1
|
Sengupta S, Pabbaraja S, Mehta G. Natural products from the human microbiome: an emergent frontier in organic synthesis and drug discovery. Org Biomol Chem 2024; 22:4006-4030. [PMID: 38669195 DOI: 10.1039/d4ob00236a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Often referred to as the "second genome", the human microbiome is at the epicenter of complex inter-habitat biochemical networks like the "gut-brain axis", which has emerged as a significant determinant of cognition, overall health and well-being, as well as resistance to antibiotics and susceptibility to diseases. As part of a broader understanding of the nexus between the human microbiome, diseases and microbial interactions, whether encoded secondary metabolites (natural products) play crucial signalling roles has been the subject of intense scrutiny in the recent past. A major focus of these activities involves harvesting the genomic potential of the human microbiome via bioinformatics guided genome mining and culturomics. Through these efforts, an impressive number of structurally intriguing antibiotics, with enhanced chemical diversity vis-à-vis conventional antibiotics have been isolated from human commensal bacteria, thereby generating considerable interest in their total synthesis and expanding their therapeutic space for drug discovery. These developments augur well for the discovery of new drugs and antibiotics, particularly in the context of challenges posed by mycobacterial resistance and emerging new diseases. The current landscape of various synthetic campaigns and drug discovery initiatives on antibacterial natural products from the human microbiome is captured in this review with an intent to stimulate further activities in this interdisciplinary arena among the new generation.
Collapse
Affiliation(s)
- Saumitra Sengupta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
2
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Soni AS, Vacariu CM, Chen JY, Tanner ME. Synthesis of a meso-Oxa-Diaminopimelic Acid Containing Peptidoglycan Pentapeptide and Coupling to the GlcNAc- anhydro-MurNAc Disaccharide. Org Lett 2020; 22:2313-2317. [PMID: 32133861 DOI: 10.1021/acs.orglett.0c00505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The syntheses of peptidoglycan (PG)-derived peptides containing meso-diaminopimelic acid (meso-Dap) are typically quite lengthy due to the need to prepare orthogonally protected meso-Dap. In this work, the preparation of the PG pentapeptide containing the isosteric analog meso-oxa-Dap is described. The synthesis relies on the ring opening of a peptide embedded aziridine via the attack of a serine residue. The pentapeptide was attached to a GlcNAc-anhydro-MurNAc disaccharide, to produce a putative substrate for the AmpG pore protein.
Collapse
Affiliation(s)
- Arvind S Soni
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Condarache M Vacariu
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jeff Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
4
|
Soni AS, Lin CSH, Murphy MEP, Tanner ME. Peptides Containing meso-Oxa-Diaminopimelic Acid as Substrates for the Cell-Shape-Determining Proteases Csd6 and Pgp2. Chembiochem 2019; 20:1591-1598. [PMID: 30746833 DOI: 10.1002/cbic.201900011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
The enzymes Csd6 and Pgp2 are peptidoglycan (PG) proteases found in the pathogenic bacteria Helicobacter pylori and Campylobacter jejuni, respectively. These enzymes are involved in the trimming of non-crosslinked PG sidechains and catalyze the cleavage of the bond between meso-diaminopimelic acid (meso-Dap) and d-alanine, thus converting a PG tetrapeptide into a PG tripeptide. They are known to be cell-shape-determining enzymes, because deletion of the corresponding genes results in mutant strains that have lost the normal helical phenotype and instead possess a straight-rod morphology. In this work, we report two approaches directed towards the synthesis of the tripeptide substrate Ac-iso-d-Glu-meso-oxa-Dap-d-Ala, which serves as a mimic of the terminus of an non-crosslinked PG tetrapeptide substrate. The isosteric analogue meso-oxa-Dap was utilized in place of meso-Dap to simplify the synthetic procedure. The more efficient synthesis involved ring opening of a peptide-embedded aziridine by a serine-based nucleophile. A branched tetrapeptide was also prepared as a mimic of the terminus of a crosslinked PG tetrapeptide. We used MS analysis to demonstrate that the tripeptide serves as a substrate for both Csd6 and Pgp2 and that the branched tetrapeptide serves as a substrate for Pgp2, albeit at a significantly slower rate.
