1
|
Gao Y, Peng JY, Zhang YN, Zhao XL, Zhao YL. A copper-catalyzed tandem cyclization reaction of N-acyl enamines and electron-deficient alkynes: direct synthesis of alkynyl substituted pyridines. Org Biomol Chem 2025; 23:4441-4445. [PMID: 40207876 DOI: 10.1039/d5ob00390c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
A copper-catalyzed coupling-cyclization reaction of N-acyl enamides with electron-deficient alkynes is developed. This reaction tolerates a wide range of N-acyl enamines and provides a simple and efficient method for the synthesis of 3-alkynyl-substituted pyridines in good to high yields from easily available acyclic starting materials with only water and hydrogen as the by-products in a single step.
Collapse
Affiliation(s)
- Ying Gao
- Department of Stomatology, No. 964 Hospital, Changchun, Jilin 130021, China.
| | - Ju-Yin Peng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Na Zhang
- Department of Stomatology, No. 964 Hospital, Changchun, Jilin 130021, China.
| | - Xiao-Liang Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Song Y, Sun TY, Xia XF, Wang D. An electron donor-acceptor complex-initiated C-H trifluoromethylation and perfluoroalkylation of enamides and quinoxalinones. Org Biomol Chem 2024; 22:8317-8322. [PMID: 39311636 DOI: 10.1039/d4ob01228c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Facilitated by an electron donor-acceptor (EDA) complex, an efficient β-trifluoromethylation and perfluoroalkylation of enamides with Togni reagent or perfluoroalkyl iodides is presented under transition-metal-free, photocatalyst-free and mild reaction conditions. Notably, using this photocatalyst-free strategy, direct trifluoromethylation and perfluoroalkylation of quinoxalin-2(1H)-one derivatives was also achieved via a photoactive electron donor-acceptor complex.
Collapse
Affiliation(s)
- Yaqi Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Tian-Yu Sun
- Key Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, PR China.
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
3
|
Yang QQ, Zheng ZH, Wang M, Zhou J, Peng C, Du W, Zhan G, Han B. Ag-Catalyzed Switchable Synthesis of Site-Specifically Functionalized Pyrroles via Azafulvenium Intermediates. Org Lett 2024. [PMID: 38810217 DOI: 10.1021/acs.orglett.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Here, we present a versatile, silver-catalyzed multi-auto-tandem reaction involving enamines, alkynals, and nucleophiles, utilizing the highly reactive intermediate azafulvenium. This method allows for flexible and switchable regiodivergent reactions through either intermolecular or intramolecular nucleophilic attacks, which can be controlled by adjusting the catalytic conditions. A range of site-specific functionalized or polycyclic fused pyrrole products were efficiently produced with a high level of chemocontrol.
Collapse
Affiliation(s)
- Qian-Qian Yang
- School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- State Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ze-Hong Zheng
- School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Meng Wang
- School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jin Zhou
- School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wei Du
- State Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Gu Zhan
- School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- School of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
4
|
Ren J, Xu J, Kong X, Li J, Li K. Coordinating activation strategy enables 1,2-alkylamidation of alkynes. Chem Sci 2023; 14:11466-11473. [PMID: 37886104 PMCID: PMC10599465 DOI: 10.1039/d3sc03786j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The radical 1,2-difunctionalization reaction of alkynes has been evolved into a versatile approach for expeditiously increasing the complexity of the common feedstock alkyne. However, intermolecular 1,2-carboamidation with general alkyl groups is an unsolved problem. Herein, we show that a coordinating activation strategy could act as an efficient tool for enabling radical 1,2-alkylamidation of alkynes. With the employment of diacyl peroxides as both alkylating reagents and internal oxidants, a large library of β-alkylated enamides is constructed in a three-component manner from readily accessible amides and alkynes. This protocol exhibits broad substrate scope with good functional group compatibility and is amenable for late-stage functionalization of natural molecules and biologically compounds.
