DIC-mediated acylation step depends on the addition of a base and/or basic pretreatment of the resin prior to the reaction. The use of chloroacetic acid instead of bromoacetic acid also improved the efficacy of the syntheses, as did a halogenoacetic acid preactivation stage. To demonstrate the effectiveness of the modified submonomer protocol, we synthesized homooligomers at sequence lengths of up to 12-mer and also applied it to the synthesis of various peptoids with highly congested NCα-gem-dimethyl side chains.
Collapse
Affiliation(s)
- Zacharie Bordas
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Sophie Faure
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Olivier Roy
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Claude Taillefumier
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Berlaga A, Torkelson K, Seal A, Pfaendtner J, Ferguson AL. A modular and extensible CHARMM-compatible model for all-atom simulation of polypeptoids. J Chem Phys 2024; 161:244901. [PMID: 39714012 DOI: 10.1063/5.0238570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Peptoids (N-substituted glycines) are a class of sequence-defined synthetic peptidomimetic polymers with applications including drug delivery, catalysis, and biomimicry. Classical molecular simulations have been used to predict and understand the conformational dynamics of single chains and their self-assembly into morphologies including sheets, tubes, spheres, and fibrils. The CGenFF-NTOID model based on the CHARMM General Force Field has demonstrated success in accurate all-atom molecular modeling of peptoid structure and thermodynamics. Extension of this force field to new peptoid side chains has historically required reparameterization of side chain bonded interactions against ab initio data. This fitting protocol improves the accuracy of the force field but is also burdensome and precludes modular extensibility of the model to arbitrary peptoid sequences. In this work, we develop and demonstrate a Modular Side Chain CGenFF-NTOID (MoSiC-CGenFF-NTOID) as an extension of CGenFF-NTOID employing a modular decomposition of the peptoid backbone and side chain parameterizations, wherein arbitrary side chains within the large family of substituted methyl groups (i.e., -CH3, -CH2R, -CHRR', and -CRR'R″) are directly ported from CGenFF. We validate this approach against ab initio calculations and experimental data to develop a MoSiC-CGenFF-NTOID model for all 20 natural amino acid side chains along with 13 commonly used synthetic side chains and present an extensible paradigm to efficiently determine whether a novel side chain can be directly incorporated into the model or whether refitting of the CGenFF parameters is warranted. We make the model freely available to the community along with a tool to perform automated initial structure generation.
Collapse
Affiliation(s)
- Alex Berlaga
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Kaylyn Torkelson
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Aniruddha Seal
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - Jim Pfaendtner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Andrew L Ferguson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Rai Deka JK, Sahariah B, Sarma BK. Understanding the Cis-Trans Amide Bond Isomerization of N, N'-Diacylhydrazines to Develop Guidelines for A Priori Prediction of Their Most Stable Solution Conformers. J Org Chem 2024; 89:10419-10433. [PMID: 36700530 DOI: 10.1021/acs.joc.2c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
N,N'-diacylhydrazines (R1CO-NR3-NR4-COR2) are a class of small molecules with a wide range of applications in chemistry and biology. They are structurally unique in the sense that their two amide groups are connected via a N-N single bond, and as a result, these molecules can exist in eight different isomeric forms. Four of these are amide isomers [trans-trans (t-t), trans-cis (t-c), cis-trans (c-t), and cis-cis (c-c)] arising from C-N bond restricted rotation. In addition, each of these amide isomers can exist in two different isomeric forms due to N-N bond restricted rotation, especially when R3 and R4 groups are relatively bigger. Herein, we have systematically investigated the conformations of 55 N,N'-diacylhydrazines using a combination of solution NMR spectroscopy, X-ray crystallography, and density functional theory calculations. Our data suggest that when the substituents R3 and R4 on the nitrogen atoms are both hydrogens. These molecules prefer twisted trans-trans (t-t) (>90%) geometries (H-N-C═O ∼ 180°), whereas the N-alkylated and N,N'-dialkylated molecules prefer twisted trans-cis (t-c) geometries. Herein, we have analyzed the stabilization of the various isomers of these molecules in light of steric and stereoelectronic effects. We provide a guideline to a priori predict the most stable conformers of the N,N'-diacylhydrazines just by examining their substituents (R1-R4).
Collapse
Affiliation(s)
- Jugal Kishore Rai Deka
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Bani Kanta Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| |
Collapse
|
5
|
Derat E, Masson G, Claraz A. Electrochemically-Driven 1,4-Aryl Migration via Radical Fluoromethylation of N-Allylbenzamides: a Straightforward Access to Functionalized β-Arylethylamines. Angew Chem Int Ed Engl 2024; 63:e202406017. [PMID: 38687085 DOI: 10.1002/anie.202406017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
An electrochemical radical Truce Smiles rearrangement of N-allylbenzamides is documented herein. The selective 1,4-aryl migration was triggered by the radical fluoromethylation of the alkene providing a direct route to fluoro derivatives of the highly privileged β-arylethylamine pharmacophore. This practical transformation utilizes readily available starting materials and employs an electrical current to drive the oxidative process under mild reaction conditions. It accommodates a variety of migratory aryl groups with different electronic properties and substitution patterns. Careful selection of the protecting group on the nitrogen atom of the N-allylbenzamide is crucial to outcompete the undesired 6-endo cyclization and achieve high level of selectivity towards the 1,4-aryl migration. DFT calculations support the reaction mechanism and unveil the origin of selectivity between the two competitive pathways.
Collapse
Affiliation(s)
- Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, CC 229, 75252, Paris Cedex 05, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'lab, 8 rue de Rouen, 78440, Porcheville, France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles (ICSN), CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Anshulata, Vishnoi P, Kanta Sarma B. Conformational Studies of β-Azapeptoid Foldamers: A New Class of Peptidomimetics with Confined Dihedrals. Chemistry 2024; 30:e202303330. [PMID: 37948294 DOI: 10.1002/chem.202303330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Controlling amide bond geometries and the secondary structures of β-peptoids is a challenging task as they contain several rotatable single bonds in their backbone. Herein, we describe the synthesis and conformational properties of novel "β-azapeptoids" with confined dihedrals. We discuss how the acylhydrazide sidechains in these molecules enforce trans amide geometries (ω ~180°) via steric and stereoelectronic effects. We also show that the Θ(Cα -Cβ ) and Ψ(OC-Cα ) backbone torsions of β-azapeptoids occupy a narrow range (170-180°) that can be rationalized by the staggered conformational preference of the backbone methylene carbons and a novel backbone nO →σ*Cβ-N interaction discovered in this study. However, the ϕ (Cβ -N) torsion remains freely rotatable and, depending on ϕ, the sidechains can be parallel, perpendicular, and anti-parallel relative to each other. In fact, we observed parallel and perpendicular relative orientations of sidechains in the crystal geometries of β-azapeptoid dimers. We show that ϕ of β-azapeptoids can be controlled by incorporating a bulky substituent at the backbone β-carbon, which could provide complete control over all the backbone dihedrals. Finally, we show that the ϕ and Ψ dihedrals of β-azapeptoids resemble that of a PPII helix and they retain PPII structure when incorporated in Host-guest proline peptides.