Collapse
Affiliation(s)
- Arvind S Soni
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Chang Sheng-Huei Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
5
|
Xu B, Aitken EJ, Baker BP, Turner CA, Harvey JE, Stott MB, Power JF, Harris PWR, Keyzers RA, Brimble MA. Genome mining, isolation, chemical synthesis and biological evaluation of a novel lanthipeptide, tikitericin, from the extremophilic microorganism Thermogemmatispora strain T81. Chem Sci 2018; 9:7311-7317. [PMID: 30294420 PMCID: PMC6167946 DOI: 10.1039/c8sc02170h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/19/2018] [Indexed: 01/31/2023] Open
Abstract
Tikitericin, a novel lanthipeptide was isolated and characterised together with its first total synthesis.
Genome mining of the New Zealand extremophilic microorganism Thermogemmatispora strain T81 indicated the presence of biosynthetic machinery to produce several different peptidic natural products. Solid-phase culture of T81 led to the isolation of tikitericin 1, a new lanthipeptide characterised by four (methyl)lanthionine bridges. The mass-guided isolation and structural elucidation of tikitericin 1 is described together with its total synthesis via Fmoc-solid-phase peptide synthesis (SPPS). The key non-canonical (methyl)lanthionine residues were synthesised in solution phase via an improved synthetic route and subsequently assembled to construct the peptide backbone using Fmoc-SPPS. N-Terminal truncated analogues of tikitericin (2–5) were also prepared in order to evaluate the contribution of each sequential ring of the polycyclic lanthipeptide to the antibacterial activity.
Collapse
Affiliation(s)
- Buzhe Xu
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117
| | - Emma J Aitken
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Benjamin P Baker
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Claire A Turner
- School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Joanne E Harvey
- Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Matthew B Stott
- School of Biological Sciences , University of Canterbury , Private Bag 4800 , Christchurch 8140 , New Zealand.,GNS Science , Private Bag 2000 , Taupō 3352 , New Zealand
| | - Jean F Power
- GNS Science , Private Bag 2000 , Taupō 3352 , New Zealand
| | - Paul W R Harris
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Biological Sciences , 23 Symonds Street , Auckland 1010 , New Zealand
| | - Robert A Keyzers
- Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Chemical & Physical Sciences , The Centre for Biodiscovery , Victoria University of Wellington , PO Box 600 , Wellington 6140 , New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences , 23 Symonds Street , Auckland 1010 , New Zealand . ; Tel: +64 9 9238259.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . ; Tel: +64 4 4635117.,School of Biological Sciences , 23 Symonds Street , Auckland 1010 , New Zealand
| |
Collapse
|
6
|
Chen H, Zhang Y, Li QQ, Zhao YF, Chen YX, Li YM. De Novo Design To Synthesize Lanthipeptides Involving Cascade Cysteine Reactions: SapB Synthesis as an Example. J Org Chem 2018; 83:7528-7533. [PMID: 29893565 DOI: 10.1021/acs.joc.8b00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lanthipeptides are a family of ribosomally synthesized peptides that have crucial biological functions. However, due to their complicated structures, the total synthesis of lanthipeptides is challenging. Here, a novel strategy to construct lanthipeptides is described, which involves cascade reactions of cysteine, including Cys disalkylation elimination, Michael reaction, and native chemical ligation. We utilized this strategy to synthesize lanthipeptide SapB as an example. This methodology has the potential to obtain lanthipeptides and their analogues for biological research and drug discovery.