Collapse
Affiliation(s)
- Jing Ren
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| | - Xiangxiang Kong
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| | - Jinlong Li
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| | - Kaizhi Li
- Biopharmaceutical Research Institute, West China Hospital of Sichuan University 37 Guoxue Alley Chengdu 610041 P. R. China
| |
Collapse
|
5
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Gubaidullin RR, Spivak AY, Maistrenko VN, Parfenova LV. Au(I)‐Catalyzed Synthesis of [3,2‐
b
]pyrrole‐fused Pentacyclic Triterpenoids. ChemistrySelect 2022. [DOI: 10.1002/slct.202202241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rinat R. Gubaidullin
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | - Anna Yu. Spivak
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| | | | - Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis of Russian Academy of Sciences 141 Prospekt Oktyabrya Ufa 450075 Russian Federation
| |
Collapse
|
7
|
Jinkala R, Tadiparthi K, Raghunadh A, Shiva Kumar KB, Venkateshwarlu R, Siddaiah V, Ramamohan H. Iodine Mediated Oxidative Cross-Coupling of Benzo[ d]Imidazo[2,1- b]Thiazoles with Ethylbenzene: An Unprecedented Approach of C3-Dicarbonylation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2083198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rajesh Jinkala
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
- Department of Organic Chemistry and FDW, Andhra University, Visakhapatnam, India
| | | | - Akula Raghunadh
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - K. B. Shiva Kumar
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - Rapolu Venkateshwarlu
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - Vidavalur Siddaiah
- Department of Organic Chemistry and FDW, Andhra University, Visakhapatnam, India
| | - Hindupur Ramamohan
- Technology Development Centre, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| |
Collapse
|
8
|
Rakshit A, Dhara HN, Sahoo AK, Alam T, Patel BK. Pd(II)-Catalyzed Synthesis of Furo[2,3- b]pyridines from β-Ketodinitriles and Alkynes via Cyclization and N-H/C Annulation. Org Lett 2022; 24:3741-3746. [PMID: 35584095 DOI: 10.1021/acs.orglett.2c01472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A Pd(II)-catalyzed synthesis of furopyridines has been developed from β-ketodinitriles and alkynes via an unusual N-H/C annulation. The participation of both the nitrile groups and the concurrent construction of furan and pyridine rings through the formation of C-C, C═C, C-O, C-N, and C═N bonds are the important features. The synthetic applicability is further demonstrated through a series of postsynthetic alterations.
Collapse
Affiliation(s)
- Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
9
|
Thombal RS, Rubio PYM, Lee D, Maiti D, Lee YR. Modern Palladium-Catalyzed Transformations Involving C–H Activation and Subsequent Annulation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Raju S. Thombal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Peter Yuosef M. Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Daesung Lee
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Li W, Shi R, Chen S, Zhang X, Peng W, Chen S, Li J, Xu XM, Zhu YP, Wang X. Synthesis of Diverse Pentasubstituted Pyrroles by a Gold(I)-Catalyzed Cascade Rearrangement-Cyclization of Tertiary Enamide. J Org Chem 2022; 87:3014-3024. [DOI: 10.1021/acs.joc.1c02837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenzhong Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ran Shi
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sen Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xuesi Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wei Peng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Si Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xueyuan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Tao JY, Zhang QH, Zhu TH, Xu XW, Ni K, Zhao Q, Qin ZB, Zhang Y, Zhao L, Zhao K. Visible-light-initiated regio- and stereoselective C(sp 2)–H phosphorylation of enamides under transition-metal-free conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo01304e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A visible-light-induced stereo- and regioselective phosphorylation of enamides with phosphine oxides under transition-metal-free conditions has been disclosed.
Collapse
Affiliation(s)
- Ji-Yu Tao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Qing-Hong Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Tong-Hao Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Institute of Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Xin-Wen Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Kun Ni
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Qiao Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Zheng-Bao Qin
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Yu Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Kai Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Gao ZY, He Y, Li LY, Tian JS, Loh TP. BF 3-promoted reactions of α-amino acetals with alkynes to 2,5-disubstituted pyrroles. Org Chem Front 2022. [DOI: 10.1039/d2qo00405d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient BF3-promoted cyclization of α-amino acetals with alkynes for the assembly of substituted pyrroles has been developed. This cascade process can be easily achieved through a simple metal-free operation under mild conditions.