Collapse
Affiliation(s)
- Anshulata
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, KA-560064, India
| | - Pratap Vishnoi
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, KA-560064, India
| | - Bani Kanta Sarma
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, KA-560064, India
| |
Collapse
|
7
|
Kelemen ÁA, Perczel A, Horváth D, Jákli I. Amide isomerization pathways: Electronic and structural background of protonation- and deprotonation-mediated cis-trans interconversions. J Chem Phys 2023; 159:154301. [PMID: 37843061 DOI: 10.1063/5.0165772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
The cis-trans isomerization of amide bonds leads to wide range of structural and functional changes in proteins and can easily be the rate-limiting step in folding. The trans isomer is thermodynamically more stable than the cis, nevertheless the cis form can play a role in biopolymers' function. The molecular system of N-methylacetamide · 2H2O is complex enough to reveal energetics of the cis-trans isomerization at coupled cluster single-double and coupled cluster single-double and perturbative triple [CCSD(T)] levels of theory. The cis-trans isomerization cannot be oversimplified by a rotation along ω, since this rotation is coupled with the N-atom pyramidal inversion, requesting the introduction of a second dihedral angle "α." Full f(ω,α) potential energy surfaces of the different amide protonation states, critical points and isomerization reaction paths were determined, and the barriers of the neutral, O-protonated and N-deprotonated amides were found too high to allow cis-trans interconversion at room temperature: ∼85, ∼140, and ∼110 kJ mol-1, respectively. For the N-protonated amide bond, the cis form (ω = 0°) is a maximum rather than a minimum, and each ω state is accessible for less than ∼10 kJ mol-1. Here we outline a cis-trans isomerization pathway with a previously undescribed low energy transition state, which suggests that the proton is transferred from the more favorable O- to the N-protonation site with the aid of nearby water molecules, allowing the trans → cis transition to occur at an energy cost of ≤11.6 kJ mol-1. Our results help to explain why isomerase enzymes operate via protonated amide bonds and how N-protonation of the peptide bond occurs via O-protonation.
Collapse
Affiliation(s)
- Ádám A Kelemen
- HUN-REN-ELTE Protein Modelling Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - András Perczel
- HUN-REN-ELTE Protein Modelling Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Dániel Horváth
- HUN-REN-ELTE Protein Modelling Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Imre Jákli
- HUN-REN-ELTE Protein Modelling Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
8
|
Yamasaki R, Ono M, Morita K, Ito A, Fukuda K, Okamoto I. Structures and Reactivities of N-Alkenyl-Substituted Anilides: The "Magic" Methyl Effect on Alkene. J Org Chem 2023; 88:14487-14493. [PMID: 37768066 DOI: 10.1021/acs.joc.3c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Methyl substitution at the double bond of N-alkenyl anilides influences both the preferred conformation and the susceptibility to acidic hydrolysis. The R1-substituted amide favors the trans conformation, whereas amides substituted at R2 or R3 favor the cis conformation. Substitution at the R1 and R3 positions increases the ratio of the trans conformer. DFT study indicated that these conformational preferences can be explained in terms of substituent-induced torsion twisting of the N-alkenyl moiety relative to the amide plane. R1 substitution enhances the susceptibility to acidic hydrolysis, whereas R2 or R3 substitution increases the stability. The effect of the double bond on the conformational effect was showcased by contrasting the preferred conformation of R1-substituted anilide (trans) and hydrogenated N-isopropyl amide (cis).
Collapse
Affiliation(s)
- Ryu Yamasaki
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 1948543, Japan
| | - Mariko Ono
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 1948543, Japan
| | - Kento Morita
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 1948543, Japan
| | - Ai Ito
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 1948543, Japan
| | - Kazuo Fukuda
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 1948543, Japan
| | - Iwao Okamoto
- Showa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 1948543, Japan
| |
Collapse
|
9
|
Dewis LI, Rudrakshula M, Williams C, Chiarparin E, Myers EL, Butts CP, Aggarwal VK. Conformationally Controlled sp 3 -Hydrocarbon-Based α-Helix Mimetics. Angew Chem Int Ed Engl 2023; 62:e202301209. [PMID: 37017133 PMCID: PMC10953326 DOI: 10.1002/anie.202301209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/06/2023]
Abstract
With over 60 % of protein-protein interfaces featuring an α-helix, the use of α-helix mimetics as inhibitors of these interactions is a prevalent therapeutic strategy. However, methods to control the conformation of mimetics, thus enabling maximum efficacy, can be restrictive. Alternatively, conformation can be controlled through the introduction of destabilizing syn-pentane interactions. This tactic, which is often adopted by Nature, is not a common feature of lead optimization owing to the significant synthetic effort required. Through assembly-line synthesis with NMR and computational analysis, we have shown that alternating syn-anti configured contiguously substituted hydrocarbons, by avoiding syn-pentane interactions, adopt well-defined conformations that present functional groups in an arrangement that mimics the α-helix. The design of a p53 mimetic that binds to Mdm2 with moderate to good affinity, demonstrates the therapeutic promise of these scaffolds.
Collapse
Affiliation(s)
- Lydia I. Dewis
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | | | | | - Eddie L. Myers
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- School of Biological and Chemical SciencesUniversity of GalwayUniversity RoadGalwayIreland
| | - Craig P. Butts
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | |
Collapse
|
10
|
Eastwood JRB, Weisberg EI, Katz D, Zuckermann RN, Kirshenbaum K. Guidelines for designing peptoid structures: Insights from the
Peptoid Data Bank. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
| | | | - Dana Katz
- Department of Chemistry New York University New York New York USA
| | | | - Kent Kirshenbaum
- Department of Chemistry New York University New York New York USA
| |
Collapse
|
11
|
Angelici G, Bhattacharjee N, Pypec M, Jouffret L, Didierjean C, Jolibois F, Perrin L, Roy O, Taillefumier C. Unveiling the conformational landscape of achiral all- cis tert-butyl β-peptoids. Org Biomol Chem 2022; 20:7907-7915. [PMID: 36173021 DOI: 10.1039/d2ob01351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and conformational study of N-substituted β-alanines with tert-butyl side chains is described. The oligomers prepared by submonomer synthesis and block coupling methods are up to 15 residues long and are characterised by amide bonds in the cis-conformation. A conformational study comprising experimental solution NMR spectroscopy, X-ray crystallography and molecular modeling shows that despite their intrinsic higher conformational flexibility compared to their α-peptoid counterparts, this family of achiral oligomers adopt preferred secondary structures including a helical conformation close to that described with (1-naphthyl)ethyl side chains but also a novel ribbon-like conformation.
