1
|
Zaikin VG, Borisov RS. Options of the Main Derivatization Approaches for Analytical ESI and MALDI Mass Spectrometry. Crit Rev Anal Chem 2021; 52:1287-1342. [PMID: 33557614 DOI: 10.1080/10408347.2021.1873100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inclusion of preliminary chemical labeling (derivatization) in the analysis process by such powerful and widespread methods as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a popular and widely used methodological approach. This is due to the need to remove some fundamental limitations inherent in these powerful analytic methods. Although a number of special reviews has been published discussing the utilization of derivatization approaches, the purpose of the present critical review is to comprehensively summarize, characterize and evaluate most of the previously developed and practically applied, as well as recently proposed representative derivatization reagents for ESI-MS and MALDI-MS platforms in their mostly sensitive positive ion mode and frequently hyphenated with separation techniques. The review is focused on the use of preliminary chemical labeling to facilitate the detection, identification, structure elucidation, quantification, profiling or MS imaging of compounds within complex matrices. Two main derivatization approaches, namely the introduction of permanent charge-fixed or highly proton affinitive residues into analytes are critically evaluated. In situ charge-generation, charge-switch and charge-transfer derivatizations are considered separately. The potential of using reactive matrices in MALDI-MS and chemical labeling in MS-based omics sciences is given.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
2
|
Kuchibhotla B, Kola SR, Medicherla JV, Cherukuvada SV, Dhople VM, Nalam MR. Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1216-1226. [PMID: 28349438 DOI: 10.1007/s13361-017-1606-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Annotation of peptide sequence from tandem mass spectra constitutes the central step of mass spectrometry-based proteomics. Peptide mass spectra are obtained upon gas-phase fragmentation. Identification of the protein from a set of experimental peptide spectral matches is usually referred as protein inference. Occurrence and intensity of these fragment ions in the MS/MS spectra are dependent on many factors such as amino acid composition, peptide basicity, activation mode, protease, etc. Particularly, chemical derivatizations of peptides were known to alter their fragmentation. In this study, the influence of acetylation, guanidinylation, and their combination on peptide fragmentation was assessed initially on a lipase (LipA) from Bacillus subtilis followed by a bovine six protein mix digest. The dual modification resulted in improved fragment ion occurrence and intensity changes, and this resulted in the equivalent representation of b- and y-type fragment ions in an ion trap MS/MS spectrum. The improved representation has allowed us to accurately annotate the peptide sequences de novo. Dual labeling has significantly reduced the false positive protein identifications in standard bovine six peptide digest. Our study suggests that the combinatorial labeling of peptides is a useful method to validate protein identifications for high confidence protein inference. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Bhanuramanand Kuchibhotla
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Sankara Rao Kola
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Jagannadham V Medicherla
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Swamy V Cherukuvada
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India
| | - Vishnu M Dhople
- Department of Functional Genomics, University Medicine Greifswald, Interface Institute Genetics & Functional Genomics, D-17475, Greifswald, Germany
| | - Madhusudhana Rao Nalam
- Center for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
3
|
Butorac A, Mekić MS, Hozić A, Diminić J, Gamberger D, Nišavić M, Cindrić M. Benefits of selective peptide derivatization with sulfonating reagent at acidic pH for facile matrix-assisted laser desorption/ionization de novo sequencing. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1687-1694. [PMID: 28328037 DOI: 10.1002/rcm.7594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/23/2016] [Accepted: 04/24/2016] [Indexed: 06/06/2023]
Affiliation(s)
| | - Meliha Solak Mekić
- University Hospital Center Sestre Milosrdnice, University Hospital for Tumors, Center for Malignant Disease, Zagreb, Croatia
| | - Amela Hozić
- Centre for Proteomics and Mass Spectrometry and Laboratory for Information Systems, Ruđer Bošković Institute, Zagreb, Croatia
| | - Janko Diminić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Dragan Gamberger
- Centre for Proteomics and Mass Spectrometry and Laboratory for Information Systems, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marija Nišavić
- Laboratory of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Mario Cindrić
- Centre for Proteomics and Mass Spectrometry and Laboratory for Information Systems, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
4
|
Analysis of biopharmaceutical proteins in biological matrices by LC-MS/MS I. Sample preparation. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
García-Murria MJ, Valero ML, Sánchez del Pino MM. Simple chemical tools to expand the range of proteomics applications. J Proteomics 2010; 74:137-50. [PMID: 21074642 DOI: 10.1016/j.jprot.2010.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/08/2010] [Accepted: 11/03/2010] [Indexed: 12/26/2022]
Abstract
Proteomics is an expanding technology with potential applications in many research fields. Even though many research groups do not have direct access to its main analytical technique, mass spectrometry, they can interact with proteomics core facilities to incorporate this technology into their projects. Protein identification is the analysis most frequently performed in core facilities and is, probably, the most robust procedure. Here we discuss a few chemical reactions that are easily implemented within the conventional protein identification workflow. Chemical modification of proteins with N-hydroxysuccinimide esters, 4-sulfophenyl isothiocyanate, O-methylisourea or through β-elimination/Michael addition can be easily performed in any laboratory. The reactions are quite specific with almost no side reactions. These chemical tools increase considerably the number of applications and have been applied to characterize protein-protein interactions, to determine the N-terminal residues of proteins, to identify proteins with non-sequenced genomes or to locate phosphorylated and O-glycosylated.