Collapse
Affiliation(s)
- Zhi-Yuan Gao
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Yu He
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Lan-Yang Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
13
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
14
|
Gu Q, Wang X, Liu X, Wu G, Xie Y, Shao Y, Zhao Y, Zeng X. Electrochemical sulfonylation of enamides with sodium sulfinates to access β-amidovinyl sulfones. Org Biomol Chem 2021; 19:8295-8300. [PMID: 34519742 DOI: 10.1039/d1ob01485d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical sulfonylation of enamides with sodium sulfinates was developed in an undivided cell in constant current mode, leading to the formation of β-amidovinyl sulfones in moderate to good yields. The catalyst-, electrolyte- and oxidant-free protocol features good functional group tolerance and employs electric current as a green oxidant. Mechanistic insights into the reaction indicate that the reaction may proceed via a radical mechanism.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xin Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xinyi Liu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Guixia Wu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yushan Xie
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, People's Republic of China.
| |
Collapse
|
15
|
Shen LW, Li TT, You Y, Zhao JQ, Wang ZH, Yuan WC. Inverse Electron-Demand Aza-Diels-Alder Reaction of Cyclic Enamides with 1,2-Diaza-1,3-dienes in Situ Generated from α-Halogeno Hydrazones: Access to Fused Polycyclic Tetrahydropyridazine Derivatives. J Org Chem 2021; 86:11472-11481. [PMID: 34343003 DOI: 10.1021/acs.joc.1c00993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient inverse electron-demand aza-Diels-Alder reaction of cyclic enamides and 1,2-diaza-1,3-dienes, which could be readily formed in situ from α-halogeno hydrazones and a base, has been successfully developed. With the developed approach, a wide range of fused polycyclic tetrahydropyridazines were smoothly obtained in up to 99% yield under benign reaction conditions. This reaction concept was also extended to acyclic enamide substrates for accessing 1,4,5,6-tetrahydropyridazines. A gram-scale experiment and further derivatizations of the polycyclic tetrahydropyridazine products were also conducted to verify the practicability of the methodology.
Collapse
Affiliation(s)
- Li-Wen Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
16
|
Kanova N, Dundar BA, Kelgokmen Y, Zora M. One-Pot Synthesis of 2-Acetyl-1 H-pyrroles from N-Propargylic β-Enaminones via Intermediacy of 1,4-Oxazepines. J Org Chem 2021; 86:6289-6304. [PMID: 33872009 DOI: 10.1021/acs.joc.1c00077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A one-pot two-step protocol for the synthesis of 2-acetyl-1H-pyrroles from N-propargylic β-enaminones was described. When treated with zinc chloride in refluxing chloroform, N-propargylic β-enaminones produced in situ 2-methylene-2,3-dihydro-1,4-oxazepines, which, upon further refluxing in methanol with zinc chloride, afforded 2-acetyl-1H-pyrroles. The process was found to be general for a wide variety of N-propargylic β-enaminones and yielded a diverse range of 2-acetyl-1H-pyrroles in good to high yields with large substrate scope and good functional group tolerance. This operationally easy method may provide a rapid access to functionalized 2-acetyl-1H-pyrroles of pharmacological interest.
Collapse
Affiliation(s)
- Nilay Kanova
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Buse Aysen Dundar
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Yilmaz Kelgokmen
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Metin Zora
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
17
|
Hong C, Yu S, Liu Z, Zhang Y. Rhodium(iii)-catalyzed annulation of enamides with sulfoxonium ylides toward isoquinolines. RSC Adv 2021; 11:11490-11494. [PMID: 35423634 PMCID: PMC8698508 DOI: 10.1039/d1ra01063h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
An efficient rhodium(iii)-catalyzed C-H activation followed by intermolecular annulation between enamides and sulfoxonium ylides has been developed. The transformation proceeds smoothly with a broad range of substrates, affording a series of isoquinoline derivatives in moderate to good yields under additive-free conditions.
Collapse
Affiliation(s)
- Chao Hong
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
| | - Shuling Yu
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
| | - Zhanxiang Liu
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yuhong Zhang
- Department of Chemistry, Zhejiang University Hangzhou 310027 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
18
|
Wang RH, Li JF, Li Y, Qi SL, Zhang T, Luan YX, Ye M. Selective C(sp3)–H Cleavage of Enamides for Synthesis of 2-Pyridones via Ligand-Enabled Ni–Al Bimetallic Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04585] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rong-Hua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shao-Long Qi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Wang JX, Wang YT, Zhang H, Fu MC. Visible-light-induced iodine-anion-catalyzed decarboxylative/deaminative C–H alkylation of enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00660f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient method for photo-induced iodine-anion-catalyzed C–H alkylation of enamides has been developed. Redox-active esters and Katritzky salts of amino acids are amenable, successfully delivering various functionalized enamides.