Collapse
Affiliation(s)
- Huai Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yuan Zhang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Qian-Qian Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yu-Fen Zhao
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry , Tsinghua University , Beijing 100084 , P.R. China.,Beijing Institute for Brain Disorders , Beijing 100069 , P.R. China
| |
Collapse
|
7
|
Bakhtiary A, Cochrane SA, Mercier P, McKay RT, Miskolzie M, Sit CS, Vederas JC. Insights into the Mechanism of Action of the Two-Peptide Lantibiotic Lacticin 3147. J Am Chem Soc 2017; 139:17803-17810. [PMID: 29164875 DOI: 10.1021/jacs.7b04728] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lacticin 3147 is a two peptide lantibiotc (LtnA1 and LtnA2) that displays nanomolar activity against many Gram-positive bacteria. Lacticin 3147 may exert its antimicrobial effect by several mechanisms. Isothermal titration calorimetry experiments show that only LtnA1 binds to the peptidoglycan precursor lipid II, which could inhibit peptidoglycan biosynthesis. An experimentally supported model of the resulting complex suggests that the key binding partners are the C-terminus of LtnA1 and pyrophosphate of lipid II. A combination of in vivo and in vitro assays indicates that LtnA1 and LtnA2 can induce rapid membrane lysis without the need for lipid II binding. However, the presence of lipid II substantially increases the activity of lacticin 3147. Furthermore, studies with synthetic LtnA2 analogues containing either desmethyl- or oxa-lanthionine rings confirm that the precise geometry of these rings is essential for this synergistic activity.
Collapse
Affiliation(s)
- Alireza Bakhtiary
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queens University Belfast , Belfast BT9 5AG, United Kingdom
| | - Pascal Mercier
- National High Field NMR Centre, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Ryan T McKay
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Clarissa S Sit
- Department of Chemistry, Saint Mary's University , Halifax, Nova Scotia B3H 3C3, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
8
|
Ongey EL, Neubauer P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb Cell Fact 2016; 15:97. [PMID: 27267232 PMCID: PMC4897893 DOI: 10.1186/s12934-016-0502-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
Lanthipeptides (also called lantibiotics for those with antibacterial activities) are ribosomally synthesized post-translationally modified peptides having thioether cross-linked amino acids, lanthionines, as a structural element. Lanthipeptides have conceivable potentials to be used as therapeutics, however, the lack of stable, high-yield, well-characterized processes for their sustainable production limit their availability for clinical studies and further pharmaceutical commercialization. Though many reviews have discussed the various techniques that are currently employed to produce lanthipeptides, a direct comparison between these methods to assess industrial applicability has not yet been described. In this review we provide a synoptic comparison of research efforts on total synthesis and in vivo biosynthesis aimed at fostering lanthipeptides production. We further examine current applications and propose measures to enhance product yields. Owing to their elaborate chemical structures, chemical synthesis of these biomolecules is economically less feasible for large-scale applications, and hence biological production seems to be the only realistic alternative.
Collapse
Affiliation(s)
- Elvis Legala Ongey
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany
| |
Collapse
|
9
|
Oppedijk SF, Martin NI, Breukink E. Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:947-57. [PMID: 26523408 DOI: 10.1016/j.bbamem.2015.10.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023]
Abstract
Understanding the mode of action of antibiotics is becoming more and more important in the time that microorganisms start to develop resistance. One very well validated target of several classes of antibiotics is the peptidoglycan precursor lipid II. In this review different classes of lipid II targeting antibiotics will be discussed in detail, including the lantibiotics, human invertebrate defensins and the recently discovered teixobactin. By hitting bacteria where it hurts, at the level of lipid II, we expect to be able to develop efficient antibacterial agents in the future. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Sabine F Oppedijk
- Membrane biochemistry and Biophysics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nathaniel I Martin
- Medicinal Chemistry and Chemical Biology, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Eefjan Breukink
- Membrane biochemistry and Biophysics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
10
|
Koopmans T, Wood TM, 't Hart P, Kleijn LHJ, Hendrickx APA, Willems RJL, Breukink E, Martin NI. Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound. J Am Chem Soc 2015; 137:9382-9. [PMID: 26122963 DOI: 10.1021/jacs.5b04501] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lipid II-binding N-terminus of nisin, comprising the so-called A/B ring system, was synthetically modified to provide antibacterially active and proteolytically stable derivatives. A variety of lipids were coupled to the C-terminus of the nisin A/B ring system to generate semisynthetic constructs that display potent inhibition of bacterial growth, with activities approaching that of nisin itself. Most notable was the activity observed against clinically relevant bacterial strains including MRSA and VRE. Experiments with membrane models indicate that these constructs operate via a lipid II-mediated mode of action without causing pore formation. A lipid II-dependent mechanism of action is further supported by antagonization assays wherein the addition of lipid II was found to effectively block the antibacterial activity of the nisin-derived lipopeptides.