Collapse
Affiliation(s)
- Gaetano Angelici
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| | - Nicholus Bhattacharjee
- Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - Maxime Pypec
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| | - Laurent Jouffret
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| | | | - Franck Jolibois
- Université de Toulouse-INSA-UPS, LPCNO, CNRS UMR 5215, 135 av. Rangueil, F-31077, Toulouse, France
| | - Lionel Perrin
- Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE, UMR 5246, ICBMS, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - Olivier Roy
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| | - Claude Taillefumier
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, 63000 Clermont-Ferrand, France.
| |
Collapse
|
12
|
Purushotham M, Paul B, Govindachar DM, Singh AK, Periyasamy G, Peter SC. Ortho-halogen effects: n→π* interactions, halogen bonding, and deciphering chiral attributes in N-aryl glycine peptoid foldamers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Thurston R, Zantop V, Park KS, Maid H, Seitz A, Heinrich MR. pH-Dependent Conformational Switching of Amide Bonds─from Full trans to Full cis and Vice Versa. Org Lett 2022; 24:3488-3492. [PMID: 35544347 DOI: 10.1021/acs.orglett.2c00938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strategies enabling the pH-dependent conformational switching of amide bonds from trans to cis, and vice versa, are yet limited in the sense that, in a suitable pH range, one rotamer may be stabilized to a large extent while the complementary pH range only leads to a mixture of isomers. By exploiting the effects of steric demand and the interaction of the amide carbonyl with a positive charge, we herein present the first examples for reversible pH-dependent switching from full trans to full cis.
Collapse
Affiliation(s)
- Ryan Thurston
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Viviane Zantop
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Kristen Sodam Park
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Harald Maid
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Organic Chemistry II, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Anke Seitz
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Pharmaceutical Chemistry, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
14
|
Kalita D, Sahariah B, Mookerjee SP, Sarma BK. Strategies to Control the cis-trans Isomerization of Peptoid Amide Bonds. Chem Asian J 2022; 17:e202200149. [PMID: 35362652 DOI: 10.1002/asia.202200149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Peptoids are oligomers of N-substituted glycine units. They structurally resemble peptides but, unlike natural peptides, the side chains of peptoids are present on the amide nitrogen atoms instead of the α-carbons. The N-substitution improves cell-permeability of peptoids and enhance their proteolytic stability over natural peptides. Therefore, peptoids are ideal peptidomimetic candidates for drug discovery, especially for intracellular targets. Unfortunately, most peptoid ligands discovered so far possess moderate affinity towards their biological targets. The moderate affinity of peptoids for biomacromolecules is linked to their conformational flexibility, which causes substantial entropic loss during the peptoid-biomacromolecule binding process. The conformational flexibility of peptoids is caused by the lack of backbone chirality, absence of hydrogen bond donors (NH) in their backbone to form CO···HN hydrogen bonds and the facile cis-trans isomerization of their tertiary amide bonds. In recent years, many investigators have shown that the incorporation of specific side chains with unique steric and stereoelectronic features can favourably shift the cis-trans equilibria of peptoids towards one of the two isomeric forms. Such strategies are helpful to design homogenous peptoid oligomers having well defined secondary structures. Herein, we discuss the strategies developed over the years to control the cis-trans isomerization of peptoid amide bonds.
Collapse
Affiliation(s)
- Debajit Kalita
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, INDIA
| | - Biswajit Sahariah
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, INDIA
| | | | - Bani Kanta Sarma
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, Rachenahalli Lake Road, Jakkur, 560064, India, 560064, Bangalore, INDIA
| |
Collapse
|
15
|
Abstract
Azapeptides undergo on-resin, late-stage N-alkylations to install side chains with high chemoselectivity for the hydrazide nitrogen atoms. The major product is the N1-alkylated "azapeptoid", with only small amounts (<10%) of alkylation occurring at the other aza-amino acid nitrogen (N2). Dialkylations are also possible and afford highly functionalized, disubstituted azapeptides with side chains installed on both aza-amino acid nitrogen atoms. The site-selectivity was determined using Edman degradation, MS/MS sequencing, and comparative LCMS and NMR analyses.
Collapse
Affiliation(s)
- Maxwell O Bowles
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
16
|
Pitcher NP, Harjani JR, Zhao Y, Jin J, Knight DR, Li L, Putsathit P, Riley TV, Carter GP, Baell JB. Development of 1,2,4-Oxadiazole Antimicrobial Agents to Treat Enteric Pathogens within the Gastrointestinal Tract. ACS OMEGA 2022; 7:6737-6759. [PMID: 35252669 PMCID: PMC8892681 DOI: 10.1021/acsomega.1c06294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Colonization of the gastrointestinal (GI) tract with pathogenic bacteria is an important risk factor for the development of certain potentially severe and life-threatening healthcare-associated infections, yet efforts to develop effective decolonization agents have been largely unsuccessful thus far. Herein, we report modification of the 1,2,4-oxadiazole class of antimicrobial compounds with poorly permeable functional groups in order to target bacterial pathogens within the GI tract. We have identified that the quaternary ammonium functionality of analogue 26a results in complete impermeability in Caco-2 cell monolayers while retaining activity against GI pathogens Clostridioides difficile and multidrug-resistant (MDR) Enterococcus faecium. Low compound recovery levels after oral administration in rats were observed, which suggests that the analogues may be susceptible to degradation or metabolism within the gut, highlighting a key area for optimization in future efforts. This study demonstrates that modified analogues of the 1,2,4-oxadiazole class may be potential leads for further development of colon-targeted antimicrobial agents.
Collapse
Affiliation(s)
- Noel P. Pitcher
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jitendra R. Harjani
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yichao Zhao
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jianwen Jin
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel R. Knight
- School
of Medical and Health Sciences, Edith Cowan
University, Joondalup, Western Australia 6027, Australia
- School of
Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Queen Elizabeth
II Medical Centre, Nedlands, Western Australia 6009, Australia
- Medical,
Molecular and Forensic Sciences, Murdoch
University, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Lucy Li
- Department
of Microbiology & Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Papanin Putsathit
- School
of Medical and Health Sciences, Edith Cowan
University, Joondalup, Western Australia 6027, Australia
- School of
Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Queen Elizabeth
II Medical Centre, Nedlands, Western Australia 6009, Australia
- Medical,
Molecular and Forensic Sciences, Murdoch
University, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Thomas V. Riley
- School
of Medical and Health Sciences, Edith Cowan
University, Joondalup, Western Australia 6027, Australia
- School of
Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Queen Elizabeth
II Medical Centre, Nedlands, Western Australia 6009, Australia
- Medical,
Molecular and Forensic Sciences, Murdoch
University, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Glen P. Carter
- Department
of Microbiology & Immunology, Peter Doherty Institute for Infection
and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Jonathan B. Baell
- School
of Pharmaceutical Sciences, Nanjing Tech
University, No. 30 South
Puzhu Road, Nanjing 211816, People’s Republic of China
- Medicinal
Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Australian
Translational Medicinal Chemistry Facility (ATMCF), Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
17
|
Purushotham M, Paul B, Gajula SNR, Sahariah B, Sonti R. Deciphering C–H⋯O/X weak hydrogen bonding and halogen bonding interactions in aromatic peptoids. NEW J CHEM 2022. [DOI: 10.1039/d2nj02616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We deciphered weak interactions in aromatic peptoids, such as C–H⋯O/X, and simultaneously identified strong interactions, including N–H⋯N and N–H⋯O, in this class of foldamer.