Collapse
Affiliation(s)
- Jia-Xin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Ya-Ting Wang
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Hao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Ming-Chen Fu
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| |
Collapse
|
20
|
Zhao K, Guo JY, Guan T, Wang YX, Tao JY, Zhang Y, Zhang QH, Ni K, Loh TP. Photoinitiated stereoselective direct C(sp 2)–H perfluoroalkylation and difluoroacetylation of enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00605c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinitiated regio- and stereoselective C(sp2)–H perfluoroalkylation and difluoroacetylation of enamides are developed, furnishing biologically and physiologically privileged fluoro-containing enamide scaffolds.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Jing-Yu Guo
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ting Guan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ying-Xue Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Ji-Yu Tao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yu Zhang
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Qing-Hong Zhang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Kun Ni
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
21
|
Zhang J, Lu X, Shen C, Xu L, Ding L, Zhong G. Recent advances in chelation-assisted site- and stereoselective alkenyl C–H functionalization. Chem Soc Rev 2021; 50:3263-3314. [DOI: 10.1039/d0cs00447b] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights recent advances in vicinal- and geminal-group-directed alkenyl C–H functionalizations which proceeded by endo- and exo-cyclometallation.
Collapse
Affiliation(s)
- Jian Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Xiunan Lu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Cong Shen
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liangyao Xu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Liyuan Ding
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 311121
- China
| |
Collapse
|
22
|
Zhao K, Zhang ZY, Cui XL, Wang YX, Wu XD, Li WM, Wu JX, Zhao LL, Guo JY, Loh TP. Visible-Light-Induced Regio- and Stereoselective C(sp 2)-H Trifluoroethylation of Enamides with 2,2,2-Trifluoroethyl Iodide. Org Lett 2020; 22:9029-9035. [PMID: 33176097 DOI: 10.1021/acs.orglett.0c03418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoredox-catalyzed regio- and stereoselective trifluoroethylation reaction of enamides using commercially available 2,2,2-trifluoroethyl iodide as trifluoroethylating agents has been developed, furnishing geometrically defined and synthetically and physiochemically pivotal β-trifluoroethylated enamides bearing a diverse range of functional groups.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ze-Yu Zhang
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xian-Lu Cui
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ying-Xue Wang
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xian-Dan Wu
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wei-Ming Li
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jia-Xu Wu
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Li-Li Zhao
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Yu Guo
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
23
|
Iqbal S, Rasheed H, Awan RJ, Awan RJ, Mukhtar A, Moloney MG. Recent Advances in the Synthesis of Pyrroles. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200528125651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pyrroles are the most prevalent heterocyclic compounds, which are present as the basic cores in
many natural products, such as vitamin B12, bile pigments like bilirubin and biliverdin, the porphyrins of
heme, chlorophyll, chlorins, bacteriochlorins, and porphyrinogens. The biological activities of compounds
having pyrrole analogs include antimicrobial (antibacterial, antifungal), anti-cancer (anti-cytotoxic, antimitotic),
anti-tumor, anti-hyperlipidemic, anti-depressant, anti-inflammatory, antihyperglycemic, antiproliferative,
anti-HIV and anti-viral activities. Accordingly, significant attention has been paid to develop competent
methods for the synthesis of pyrroles with improved yields in short times. This review gives an overview of
different methods for the synthesis of pyrrole using easily available precursors using the following routes.