Collapse
Affiliation(s)
- María Jesús García-Murria
- Laboratorio de Proteómica, Centro de Investigación Príncipe Felipe, Avda, Autopista del Saler 16, 46012 Valencia, Spain
| | | | | |
Collapse
|
6
|
Peš O, Preisler J. Off-line coupling of microcolumn separations to desorption mass spectrometry. J Chromatogr A 2010; 1217:3966-77. [DOI: 10.1016/j.chroma.2010.02.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 01/13/2023]
|
7
|
Franck J, Ayed ME, Wisztorski M, Salzet M, Fournier I. On tissue protein identification improvement by N-terminal peptide derivatization. Methods Mol Biol 2010; 656:323-338. [PMID: 20680600 DOI: 10.1007/978-1-60761-746-4_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Identification of potential markers of a physiological stage (e.g., pathology) discovered using MALDI-MSI is an important step in the understanding of signaling pathways or for providing sets of diagnosis and prognosis markers for clinical applications. Classically, identification can be achieved by extraction from a piece of tissue and proteomics strategies. However, this induces loss of information especially for low-abundance proteins or proteins localized to a specific region of the tissue. In this respect, identification directly at the tissue level is an attractive alternative. Because the molecular charge states in MALDI are low, on tissue identification is possible using bottom-up MALDI-MSI strategies. Enzymatic digestion using an enzyme such as trypsin can be performed at the micro-scale level to generate peptide collections while avoiding these peptides to be delocalized. It is, therefore, possible to image proteins through the molecular images of their digested peptides. These peptides can also be used to retrieve information on protein sequences by performing MS/MS, although databank interrogation or de novo sequencing using MS/MS spectra does not always lead to a successful or confident identification because on tissue complexities render PMF data problematic. Identification can be improved by increasing MS/MS spectra quality and simplifying their interpretation. This can be achieved by derivatization of peptides. In fact, derivatization of peptides leads to increases in fragmentation yields and orients fragmentations toward a specific series of fragment ions. In this respect, N-terminal chemical derivatization has proven to be particularly efficient. N-terminal chemical derivatization of tryptic peptides has been developed to be performed at the tissue level after on tissue digestion. Specific focus is given to 4-sulfophenyl isothiocyanate (4-SPITC), 3-sulfobenzoic acid NHS ester (3-SBASE), and (N-succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) derivatizations. This provides a complete strategy for protein identification in a bottom-up MALDI-MSI approach and opens the way for novel biomarker identification.