Collapse
Affiliation(s)
- Manasa Purushotham
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | - Bishwajit Paul
- Department of Chemistry, Jnana Bharathi Campus, Bangalore University, Bangalore 560056, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| |
Collapse
|
18
|
Shyam R, Forestier C, Charbonnel N, Roy O, Taillefumier C, Faure S. Solution‐Phase Synthesis of Backbone‐Constrained Cationic Peptoid Hexamers with Antibacterial and Anti‐Biofilm Activities. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Radhe Shyam
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| | | | | | - Olivier Roy
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| | - Claude Taillefumier
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| | - Sophie Faure
- Université Clermont Auvergne, Clermont Auvergne INP CNRS, ICCF F-63000 Clermont-Ferrand France
| |
Collapse
|
19
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
20
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Asano A, Nakagawa M, Miyajima C, Yasui M, Minoura K, Yamada T, Doi M. Effect of the powerful plasticity of the tert-butyl side chain on the conformational equilibrium of ascidiacyclamides. J Pept Sci 2021; 27:e3363. [PMID: 34462993 DOI: 10.1002/psc.3363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 11/06/2022]
Abstract
Ascidiacyclamide [cyclo(-Ile1,5 -oxazoline2,6 -d-Val3,7 -thiazole4,8 -)2 ] is a cytotoxic cyclic peptide from ascidian. Through structural analyses using monosubstituted analogues (Xaa1 : Ala, 2-aminobutyric acid, Val, cyclohexylglycine, and phenylglycine), we previously demonstrated the conformational equilibrium between its square and folded forms. As the bulkiness of the Xaa1 residue side chain was reduced, spontaneous folding was promoted, and the cytotoxicity decreased accordingly. In the present study, five disubstituted analogues in which a tert-leucine residue (Tle) was incorporated at the 5-position of the abovementioned monosubstituted analogues were synthesized, after which their structures were analyzed using X-ray diffraction, circular dichroism (CD) spectral measurements, and 1 H NMR-based quantitative analysis. The side chains of the Tle and Ile residues are structural isomers of one another, and the Tle residue bearing the tert-butyl group can be expected to play a role as a building block. In fact, peptides incorporating Tle5 exhibited much less spontaneous folding than their Ile5 counterparts in both crystal and solution. Increases in enthalpy and entropy due to the tert-butyl group during the folding process resulted in increased conformational free energy (ΔG°). The powerful plasticity of the tert-butyl group would stabilize the square form relating with cytotoxicity.
Collapse
Affiliation(s)
- Akiko Asano
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Maki Nakagawa
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Chihiro Miyajima
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Mami Yasui
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Katsuhiko Minoura
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takeshi Yamada
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Mitsunobu Doi
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
22
|
Pollastrini M, Lipparini F, Pasquinelli L, Balzano F, Barretta GU, Pescitelli G, Angelici G. A Proline Mimetic for the Design of New Stable Secondary Structures: Solvent-Dependent Amide Bond Isomerization of ( S)-Indoline-2-carboxylic Acid Derivatives. J Org Chem 2021; 86:7946-7954. [PMID: 34080867 PMCID: PMC8456495 DOI: 10.1021/acs.joc.1c00184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Indexed: 12/22/2022]
Abstract
A thorough experimental and computational study on the conformational properties of (S)-indoline-2-carboxylic acid derivatives has been conducted. Methyl (S)-1-acetylindoline-2-carboxylate, both a mimetic of proline and phenylalanine, shows a remarkable tendency toward the cis amide isomer when dissolved in polar solvents. This behavior is opposite to the general preference of proline for the trans isomer, making indoline-2-carboxylic acid a good candidate for the design of different secondary structures and new materials.
Collapse
Affiliation(s)
- Matteo Pollastrini
- Dipartimento di Chimica e Chimica Industriale,
Università di Pisa, Via G. Moruzzi 13, 56124 Pisa,
Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale,
Università di Pisa, Via G. Moruzzi 13, 56124 Pisa,
Italy
| | - Luca Pasquinelli
- Dipartimento di Chimica e Chimica Industriale,
Università di Pisa, Via G. Moruzzi 13, 56124 Pisa,
Italy
| | - Federica Balzano
- Dipartimento di Chimica e Chimica Industriale,
Università di Pisa, Via G. Moruzzi 13, 56124 Pisa,
Italy
| | - Gloria Uccello Barretta
- Dipartimento di Chimica e Chimica Industriale,
Università di Pisa, Via G. Moruzzi 13, 56124 Pisa,
Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale,
Università di Pisa, Via G. Moruzzi 13, 56124 Pisa,
Italy
| | - Gaetano Angelici
- Dipartimento di Chimica e Chimica Industriale,
Università di Pisa, Via G. Moruzzi 13, 56124 Pisa,
Italy
| |
Collapse
|
23
|
Connolly MD, Xuan S, Molchanova N, Zuckermann RN. Submonomer synthesis of sequence defined peptoids with diverse side-chains. Methods Enzymol 2021; 656:241-270. [PMID: 34325788 DOI: 10.1016/bs.mie.2021.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peptoids are a diverse family of sequence-defined oligomers of N-substituted glycine monomers, that can be readily accessed by the solid-phase submonomer synthesis method. Due to the versatility and efficiency of this chemistry, and the easy access to hundreds of potential monomers, there is an enormous potential sequence space that can be explored. This has enabled researchers from many different fields to custom-design peptoid sequences tailored to a wide variety of problems in biomedicine, nanoscience and polymer science. Here we provide detailed protocols for the synthesis of peptoids, using optimized protocols that can be performed by non-chemists. The submonomer method is fully compatible with Fmoc-peptide synthesis conditions, so the method is readily automated on existing automated peptide synthesizers using protocols provided here. Although the submonomer synthesis for peptoids is well established, there are special considerations required in order to access many of the most useful and desirable sidechains. Here we provide methods to include most of the amino-acid-like side chains, some of the most important non-natural monomer classes, as well as the creation of peptoid conjugates and peptide-peptoid hybrids.
Collapse
Affiliation(s)
- Michael D Connolly
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sunting Xuan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Natalia Molchanova
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ronald N Zuckermann
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|
24
|
Deka JKR, Sahariah B, Sakpal SS, Bar AK, Bagchi S, Sarma BK. Evidence of an n N(amide) → π* Ar Interaction in N-Alkyl- N, N'-diacylhydrazines. Org Lett 2021; 23:7003-7007. [PMID: 33973795 DOI: 10.1021/acs.orglett.1c00834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1,2-Dibenzoyl-1-tert-butylhydrazine (RH-5849) and related N-alkyl-N,N'-diacylhydrazines are environmentally benign insect growth regulators. Herein, we show that an unusual nN(amide) → π*Ar interaction mediated by a hydrazide amide nitrogen atom plays a crucial role in stabilizing their biologically active trans-cis (t-c) rotameric conformations. We provide NMR and IR spectroscopic evidence for the presence of these interactions, which is also supported by X-ray crystallographic and computational studies.