Synthesis of monosubstituted pyrrole using 2,5-dimethoxyfuran
Synthesis of pyrrole using dialkylacetylene dicarboxylate
Synthesis of pyrroles using β-ketoester
Synthesis of pyrrole using 1,2-dicarbonyl compounds
Synthesis of pyrroles using 1,3-dicarbonyl compounds
Synthesis of pyrroles using 1,3-dicarbonyl, amine, nitro and aldehyde group
Synthesis of pyrroles using 1,4-dicarbonyl compound and amines
Synthesis of pyrrole using enones
Synthesis of pyrroles using moieties having acetylene group
Collapse
Affiliation(s)
- Sarosh Iqbal
- Department of Applied Chemistry, Government College University, Faisalabad-38000, Faisalabad, Pakistan
| | - Hina Rasheed
- Department of Applied Chemistry, Government College University, Faisalabad-38000, Faisalabad, Pakistan
| | - Rabiya Javed Awan
- Department of Applied Chemistry, Government College University, Faisalabad-38000, Faisalabad, Pakistan
| | - Ramsha Javed Awan
- Department of Applied Chemistry, Government College University, Faisalabad-38000, Faisalabad, Pakistan
| | - Asma Mukhtar
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering Lahore University of Management Sciences, Lahore-54792, Lahore, Pakistan
| | - Mark G. Moloney
- Department of Chemistry, Chemistry Research Laboratory, The University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
24
|
Nickel-catalyzed formal [3 + 2]-cycloaddition of 2H-azirines with 1,3-dicarbonyl compounds for the synthesis of pyrroles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Zhou J, Zhang L, Chen J, Chen J, Yin C, Yu C. Rh(III)-catalyzed [4+1] annulation and ring opening for the synthesis of pyrazolo[1,2-a] indazole bearing a quaternary carbon. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Tan H, Laishram RD, Zhang X, Shi G, Li K, Chen J. Rhodium-Catalyzed Spiro Indenyl Benzoxazine Synthesis via C-H Activation/Annulation of 3-Aryl-2 H
-Benzo[ b
][1,4]oxazines and Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Heng Tan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Ronibala Devi Laishram
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Xuexin Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Guangrui Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Kangkui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources; Yunnan Minzu University; 650500 Kunming Yunnan China
| |
Collapse
|
27
|
Neto JSS, Zeni G. Transition Metal‐Catalyzed and Metal‐Free Cyclization Reactions of Alkynes with Nitrogen‐Containing Substrates: Synthesis of Pyrrole Derivatives. ChemCatChem 2020. [DOI: 10.1002/cctc.201902325] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jose S. S. Neto
- Departamento de QuímicaUniversidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios, CCNEUniversidade Federal de Santa Maria Santa Maria Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
28
|
Liu RH, Shen ZY, Wang C, Loh TP, Hu XH. Selective Dehydrogenative Acylation of Enamides with Aldehydes Leading to Valuable β-Ketoenamides. Org Lett 2020; 22:944-949. [PMID: 31971809 DOI: 10.1021/acs.orglett.9b04495] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have presented a unique example of dehydrogenative acylation of enamides with aldehydes enabled by an earth-abundant iron catalyst. The protocol provides the straightforward access to valuable β-ketoenamides with ample substrate scope and excellent functional group tolerance. Notably, distinct C-H acylation of enamide rather than at N-H moiety site occurs with absolute Z-selectivity was observed. Late-stage modifications of complex molecules and versatile synthetic utility of β-ketoenamides further highlight the practicability of this transformation.
Collapse
Affiliation(s)
- Rui-Hua Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Zhen-Yao Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Cong Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Xu-Hong Hu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
29
|
Li S, Shan QC, Hu LM, Ma XQ, Hu XH. Merging alkenyl C–H activation with the ring-opening of 1,2-oxazetidines: ruthenium-catalyzed aminomethylation of enamides. Chem Commun (Camb) 2020; 56:7969-7972. [DOI: 10.1039/d0cc03081c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1,2-Oxazetidines have been utilized as formaldimine precursors for the direct aminomethylation of enamides under a Ru(ii) species.