Collapse
Affiliation(s)
| | | | | | | | - Antoni P A Hendrickx
- ‡Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- ‡Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Eefjan Breukink
- §Membrane Biochemistry and Biophysics Group, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
11
|
Escano J, Smith L. Multipronged approach for engineering novel peptide analogues of existing lantibiotics. Expert Opin Drug Discov 2015; 10:857-70. [PMID: 26004576 DOI: 10.1517/17460441.2015.1049527] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lantibiotics are a class of ribosomally and post-translationally modified peptide antibiotics that are active against a broad spectrum of Gram-positive bacteria. Great efforts have been made to promote the production of these antibiotics, so that they can one day be used in our antimicrobial arsenal to combat multidrug-resistant bacterial infections. AREAS COVERED This review provides a synopsis of lantibiotic research aimed at furthering our understanding of the structural limitation of lantibiotics as well as identifying structural regions that can be modified to improve the bioactivity. In vivo, in vitro and chemical synthesis of lantibiotics has been useful for engineering novel variants with enhanced activities. These approaches have provided novel ways to further our understanding of lantibiotic function and have advanced the objective to develop lantibiotics for the treatment of infectious diseases. EXPERT OPINION Synthesis of lantibiotics with enhanced activities will lead to the discovery of new promising drug candidates that will have a long lasting impact on the treatment of Gram-positive infections. The current body of literature for producing structural variants of lantibiotics has been more of a 'proof-of-principle' approach and the application of these methods has not yet been fully utilized.
Collapse
Affiliation(s)
- Jerome Escano
- Texas A&M University, Department of Biological Sciences, College Station , TX 77843 , USA
| | | |
Collapse
|
12
|
O'Brien K, ó Proinsias K, Kelleher F. Studies on the synthesis of orthogonally protected azalanthionines, and of routes towards β-methyl azalanthionines, by ring opening of N-activated aziridine-2-carboxylates. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
O’Brien K, Kelleher F. Synthesis of orthogonally protected 1,2-diaminopropanoic acids by ring-opening of 3-unsubstituted N-activated aziridine 2-carboxylates with para-methoxybenzylamine: a study of the regioselectivity of the reaction. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.09.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Knerr PJ, van der Donk WA. Chemical synthesis of the lantibiotic lacticin 481 reveals the importance of lanthionine stereochemistry. J Am Chem Soc 2013; 135:7094-7. [PMID: 23621626 PMCID: PMC3736828 DOI: 10.1021/ja4014024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lantibiotics are a family of antibacterial peptide natural products characterized by the post-translational installation of the thioether-containing amino acids lanthionine and methyllanthionine. Until recently, only a single naturally occurring stereochemical configuration for each of these cross-links was known. The discovery of lantibiotics with alternative lanthionine and methyllanthionine stereochemistry has prompted an investigation of its importance to biological activity. Here, solid-supported chemical synthesis enabled the total synthesis of the lantibiotic lacticin 481 and analogues containing cross-links with non-native stereochemical configurations. Biological evaluation revealed that these alterations abolished the antibacterial activity in all of the analogues, revealing the critical importance of the enzymatically installed stereochemistry for the biological activity of lacticin 481.