Collapse
Affiliation(s)
- Jugal Kishore Rai Deka
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sushil S Sakpal
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun Kumar Bar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 501507, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bani Kanta Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
25
|
Davern CM, Lowe BD, Rosfi A, Ison EA, Proulx C. Submonomer synthesis of peptoids containing trans-inducing N-imino- and N-alkylamino-glycines. Chem Sci 2021; 12:8401-8410. [PMID: 34221321 PMCID: PMC8221195 DOI: 10.1039/d1sc00717c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/09/2021] [Indexed: 11/21/2022] Open
Abstract
The use of hydrazones as a new type of submonomer in peptoid synthesis is described, giving access to peptoid monomers that are structure-inducing. A wide range of hydrazones were found to readily react with α-bromoamides in routine solid phase peptoid submonomer synthesis. Conditions to promote a one-pot cleavage of the peptoid from the resin and reduction to the corresponding N-alkylamino side chains were also identified, and both the N-imino- and N-alkylamino glycine residues were found to favor the trans-amide bond geometry by NMR, X-ray crystallography, and computational analyses.
Collapse
Affiliation(s)
- Carolynn M Davern
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| | - Brandon D Lowe
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| | - Adam Rosfi
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| | - Elon A Ison
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| | - Caroline Proulx
- Department of Chemistry, North Carolina State University Raleigh NC 27695-8204 USA
| |
Collapse
|
26
|
Legrand B, Maillard LT. α,β-Unsaturated γ-Peptide Foldamers. Chempluschem 2021; 86:629-645. [PMID: 33856125 DOI: 10.1002/cplu.202100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Indexed: 01/01/2023]
Abstract
Despite their concomitant emergence in the 1990s, γ-peptide foldamers have not developed as fast as β-peptide foldamers and to date, only a few γ-oligomer structures have been reported, and with sparse applications. Among these examples, sequences containing α,β-unsaturated γ-amino acids have recently drawn attention since the Z/E configurations of the double bond provide opposite planar restrictions leading to divergent conformational behaviors, from helix to extended structures. In this Review, we give a comprehensive overview of the developments of γ-peptide foldamers containing α,β-unsaturated γ-amino acids with examples of applications for health and catalysis, as well as materials science.
Collapse
Affiliation(s)
- Baptiste Legrand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, ENSCM, CNRS, Montpellier, France., 15 Av. Charles Flahault BP 14 491, 34093, Montpellier Cedex 5, France
| |
Collapse
|
27
|
Yang Y, Ying H, Li Z, Wang J, Chen Y, Luo B, Gray DL, Ferguson A, Chen Q, Z Y, Cheng J. Near quantitative synthesis of urea macrocycles enabled by bulky N-substituent. Nat Commun 2021; 12:1572. [PMID: 33692349 PMCID: PMC7947004 DOI: 10.1038/s41467-021-21678-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/13/2021] [Indexed: 11/09/2022] Open
Abstract
Macrocycles are unique molecular structures extensively used in the design of catalysts, therapeutics and supramolecular assemblies. Among all reactions reported to date, systems that can produce macrocycles in high yield under high reaction concentrations are rare. Here we report the use of dynamic hindered urea bond (HUB) for the construction of urea macrocycles with very high efficiency. Mixing of equal molar diisocyanate and hindered diamine leads to formation of macrocycles with discrete structures in nearly quantitative yields under high concentration of reactants. The bulky N-tert-butyl plays key roles to facilitate the formation of macrocycles, providing not only the kinetic control due to the formation of the cyclization-promoting cis C = O/tert-butyl conformation, but also possibly the thermodynamic stabilization of macrocycles with weak association interactions. The bulky N-tert-butyl can be readily removed by acid to eliminate the dynamicity of HUB and stabilize the macrocycle structures.
Collapse
Affiliation(s)
- Yingfeng Yang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hanze Ying
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhixia Li
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jiang Wang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Binbin Luo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Danielle L Gray
- George L. Clark X-Ray Facility & 3M Materials Laboratory, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Y Z
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
28
|
Stiernet P, Couturaud B, Bertrand V, Eppe G, De Winter J, Debuigne A. Ugi four-component polymerization of amino acid derivatives: a combinatorial tool for the design of polypeptoids. Polym Chem 2021. [DOI: 10.1039/d1py00109d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combinatorial Ugi-4C polymerization of amino acid derivatives is attractive for the future development of polypeptoids and resulting applications.
Collapse
Affiliation(s)
- Pierre Stiernet
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- Department of Chemistry
- University of Liege (ULiege)
- 4000 Liège
| | - Benoit Couturaud
- Univ Paris Est Creteil
- CNRS
- Institut de Chimie et des Matériaux Paris-Est (ICMPE)
- UMR 7182
- 94320 Thiais
| | - Virginie Bertrand
- MC2Lab – Laboratory of Mass Spectrometry
- MolSys Research Unit
- University of Liege (ULiege)
- B-4000 Liège
- Belgium
| | - Gauthier Eppe
- MC2Lab – Laboratory of Mass Spectrometry
- MolSys Research Unit
- University of Liege (ULiege)
- B-4000 Liège
- Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory
- University of Mons (UMons)
- 7000 Mons
- Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- Department of Chemistry
- University of Liege (ULiege)
- 4000 Liège
| |
Collapse
|
29
|
Wellhöfer I, Beck J, Frydenvang K, Bräse S, Olsen CA. Increasing the Functional Group Diversity in Helical β-Peptoids: Achievement of Solvent- and pH-Dependent Folding. J Org Chem 2020; 85:10466-10478. [PMID: 32806085 DOI: 10.1021/acs.joc.0c00780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report the synthesis of a series of bis-functionalized β-peptoid oligomers of the hexamer length. This was achieved by synthesizing and incorporating protected amino- or azido-functionalized chiral building blocks into precursor oligomers by a trimer segment coupling strategy. The resulting hexamers were readily elaborated to provide target compounds displaying amino groups, carboxy groups, hydroxy groups, or triazolo-pyridines, which should enable metal ion binding. Analysis of the novel hexamers by circular dichroism (CD) spectroscopy and 1H-13C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopy revealed robust helical folding propensity in acetonitrile. CD analysis showed a solvent-dependent degree of helical content in the structural ensembles when adding different ratios of protic solvents including an aqueous buffer. These studies were enabled by a substantial increase in solubility compared to previously analyzed β-peptoid oligomers. This also allowed for the investigation of the effect of pH on the folding propensity of the amino- and carboxy-functionalized oligomers, respectively. Interestingly, we could show a reversible effect of sequentially adding acid and base, resulting in a switching between compositions of folded ensembles with varying helical content. We envision that the present discoveries can form the basis for the development of functional peptidomimetic materials responsive to external stimuli.