Collapse
Affiliation(s)
- Song Li
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Qi-Chao Shan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Lu-Min Hu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xue-Qing Ma
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xu-Hong Hu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
30
|
Duan J, Mao Y, Zhang L, Zhu N, Fang Z, Guo K. Copper‐Catalyzed [3+2] Annulation of 2‐Arylidene‐1,3‐Indandiones with N‐Acetyl Enamides for the Synthesis of Spiropyrrolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816 China
| | - Yiyang Mao
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816 China
| | - Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816 China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816 China
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University 30 Puzhu Rd S. Nanjing 211816 China
| |
Collapse
|
31
|
Guo JY, Zhang ZY, Guan T, Mao LW, Ban Q, Zhao K, Loh TP. Photoredox-catalyzed stereoselective alkylation of enamides with N-hydroxyphthalimide esters via decarboxylative cross-coupling reactions. Chem Sci 2019; 10:8792-8798. [PMID: 31803451 PMCID: PMC6849636 DOI: 10.1039/c9sc03070k] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/04/2019] [Indexed: 01/01/2023] Open
Abstract
Stereoselective β-C(sp2)-H alkylation of enamides with redox-active N-hydroxyphthalimide esters via a photoredox-catalyzed decarboxylative cross-coupling reaction is demonstrated. This methodology features operational simplicity, broad substrate scopes, and excellent stereoselectivities and functional group tolerance, affording a diverse array of geometrically defined and synthetically valuable enamides bearing primary, secondary or tertiary alkyl groups in satisfactory yields.
Collapse
Affiliation(s)
- Jing-Yu Guo
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Ze-Yu Zhang
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Ting Guan
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Lei-Wen Mao
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Qian Ban
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Kai Zhao
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
| | - Teck-Peng Loh
- Institute of Advanced Synthesis , School of Chemistry and Molecular Engineering , Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China .
- Division of Chemistry and Biological Chemistry , School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore .
| |
Collapse
|
32
|
Guo JY, Guan T, Tao JY, Zhao K, Loh TP. Stereoselective C(sp2)–H Alkylation of Enamides with Unactivated Aliphatic Carboxylic Acids via Decarboxylative Cross-Coupling Reactions. Org Lett 2019; 21:8395-8399. [DOI: 10.1021/acs.orglett.9b03169] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jing-Yu Guo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ting Guan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ji-Yu Tao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Kai Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
33
|
Zhu TH, Zhang ZY, Tao JY, Zhao K, Loh TP. Regioselective and Stereoselective Difluoromethylation of Enamides with Difluoromethyltriphenylphosphonium Bromide via Photoredox Catalysis. Org Lett 2019; 21:6155-6159. [DOI: 10.1021/acs.orglett.9b02361] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tong-Hao Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Institute of Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Ze-Yu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ji-Yu Tao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Kai Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
34
|
Zhu JN, Wang WK, Jin ZH, Wang QK, Zhao SY. Pyrrolo[3,4- c]pyrazole Synthesis via Copper(Ι) Chloride-Catalyzed Oxidative Coupling of Hydrazones to Maleimides. Org Lett 2019; 21:5046-5050. [PMID: 31247786 DOI: 10.1021/acs.orglett.9b01641] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A variety of pyrrolo[3,4- c]pyrazole derivatives from readily available aldehyde hydrazones and maleimides via direct oxidative coupling under radical cascade reaction have been reported. This method offers satisfactory chemical yields and good functional group compatibility. Moreover, this practical approach is catalyzed by CuCl utilizing air as the oxidant and some control experiments were performed to elaborate the mechanism.
Collapse
Affiliation(s)
- Jia-Nan Zhu
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Wen-Kang Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Ze-Hui Jin
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Qian-Kun Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| | - Sheng-Yin Zhao
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , People's Republic of China
| |
Collapse
|
35
|
Debbarma S, Bera SS, Maji MS. Harnessing Stereospecific Z-Enamides through Silver-Free Cp*Rh(III) Catalysis by Using Isoxazoles as Masked Electrophiles. Org Lett 2019; 21:835-839. [DOI: 10.1021/acs.orglett.8b04130] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suvankar Debbarma
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sourav Sekhar Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
36
|
Abstract
Rhodium-catalyzed pyridyl-directed alkenyl C–H bond functionalization with aroyl- or acryl-amides via C–H/C–N activation was carried out.