Collapse
Affiliation(s)
- Julien Franck
- Laboratoire de Neuroimmunologie et Neurochimie Evolutives, FRE CNRS 3249, MALDI Imaging Team, Université Lille Nord de France, Université Lille 1, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
8
|
Franck J, El Ayed M, Wisztorski M, Salzet M, Fournier I. On-Tissue N-Terminal Peptide Derivatizations for Enhancing Protein Identification in MALDI Mass Spectrometric Imaging Strategies. Anal Chem 2009; 81:8305-17. [DOI: 10.1021/ac901043n] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. Franck
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| | - M. El Ayed
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| | - M. Wisztorski
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| | - M. Salzet
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| | - I. Fournier
- MALDI Imaging Team, Laboratoire de Neuroimmunologie des Annélides, CNRS-FRE 2933, Université de Lille1, IFR 147, Bâtiment SN3, 1er étage, F-59655 Villeneuve d’Ascq Cedex, France
| |
Collapse
|
9
|
Applications of chemical tagging approaches in combination with 2DE and mass spectrometry. Methods Mol Biol 2009; 519:83-101. [PMID: 19381578 DOI: 10.1007/978-1-59745-281-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Chemical modification reactions play an important role in various protocols for mass-spectrometry-based proteome analysis; this applies to both gel-based and gel-free proteomics workflows. In combination with two-dimensional gel electrophoresis (2DE), the addition of "tags" by means of chemical reactions serves several purposes. Potential benefits include increased sensitivity or sequence coverage for peptide mass fingerprinting and improved peptide fragmentation for de novo sequencing studies. Tagging strategies can also be used to obtain complementary quantitative information in addition to densitometry, and they may be employed for the study of post-translational modifications. In combination with the unique advantages of 2DE as a separation technique, such approaches provide a powerful toolbox for proteomic research. In this review, relevant examples from recent literature will be given to illustrate the capabilities of chemical tagging approaches, and methodological requirements will be discussed.
Collapse
|
10
|
Dodds ED, German JB, Lebrilla CB. Enabling MALDI-FTICR-MS/MS for high-performance proteomics through combination of infrared and collisional activation. Anal Chem 2007; 79:9547-56. [PMID: 18001128 DOI: 10.1021/ac701763t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a central tool for proteomic analysis, yet the singly protonated tryptic peptide ions produced by MALDI are significantly more difficult to dissociate for tandem mass spectrometry (MS/MS) than the corresponding multiply protonated ions. In order to overcome this limitation, current proteomic approaches using MALDI-MS/MS involve high-energy collision-induced dissociation (CID). Unfortunately, the use of high-energy CID complicates product ion spectra with a significant proportion of irrelevant fragments while also reducing mass accuracy and mass resolution. In order to address the lack of a high-resolution, high mass accuracy MALDI-MS/MS platform for proteomics, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and a recently developed MS/MS technique termed CIRCA (for combination of infrared and collisional activation) have been applied to proteomic analysis. Here, CIRCA is shown to be suitable for dissociating singly protonated tryptic peptides, providing greater sequence coverage than either CID or infrared multiphoton dissociation (IRMPD) alone. Furthermore, the CIRCA fragmentation spectra are of sufficient quality to allow protein identification based on the MS/MS spectra alone or in concert with the peptide mass fingerprint (PMF). This is accomplished without compromising mass accuracy or mass resolution. As a result, CIRCA serves to enable MALDI-FTICR-MS/MS for high-performance proteomics experiments.
Collapse
Affiliation(s)
- Eric D Dodds
- Department of Chemistry, School of Medicine, University of California Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
11
|
Gowd KH, Krishnan KS, Balaram P. Identification of Conus amadis disulfide isomerase: minimum sequence length of peptide fragments necessary for protein annotation. MOLECULAR BIOSYSTEMS 2007; 3:554-66. [PMID: 17639131 DOI: 10.1039/b705382g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein disulfide isomerase (PDI) has been identified in a protein extract from the venom duct of the marine snail C. amadis. In-gel tryptic digestion of a thick protein band at approximately 55 kDa yields a mixture of peptides. Analysis of tryptic fragments by MALDI-MS/MS and LC-ESI-MS/MS methods permits sequence assignment. Three tryptic fragments yield two nine residue sequences (FVQDFLDGK and EPQLGDRVR ) and an eleven residue sequence (DQESTGALAFK ). Database analysis using peptides and were consistent with the sequence of PDI and peptide appears to be derived from a co-migrating protein. In identifying proteins based on the characterization of short peptide sequences the question arises about the reliability of identification using peptide fragments. Here we have also demonstrated the minimum length of peptide fragment necessary for unambiguous protein identification using fragments obtained from the experimentally derived sequences. Sequences of length > or =7 residues provide unambiguous identification in conjunction with protein molecular mass as a filter. The length of sequence necessary for unambiguous protein identification is also established using randomly chosen tryptic fragments from a standard dataset of proteins. The results are of significance in the identification of proteins from organisms with unsequenced genomes.
Collapse
Affiliation(s)
- Konkallu Hanumae Gowd
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | |
Collapse
|