Collapse
Affiliation(s)
- Isabelle Wellhöfer
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Janina Beck
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen D-76344, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
30
|
Xuan S, Zuckermann RN. Engineering the atomic structure of sequence-defined peptoid polymers and their assemblies. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Darapaneni CM, Ghosh P, Ghosh T, Maayan G. Unique β‐Turn Peptoid Structures and Their Application as Asymmetric Catalysts. Chemistry 2020; 26:9573-9579. [DOI: 10.1002/chem.202000595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Pritam Ghosh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Totan Ghosh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
32
|
Rahman MM, Liu C, Bisz E, Dziuk B, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. N-Acyl-glutarimides: Effect of Glutarimide Ring on the Structures of Fully Perpendicular Twisted Amides and N–C Bond Cross-Coupling. J Org Chem 2020; 85:5475-5485. [DOI: 10.1021/acs.joc.0c00227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Md. Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-373 Wrocław, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
33
|
Reese HR, Shanahan CC, Proulx C, Menegatti S. Peptide science: A "rule model" for new generations of peptidomimetics. Acta Biomater 2020; 102:35-74. [PMID: 31698048 DOI: 10.1016/j.actbio.2019.10.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Peptides have been heavily investigated for their biocompatible and bioactive properties. Though a wide array of functionalities can be introduced by varying the amino acid sequence or by structural constraints, properties such as proteolytic stability, catalytic activity, and phase behavior in solution are difficult or impossible to impart upon naturally occurring α-L-peptides. To this end, sequence-controlled peptidomimetics exhibit new folds, morphologies, and chemical modifications that create new structures and functions. The study of these new classes of polymers, especially α-peptoids, has been highly influenced by the analysis, computational, and design techniques developed for peptides. This review examines techniques to determine primary, secondary, and tertiary structure of peptides, and how they have been adapted to investigate peptoid structure. Computational models developed for peptides have been modified to predict the morphologies of peptoids and have increased in accuracy in recent years. The combination of in vitro and in silico techniques have led to secondary and tertiary structure design principles that mirror those for peptides. We then examine several important developments in peptoid applications inspired by peptides such as pharmaceuticals, catalysis, and protein-binding. A brief survey of alternative backbone structures and research investigating these peptidomimetics shows how the advancement of peptide and peptoid science has influenced the growth of numerous fields of study. As peptide, peptoid, and other peptidomimetic studies continue to advance, we will expect to see higher throughput structural analyses, greater computational accuracy and functionality, and wider application space that can improve human health, solve environmental challenges, and meet industrial needs. STATEMENT OF SIGNIFICANCE: Many historical, chemical, and functional relations draw a thread connecting peptides to their recent cognates, the "peptidomimetics". This review presents a comprehensive survey of this field by highlighting the width and relevance of these familial connections. In the first section, we examine the experimental and computational techniques originally developed for peptides and their morphing into a broader analytical and predictive toolbox. The second section presents an excursus of the structures and properties of prominent peptidomimetics, and how the expansion of the chemical and structural diversity has returned new exciting properties. The third section presents an overview of technological applications and new families of peptidomimetics. As the field grows, new compounds emerge with clear potential in medicine and advanced manufacturing.
Collapse
|
34
|
Rzeigui M, Traikia M, Jouffret L, Kriznik A, Khiari J, Roy O, Taillefumier C. Strengthening Peptoid Helicity through Sequence Site-Specific Positioning of Amide cis-Inducing NtBu Monomers. J Org Chem 2020; 85:2190-2201. [PMID: 31873018 DOI: 10.1021/acs.joc.9b02916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The synthesis of biomimetic helical secondary structures is sought after for the construction of innovative nanomaterials and applications in medicinal chemistry such as the development of protein-protein interaction modulators. Peptoids, a sequence-defined family of oligomers, enable a peptidomimetic strategy, especially considering the easily accessible monomer diversity and peptoid helical folding propensity. However, cis-trans isomerization of the backbone tertiary amides may impair the peptoid's adoption of stable secondary structures, notably the all-cis polyproline I-like helical conformation. Here, we show that cis-inducing NtBu achiral monomers strategically positioned within chiral sequences may reinforce the degree of peptoid helicity, although with a reduced content of chiral side chains. The design principles presented here will undoubtedly help achieve more conformationally stable helical peptoids with desired functions.
Collapse
Affiliation(s)
- Maha Rzeigui
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France.,Université de Carthage , Faculté Des Sciences de Bizerte, Laboratoire de Chimie Organique et Analytique, ISEFC, 2000 Bardo , Tunisie
| | - Mounir Traikia
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France
| | - Laurent Jouffret
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France
| | - Alexandre Kriznik
- Université de Lorraine , CNRS, IMoPA, F-54000 Nancy , France.,Université de Lorraine , CNRS, Inserm, UMS2008 IBSLor, Biophysics and Structural Biology Core Facility, F-54000 Nancy , France
| | - Jameleddine Khiari
- Université de Carthage , Faculté Des Sciences de Bizerte, Laboratoire de Chimie Organique et Analytique, ISEFC, 2000 Bardo , Tunisie
| | - Olivier Roy
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France
| | - Claude Taillefumier
- Université Clermont Auvergne , CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand , France
| |
Collapse
|
35
|
Zhao Q, Lalancette R, Szostak R, Szostak M. Ring-Opening Olefin Metathesis of Twisted Amides: Activation of Amide Bonds by C═C Cleavage. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Qun Zhao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- College of Chemistry and Chemical Engineering and Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi’an 710021, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
36
|
Wijaya AW, Nguyen AI, Roe LT, Butterfoss GL, Spencer RK, Li NK, Zuckermann RN. Cooperative Intramolecular Hydrogen Bonding Strongly Enforces cis-Peptoid Folding. J Am Chem Soc 2019; 141:19436-19447. [DOI: 10.1021/jacs.9b10497] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrew W. Wijaya
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Andy I. Nguyen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Leah T. Roe
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ryan K. Spencer
- Department of Chemistry, Department of Chemical Engineering & Material Science, University of California, Irvine, California 92697, United States
| | - Nan K. Li
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ronald N. Zuckermann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Morimoto J, Fukuda Y, Kuroda D, Watanabe T, Yoshida F, Asada M, Nakamura T, Senoo A, Nagatoishi S, Tsumoto K, Sando S. A Peptoid with Extended Shape in Water. J Am Chem Soc 2019; 141:14612-14623. [DOI: 10.1021/jacs.9b04371] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuhiro Fukuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Kuroda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takumu Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumihiko Yoshida
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mizue Asada
- Department of Materials Molecular Science, Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan
| | - Toshikazu Nakamura
- Department of Materials Molecular Science, Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki 444-8585, Japan
| | - Akinobu Senoo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
38
|
D'Amato A, Pierri G, Tedesco C, Della Sala G, Izzo I, Costabile C, De Riccardis F. Reverse Turn and Loop Secondary Structures in Stereodefined Cyclic Peptoid Scaffolds. J Org Chem 2019; 84:10911-10928. [PMID: 31339718 DOI: 10.1021/acs.joc.9b01509] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Controlling the network of intramolecular interactions encoded by Nα-chiral side chains and the equilibria between cis- and trans-amide junctions in cyclic peptoid architectures constitutes a significant challenge for the construction of stable reverse turn and loop structures. In this contribution, we reveal, with the support of NMR spectroscopy, single-crystal X-ray crystallography and density functional theory calculations, the relevant noncovalent interactions stabilizing tri-, tetra-, hexa-, and octameric cyclic peptoids (as free hosts and host-guest complexes) with strategically positioned N-(S)-(1-phenylethyl)/N-benzyl side chains, and how these interactions influence the backbone topological order. With the help of theoretical models and spectroscopic/diffractometric studies, we disclose new γ-/β-turn and loop structures present in α-peptoid-based macrocycles and classify them according ϕ, ψ, and ω torsion angles. In our endeavor to characterize emergent secondary structures, we solved the solid-state structure of the largest metallated cyclic peptoid ever reported, characterized by an unprecedented alternated cis/trans amide bond linkage. Overall, our results indicate that molecules endowed with different elements of asymmetry (central and conformational) provide new architectural elements of facile atroposelective construction and broad conformational stability as the minimalist scaffold for novel stereodefined peptidomimetic foldamers and topologically biased libraries necessary for future application of peptoids in all fields of science.