Collapse
Affiliation(s)
- Yao Huang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Wen-Jing Pan
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry
- University of Science and Technology of China
- Hefei
- People's Republic of China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry
- University of Science and Technology of China
- Hefei
- People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering
| |
Collapse
|
37
|
Yang Z, Jie L, Yao Z, Yang Z, Cui X. Rhodium(III)‐Catalyzed Synthesis of
N
‐(2‐Acetoxyalkyl)isoquinolones from Oxazolines and Alkynes through C−N Bond Formation and Ring‐Opening. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801217] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zi Yang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Lianghua Jie
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Zhenyu Yao
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| | - Zhimin Yang
- Instrumental Analysis Center of Huaqiao University Xiamen 361021 People's Republic of China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences Huaqiao University Xiamen 361021 People's Republic of China
| |
Collapse
|
38
|
Duarah G, Kaishap PP, Begum T, Gogoi S. Recent Advances in Ruthenium(II)-Catalyzed C−H Bond Activation and Alkyne Annulation Reactions. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800755] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- G. Duarah
- Chemical Sciences & Technology Division; CSIR - North East Institute of Science and Technology; Jorhat - 785006, AcSIR India
| | - P. P. Kaishap
- Chemical Sciences & Technology Division; CSIR - North East Institute of Science and Technology; Jorhat - 785006, AcSIR India
| | - T. Begum
- Chemical Sciences & Technology Division; CSIR - North East Institute of Science and Technology; Jorhat - 785006, AcSIR India
| | - S. Gogoi
- Chemical Sciences & Technology Division; CSIR - North East Institute of Science and Technology; Jorhat - 785006, AcSIR India
| |
Collapse
|
39
|
Wang H, Xu H, Li B, Wang B. Annulation of β-Enaminonitriles with Alkynes via RhIII-Catalyzed C–H Activation: Direct Access to Highly Substituted 1-Naphthylamines and Naphtho[1,8-bc]pyridines. Org Lett 2018; 20:5640-5643. [DOI: 10.1021/acs.orglett.8b02341] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haili Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
40
|
Qi Z, Jiang Y, Yuan B, Niu Y, Yan R. Cu-Catalyzed Tandem Aerobic Oxidative Cyclization for the Synthesis of 3,3'-Bipyrroles from the Homopropargylic Amines. Org Lett 2018; 20:5048-5052. [PMID: 30067037 DOI: 10.1021/acs.orglett.8b02201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A Cu-catalyzed method for the synthesis of 3,3'-bipyrroles from homopropargylic amines through tandem aerobic oxidative cyclization involving the formation of C-C bond has been developed. The features of this reaction are a small number of Cu catalysis and simple starting substrates. Moreover, this procedure exhibits good functional group tolerance and a series of 3,3'-bipyrroles derivatives are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Zhenjie Qi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Gansu , China
| | - Yong Jiang
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing , China
| | - Bingxiang Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Gansu , China
| | - Yanning Niu
- Department of Teaching and Research , Nanjing Forestry University , Huaian , China
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Gansu , China
| |
Collapse
|
41
|
Qiao B, Cao HQ, Huang YJ, Zhang Y, Nie J, Zhang FG, Ma JA. Pd(II)-Catalyzed Phosphorylation of Enamido C(sp2
)-H Bonds: A General Route to β-Amido-vinylphosphonates. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Baokun Qiao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering; Tianjin University; Tianjin 300072 China
| | - Hao-Qiang Cao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering; Tianjin University; Tianjin 300072 China
| | - Yin-Jun Huang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering; Tianjin University; Tianjin 300072 China
| | - Yue Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering; Tianjin University; Tianjin 300072 China
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering; Tianjin University; Tianjin 300072 China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering; Tianjin University; Tianjin 300072 China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering; Tianjin University; Tianjin 300072 China
| |
Collapse
|
42
|
Li P, Zhao J, Shi L, Wang J, Shi X, Li F. Iodine-catalyzed diazo activation to access radical reactivity. Nat Commun 2018; 9:1972. [PMID: 29773787 PMCID: PMC5958049 DOI: 10.1038/s41467-018-04331-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/19/2018] [Indexed: 12/05/2022] Open
Abstract
Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, Gansu, China
- Department of Chemistry, University of South Florida, Tampa, 33620, FL, USA
| | - Jingjing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, Gansu, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, Gansu, China
| | - Jin Wang
- Department of Chemistry, University of South Florida, Tampa, 33620, FL, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, 33620, FL, USA.