Collapse
Affiliation(s)
- Patrick J Knerr
- Howard Hughes Medical Institute and Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
15
|
O’Brien K, ó Proinsias K, Kelleher F. Synthesis of orthogonally protected azalanthionines (lanazanines) by sequential ring-opening of N-substituted aziridine 2-carboxylates. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Montalbán-López M, Zhou L, Buivydas A, van Heel AJ, Kuipers OP. Increasing the success rate of lantibiotic drug discovery by Synthetic Biology. Expert Opin Drug Discov 2012; 7:695-709. [PMID: 22680308 DOI: 10.1517/17460441.2012.693476] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Lantibiotics are post-translationally modified antimicrobial peptides produced by bacteria from diverse environments that exhibit an activity against pathogenic bacteria comparable to that of medically used antibiotics. The actual need for new antimicrobials in therapeutics has placed them in the pipeline of antibiotic research, due not only to their high antimicrobial activity but also to the fact that they are directed to novel targets. AREAS COVERED This review covers the different approaches traditionally used in bacteriocin discovery, based on the isolation of bacteria from different habitats and determining their inhibitory spectrum against a set of relevant strains. It also elaborates on more recent approaches covering organic synthesis and semi-synthesis of lantibiotics, genomic and proteomic approaches and the application of Synthetic Biology to the field of antimicrobial drug discovery. EXPERT OPINION Lantibiotics show a great potential in fulfilling the requirements for new antimicrobials. Culture-dependent techniques are still applied to lantibiotic discovery producing successful results that can be furthered by employing high-throughput screening techniques and peptidogenomics. The necessity of culturing bacteria and growing them in specific conditions for lantibiotic expression, can hamper the discovery rate, especially in exotic or unculturable bacteria. Thus, a combination of genome mining procedures, to detect novel lantibiotic-related sequences, with heterologous production systems and high-throughput screening, offers a promising strategy. Furthermore, the characterization of the mechanism of action of many lantibiotics, and the development of "plug and play" peptide biosynthesis systems, offers the possibility of initiating the rational design of non-natural lantibiotics based on structure-activity relationships.
Collapse
Affiliation(s)
- Manuel Montalbán-López
- University of Groningen, Molecular Genetics Group, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Knerr P, van der Donk WA. Chemical synthesis and biological activity of analogues of the lantibiotic epilancin 15X. J Am Chem Soc 2012; 134:7648-51. [PMID: 22524291 PMCID: PMC3349288 DOI: 10.1021/ja302435y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Indexed: 01/30/2023]
Abstract
Lantibiotics are a large family of antibacterial peptide natural products containing multiple post-translational modifications, including the thioether structures lanthionine and methyllanthionine. Efforts to probe structure-activity relationships and engineer improved pharmacological properties have driven the development of new methods to produce non-natural analogues of these compounds. In this study, solid-supported chemical synthesis was used to produce analogues of the potent lantibiotic epilancin 15X, in order to assess the importance of several N-terminal post-translational modifications for biological activity. Surprisingly, substitution of these moieties, including the unusual N-terminal D-lactyl moiety, resulted in relatively small changes in the antimicrobial activity and pore-forming ability of the peptides.
Collapse
Affiliation(s)
- Patrick
J. Knerr
- Howard Hughes Medical
Institute and Roger Adams Laboratory,
Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Howard Hughes Medical
Institute and Roger Adams Laboratory,
Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Abstract
Aided by genome-mining strategies, knowledge of the prevalence and diversity of ribosomally synthesized natural products (RNPs) is rapidly increasing. Among these are the lantipeptides, posttranslationally modified peptides containing characteristic thioether cross-links imperative for bioactivity and stability. Though this family was once thought to be a limited class of antimicrobial compounds produced by gram-positive bacteria, new insights have revealed a much larger diversity of activity, structure, biosynthetic machinery, and producing organisms than previously appreciated. Detailed investigation of the enzymes responsible for installing the posttranslational modifications has resulted in improved in vivo and in vitro engineering systems focusing on enhancement of the therapeutic potential of these compounds. Although dozens of new lantipeptides have been isolated in recent years, bioinformatic analyses indicate that many hundreds more await discovery owing to the widespread frequency of lantipeptide biosynthetic machinery in bacterial genomes.
Collapse
Affiliation(s)
- Patrick J Knerr
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
19
|
Ross AC, McKinnie SMK, Vederas JC. The Synthesis of Active and Stable Diaminopimelate Analogues of the Lantibiotic Peptide Lactocin S. J Am Chem Soc 2012; 134:2008-11. [DOI: 10.1021/ja211088m] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Avena C. Ross
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Shaun M. K. McKinnie
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John C. Vederas
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
20
|
McKinnie SMK, Ross AC, Little MJ, Vederas JC. The solid phase supported peptide synthesis of analogues of the lantibiotic lactocin S. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20014g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four analogues of lactocin S, an antimicrobial lantibiotic peptide produced by Lactobacillus sakei L45, have been generated using solid phase peptide synthesis. These compounds show enhanced oxidative stability to atmospheric oxygen and provide information on structure–activity relationships.