Collapse
Affiliation(s)
- Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Consiglia Tedesco
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Giorgio Della Sala
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Irene Izzo
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Chiara Costabile
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli" , University of Salerno , Via Giovanni Paolo II, 132 , Fisciano , Salerno 84084 Italy
| |
Collapse
|
39
|
Zborovsky L, Tigger‐Zaborov H, Maayan G. Sequence and Structure of Peptoid Oligomers Can Tune the Photoluminescence of an Embedded Ruthenium Dye. Chemistry 2019; 25:9098-9107. [DOI: 10.1002/chem.201901494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/01/2019] [Indexed: 01/31/2023]
Affiliation(s)
| | | | - Galia Maayan
- Technion-Israel Institute of Technology Haifa Israel
| |
Collapse
|
40
|
Pace V, Holzer W, Ielo L, Shi S, Meng G, Hanna M, Szostak R, Szostak M. 17O NMR and 15N NMR chemical shifts of sterically-hindered amides: ground-state destabilization in amide electrophilicity. Chem Commun (Camb) 2019; 55:4423-4426. [PMID: 30916689 DOI: 10.1039/c9cc01402k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The structure and spectroscopic properties of the amide bond are a topic of fundamental interest in chemistry and biology. Herein, we report 17O NMR and 15N NMR spectroscopic data for four series of sterically-hindered acyclic amides. Despite the utility of 17O NMR and 15N NMR spectroscopy, these methods are severely underutilized in the experimental determination of electronic properties of the amide bond. The data demonstrate that a combined use of 17O NMR and 15N NMR serves as a powerful tool in assessing electronic effects of the amide bond substitution as a measure of electrophilicity of the amide bond. Notably, we demonstrate that steric destabilization of the amide bond results in electronically-activated amides that are comparable in terms of electrophilicity to acyl fluorides and carboxylic acid anhydrides.
Collapse
Affiliation(s)
- Vittorio Pace
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, Vienna A-1090, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
A modular and efficient synthesis of highly twisted N-acylimidazoles is reported. These twist amides were characterized via X-ray crystallography, NMR spectroscopy, IR spectroscopy, and DFT calculations. Modification of the substituent proximal to the amide revealed a maximum torsional angle of 88.6° in the solid state, which may be the most twisted amide reported for a nonbicyclic system to date. Reactivity and stability studies indicate that these twisted N-acylimidazoles may be valuable, namely as acyl transfer reagents.
Collapse
Affiliation(s)
- Elizabeth A. Stone
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
42
|
Shyam R, Nauton L, Angelici G, Roy O, Taillefumier C, Faure S. NCα-gem-dimethylated peptoid side chains: A novel approach for structural control and peptide sequence mimetics. Biopolymers 2019; 110:e23273. [PMID: 30897209 DOI: 10.1002/bip.23273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
Abstract
The design of linear peptoid oligomers adopting well-defined secondary structures while mimicking defined peptide primary sequences is a major challenge in the context of drug discovery. To this end, chemists have developed cis-inducing peptoid side chains to build robust polyproline type I helices. However, the number of efficient examples remains scarce and chemical diversity accessible through the use of these side chains is limited. Herein, we introduce an array of NCα-gem-dimethylated peptoid residues mimicking proteinogenic amino acids. Submonomer synthesis and block-coupling approaches were explored to access heterooligomers incorporating these novel types of side chains. NMR studies of monomer and trimer models showed that the NCα-gem-dimethylated groups exert complete cis control on the backbone amide conformation. Lastly, a preliminary molecular modeling study gave an insight into the preferred orientation of the substituents of the NCα-gem-dimethyl side chains relative to the peptoid backbone.
Collapse
Affiliation(s)
- Radhe Shyam
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Lionel Nauton
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Gaetano Angelici
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Olivier Roy
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Claude Taillefumier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Sophie Faure
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
43
|
Wellhöfer I, Frydenvang K, Kotesova S, Christiansen AM, Laursen JS, Olsen CA. Functionalized Helical β-Peptoids. J Org Chem 2019; 84:3762-3779. [DOI: 10.1021/acs.joc.9b00218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Isabelle Wellhöfer
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Simona Kotesova
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Andreas M. Christiansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jonas S. Laursen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
44
|
Spencer RK, Butterfoss GL, Edison JR, Eastwood JR, Whitelam S, Kirshenbaum K, Zuckermann RN. Stereochemistry of polypeptoid chain configurations. Biopolymers 2019; 110:e23266. [DOI: 10.1002/bip.23266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ryan K. Spencer
- Department of Chemistry University of California Irvine California
- Department of Chemical Engineering & Materials Science University of California Irvine California
| | - Glenn L. Butterfoss
- Center for Genomics and Systems Biology New York University Abu Dhabi Abu Dhabi United Arab Emirates
| | - John R. Edison
- Martin A Fisher School of Physics Brandeis University Waltham Massachusetts
- Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California
| | | | - Stephen Whitelam
- Molecular Foundry Lawrence Berkeley National Laboratory Berkeley California
| | | | | |
Collapse
|
45
|
Kerres S, Plut E, Malcherek S, Rehbein J, Reiser O. Visible Light‐Mediated Synthesis of Enantiopure γ‐Cyclobutane Amino and 3‐(Aminomethyl)‐5‐phenylpentanoic Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sabine Kerres
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Eva Plut
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Simon Malcherek
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Julia Rehbein
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Oliver Reiser
- Institut für Organische ChemieUniversität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| |
Collapse
|
46
|
Baskin M, Zhu H, Qu ZW, Chill JH, Grimme S, Maayan G. Folding of unstructured peptoids and formation of hetero-bimetallic peptoid complexes upon side-chain-to-metal coordination. Chem Sci 2019; 10:620-632. [PMID: 30713653 PMCID: PMC6334629 DOI: 10.1039/c8sc03616k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/16/2018] [Indexed: 01/05/2023] Open
Abstract
Helices are key structural features in biopolymers, enabling a variety of biological functions. Mimicking these secondary structure motifs has wide potential in the development of biomimetic materials. Peptoids, N-substituted glycine oligomers, are an important class of peptide mimics that can adopt polyproline type helices if the majority of their sequence consists of chiral bulky pendent groups. Such side-chains are structure inducers but they have no functional value. We present here the inclusion of several metal-binding groups in one peptoid oligomer as a new platform towards the development of functional helical peptoids. Thus, we describe the coordination of two metal ions to unstructured peptoids incorporating four 8-hydroxyquinoline (HQ) ligands at fixed positions as two (HQ, HQ) metal binding sites, and a mixture of chiral benzyl and alkyl substituents in varied positions along the peptoid backbone. For the first time, we demonstrate by circular dichroism spectroscopy, solution NMR techniques and high-level DFT calculations that some of these unstructured peptoids can fold upon metal binding to form helical structures. Replacing one HQ ligand with a terpyridine (Terpy) ligand resulted in unique sequences that can selectively coordinate Cu2+ to the (Terpy, HQ) and Zn2+ (or Co2+) to the (HQ, HQ) sites from a solution mixture containing Cu2+ and Zn2+ (or Co2+) ions. Interestingly, the binding of Cu2+ to the (Terpy, HQ) site in one of these peptoids can initiate a conformational change that in turn facilitates the coordination of Zn2+ (or Co2+) ions to the (HQ, HQ) site, demonstrating a unique example of positive allosteric cooperativity in peptide mimics.