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, Gansu, China.
| |
Collapse
|
43
|
Yamada T, Shibata Y, Kawauchi S, Yoshizaki S, Tanaka K. Formal Lossen Rearrangement/[3+2] Annulation Cascade Catalyzed by a Modified Cyclopentadienyl Rh
III
Complex. Chemistry 2018. [DOI: 10.1002/chem.201801125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Takayuki Yamada
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Yu Shibata
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Susumu Kawauchi
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Soichi Yoshizaki
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
44
|
Shaik SP, Sultana F, Ravikumar A, Sunkari S, Alarifi A, Kamal A. Regioselective oxidative cross-coupling of benzo[d]imidazo[2,1-b]thiazoles with styrenes: a novel route to C3-dicarbonylation. Org Biomol Chem 2018; 15:7696-7704. [PMID: 28872171 DOI: 10.1039/c7ob01778b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel I2 promoted, highly efficient metal-free and peroxide-free greener domino protocol for the C3-dicarbonylation of benzo[d]imidazo[2,1-b]thiazoles (IBTs) with styrenes has been developed via oxidative cleavage of the C(sp2)-H bond, followed by C3-nucleophilic attack of IBT and oxidation. Interestingly, under these conditions 2-(benzo[d]imidazo[2,1-b]thiazol-2-yl)aniline gave the benzo[4',5']thiazolo[2',3':2,3]imidazo[4,5-c]quinoline derivative via oxidative cleavage of the C(sp2)-H bond, followed by Pictet-Spengler cyclization and aromatization. This method offers the advantages of broad substrate scope, ecofriendly feature and high atom economy apart from higher yields.
Collapse
Affiliation(s)
- Siddiq Pasha Shaik
- Medicinal Chemistry and Biotechnology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad-500007, India.
| | | | | | | | | | | |
Collapse
|
45
|
Balachandra B, Shanmugam S. A Simple and Direct Synthesis of Pentasubstituted Pyrroles via [3+4] Annulation and Their In Vitro Evaluation as Thrombolytic Agents and Cytotoxicity Studies on L929 Cells. ChemistrySelect 2018. [DOI: 10.1002/slct.201702476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Biguvu Balachandra
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai - 625021
| | - Sivakumar Shanmugam
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai - 625021
| |
Collapse
|
46
|
Zhao MN, Ren ZH, Yang DS, Guan ZH. Iron-Catalyzed Radical Cycloaddition of 2H-Azirines and Enamides for the Synthesis of Pyrroles. Org Lett 2018; 20:1287-1290. [DOI: 10.1021/acs.orglett.7b04007] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mi-Na Zhao
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
- Shaanxi
Key Laboratory of Phytochemistry, College of Chemistry and Chemical
Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - De-Suo Yang
- Shaanxi
Key Laboratory of Phytochemistry, College of Chemistry and Chemical
Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
47
|
Sun D, Zhang R. Transition-metal-free, visible-light-induced oxidative cross-coupling for constructing β-acetylamino acrylosulfones from sodium sulfinates and enamides. Org Chem Front 2018. [DOI: 10.1039/c7qo00729a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-induced, Rose Bengal catalyzed photoredox process for synthesizing β-acetylamino acrylosulfones has been discovered.
Collapse
Affiliation(s)
- Deli Sun
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Ronghua Zhang
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
- Shanghai Key Lab of Chemical Assessment and Sustainability
| |
Collapse
|
48
|
Palladium-catalyzed oxidative cyclopropanation of enamides and norbornenes initiated by C–H activation. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9150-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Xing D, Dong G. Branched-Selective Intermolecular Ketone α-Alkylation with Unactivated Alkenes via an Enamide Directing Strategy. J Am Chem Soc 2017; 139:13664-13667. [DOI: 10.1021/jacs.7b08581] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dong Xing
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
50
|
Takamoto K, Ohno S, Hyogo N, Fujioka H, Arisawa M. Ruthenium-Catalyzed 1,6-Aromatic Enamide–Silylalkyne Cycloisomerization: Approach to 2,3-Disubstituted Indoles. J Org Chem 2017; 82:8733-8742. [DOI: 10.1021/acs.joc.7b01288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kohei Takamoto
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shohei Ohno
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Norimichi Hyogo
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiromichi Fujioka
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical
Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|