Collapse
Affiliation(s)
| | - Avena C. Ross
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | | | |
Collapse
|
21
|
Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 2011; 6:635-51. [PMID: 21707311 DOI: 10.2217/fmb.11.27] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of magainins, cecropins and defensins 30 years ago, antimicrobial peptides (AMPs) have been hailed as a potential solution to the dearth of novel antibiotic development. AMPs have shown robust activity against a wide variety of pathogens, including drug-resistant bacteria. Unlike small-molecule antibiotics, however, AMPs have failed to translate this success to the clinic. Only the polymyxins, gramicidins, nisin and daptomycin are currently approved for medical use; the latter is the only example to have been developed in the last several decades. Nonetheless, researchers continue to isolate, modify and develop novel AMPs for therapeutic applications. Efforts have focused on increasing stability, reducing cytotoxicity, improving antimicrobial activity and incorporating AMPs in novel formulations, including nanoscale particles. As peptide synthesis and recombinant production methodologies improve, and more relevant bioassays become available, it becomes increasingly likely that AMPs will break the regulatory barrier and enter the marketplace as valuable antimicrobial weapons in the next 10 years.
Collapse
Affiliation(s)
- Randal Eckert
- C3 Jian, Inc., 423 Hindry Ave, Unit D, Inglewood, CA 90301, USA.
| |
Collapse
|
22
|
Tabor AB. The challenge of the lantibiotics: synthetic approaches to thioether-bridged peptides. Org Biomol Chem 2011; 9:7606-28. [PMID: 21960309 DOI: 10.1039/c1ob05946g] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique antibacterial properties and structural complexity of the lantibiotics has stimulated considerable interest in the development of methodology to synthesise these peptides. One of the most challenging issues has been the synthesis of polycyclic peptides with multiple thioether bridges between side-chains, which are a characteristic feature of the lantibiotics. In this perspective, the different approaches to this problem, including solution-phase synthesis, solid-phase synthesis, biomimetic approaches and biotransformation strategies, are reviewed, highlighting the advances resulting from each of these approaches.
Collapse
Affiliation(s)
- Alethea B Tabor
- Department of Chemistry, UCL, Christopher Ingold Laboratories, UK WC1H 0AJ.
| |
Collapse
|
23
|
Liu W, Chan ASH, Liu H, Cochrane SA, Vederas JC. Solid supported chemical syntheses of both components of the lantibiotic lacticin 3147. J Am Chem Soc 2011; 133:14216-9. [PMID: 21848315 DOI: 10.1021/ja206017p] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lantibiotics are antimicrobial peptides produced by bacteria. Some are employed for food preservation, whereas others have therapeutic potential due to their activity against organisms resistant to current antibiotics. They are ribosomally synthesized and posttranslationally modified by dehydration of serine and threonine residues followed by attack of thiols of cysteines to form monosulfide lanthionine and methyllanthionine rings, respectively. Chemical synthesis of peptide analogues is a powerful method to verify stereochemistry and access structure-activity relationships. However, solid supported synthesis of lantibiotics has been difficult due to problems in generating lanthionines and methyllanthionines with orthogonal protection and good stereochemical control. We report the solid-phase syntheses of both peptides of a two-component lantibiotic, lacticin 3147. Both successive and interlocking ring systems were synthesized on-resin, thereby providing a general methodology for this family of natural products.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | | | | | | | | |
Collapse
|
24
|
Körner C, Raiber EA, Keegan SE, Nicolau DC, Sheppard TD, Tabor AB. An expedient synthesis of orthogonally protected lysinoalanine from Aloc-protected Garner’s aldehyde. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.09.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Fundamental functionality: recent developments in understanding the structure–activity relationships of lantibiotic peptides. J Antibiot (Tokyo) 2010; 64:27-34. [DOI: 10.1038/ja.2010.136] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|