Collapse
Affiliation(s)
- Maria Baskin
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Technion City , Hailfa 32000 , Israel .
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry , Rheinische Friedrich-Wilhelms-Universität Bonn , Beringstrasse 4 , 53115 Bonn , Germany
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry , Rheinische Friedrich-Wilhelms-Universität Bonn , Beringstrasse 4 , 53115 Bonn , Germany
| | - Jordan H Chill
- Department of Chemistry , Bar-Ilan University , Ramat Gan 52900 , Israel
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry , Rheinische Friedrich-Wilhelms-Universität Bonn , Beringstrasse 4 , 53115 Bonn , Germany
| | - Galia Maayan
- Schulich Faculty of Chemistry , Technion - Israel Institute of Technology , Technion City , Hailfa 32000 , Israel .
| |
Collapse
|
47
|
Szostak R, Szostak M. Tröger's Base Twisted Amides: High Amide Bond Twist and N-/O-Protonation Aptitude. J Org Chem 2019; 84:1510-1516. [PMID: 30571109 DOI: 10.1021/acs.joc.8b02937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tröger's base twisted amides have emerged as attractive scaffolds to readily achieve substantial nonplanarity of the amide bond in a bicyclic lactam framework. Herein, we report structures and proton affinities of a diverse set of Tröger's base twisted amides and compare them with related nonplanar bridged lactams. The data demonstrate that Tröger's base twisted amides embedded in a [3.3.1] scaffold are among the most twisted bridged lactams prepared to date. Intriguingly, while these amides also favor N-protonation, our data show that the best model for probing N-protonation aptitude in the series of nonplanar amides are less twisted benzofused 1-azabicyclo[3.3.1]nonan-2-one derivatives. This work (1) provides the understanding for future design of nonplanar bridged lactams to directly access N-protonated amide bonds, (2) validates the use of the additive Winkler-Dunitz distortion parameter, and (3) emphasizes the importance of peripheral modification to modulate properties of nonplanar amides.
Collapse
Affiliation(s)
- Roman Szostak
- Department of Chemistry , Wroclaw University , F. Joliot-Curie 14 , Wroclaw 50-383 , Poland
| | - Michal Szostak
- Department of Chemistry , Rutgers University , 73 Warren Street , Newark , New Jersey 07102 , United States
| |
Collapse
|
48
|
Fuller AA, Huber J, Jimenez CJ, Dowell KM, Hough S, Ortega A, McComas KN, Kunkel J, Asuri P. Solution effects on the self‐association of a water‐soluble peptoid. Biopolymers 2018; 110:e23248. [DOI: 10.1002/bip.23248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Amelia A. Fuller
- Department of Chemistry and Biochemistry Santa Clara University Santa Clara California USA
| | - Jonathan Huber
- Department of Bioengineering Santa Clara University Santa Clara California USA
| | - Christian J. Jimenez
- Department of Chemistry and Biochemistry Santa Clara University Santa Clara California USA
| | - Kalli M. Dowell
- Department of Chemistry and Biochemistry Santa Clara University Santa Clara California USA
| | - Samuel Hough
- Department of Chemistry and Biochemistry Santa Clara University Santa Clara California USA
| | - Alberto Ortega
- Department of Chemistry and Biochemistry Santa Clara University Santa Clara California USA
| | - Kyra N. McComas
- Department of Chemistry and Biochemistry Santa Clara University Santa Clara California USA
| | - Jeffrey Kunkel
- Department of Bioengineering Santa Clara University Santa Clara California USA
| | - Prashanth Asuri
- Department of Bioengineering Santa Clara University Santa Clara California USA
| |
Collapse
|
49
|
Nguyen AI, Spencer RK, Anderson CL, Zuckermann RN. A bio-inspired approach to ligand design: folding single-chain peptoids to chelate a multimetallic cluster. Chem Sci 2018; 9:8806-8813. [PMID: 30746115 PMCID: PMC6335634 DOI: 10.1039/c8sc04240c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Synthesis of biomimetic multimetallic clusters is sought after for applications such as efficient storage of solar energy and utilization of greenhouse gases. However, synthetic efforts are hampered by a dearth of ligands that are developed for multimetallic clusters due to current limitations in rational design and organic synthesis. Peptoids, a synthetic sequence-defined oligomer, enable a biomimetic strategy to rapidly synthesize and optimize large, multifunctional ligands by structural design and combinatorial screening. Here we discover peptoid oligomers (≤7 residues) that fold into a single conformation to provide unprecedented tetra- and hexadentate chelation by carboxylates to a [Co4O4] cubane cluster. The structures of peptoid-bound cubanes were determined by 2D NMR spectroscopy, and their structures reveal key steric and side-chain-to-main chain interactions that work in concert to rigidify the peptoid ligand. This efficient ligand design strategy holds promise for creating new scaffolds for the abiotic synthesis and manipulation of multimetallic clusters.
Collapse
Affiliation(s)
- Andy I Nguyen
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA .
| | - Ryan K Spencer
- Department of Chemistry , Department of Chemical Engineering & Materials Science , University of California , Irvine , CA 92697 , USA
| | | | - Ronald N Zuckermann
- Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA .
| |
Collapse
|
50
|
Liu C, Shi S, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. The Most Twisted Acyclic Amides: Structures and Reactivity. Org Lett 2018; 20:7771-7774. [DOI: 10.1021/acs.orglett.8b03175] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shicheng Shi
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Yongmei Liu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Ruzhang Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|