1
|
Pierre AS, Gavriel N, Guilbard M, Ogier-Denis E, Chevet E, Delom F, Igbaria A. Modulation of Protein Disulfide Isomerase Functions by Localization: The Example of the Anterior Gradient Family. Antioxid Redox Signal 2024; 41:675-692. [PMID: 38411504 DOI: 10.1089/ars.2024.0561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Significance: Oxidative folding within the endoplasmic reticulum (ER) introduces disulfide bonds into nascent polypeptides, ensuring proteins' stability and proper functioning. Consequently, this process is critical for maintaining proteome integrity and overall health. The productive folding of thousands of secretory proteins requires stringent quality control measures, such as the unfolded protein response (UPR) and ER-Associated Degradation (ERAD), which contribute significantly to maintaining ER homeostasis. ER-localized protein disulfide isomerases (PDIs) play an essential role in each of these processes, thereby contributing to various aspects of ER homeostasis, including maintaining redox balance, proper protein folding, and signaling from the ER to the nucleus. Recent Advances: Over the years, there have been increasing reports of the (re)localization of PDI family members and other ER-localized proteins to various compartments. A prime example is the anterior gradient (AGR) family of PDI proteins, which have been reported to relocate to the cytosol or the extracellular environment, acquiring gain of functions that intersect with various cellular signaling pathways. Critical Issues: Here, we summarize the functions of PDIs and their gain or loss of functions in non-ER locations. We will focus on the activity, localization, and function of the AGR proteins: AGR1, AGR2, and AGR3. Future Directions: Targeting PDIs in general and AGRs in particular is a promising strategy in different human diseases. Thus, there is a need for innovative strategies and tools aimed at targeting PDIs; those strategies should integrate the specific localization and newly acquired functions of these PDIs rather than solely focusing on their canonical roles.
Collapse
Affiliation(s)
- Arvin S Pierre
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Noa Gavriel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marianne Guilbard
- ARTiSt Group, Univ. Bordeaux, INSERM U1312, Institut Bergonié, Bordeaux, France
- Thabor Therapeutics, Paris, France
| | - Eric Ogier-Denis
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Frederic Delom
- ARTiSt Group, Univ. Bordeaux, INSERM U1312, Institut Bergonié, Bordeaux, France
| | - Aeid Igbaria
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
2
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
3
|
Karatas E, Raymond AA, Leon C, Dupuy JW, Di-Tommaso S, Senant N, Collardeau-Frachon S, Ruiz M, Lachaux A, Saltel F, Bouchecareilh M. Hepatocyte proteomes reveal the role of protein disulfide isomerase 4 in alpha 1-antitrypsin deficiency. JHEP Rep 2021; 3:100297. [PMID: 34151245 PMCID: PMC8192868 DOI: 10.1016/j.jhepr.2021.100297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background & Aims A single point mutation in the Z-variant of alpha 1-antitrypsin (Z-AAT) alone can lead to both a protein folding and trafficking defect, preventing its exit from the endoplasmic reticulum (ER), and the formation of aggregates that are retained as inclusions within the ER of hepatocytes. These defects result in a systemic AAT deficiency (AATD) that causes lung disease, whereas the ER-retained aggregates can induce severe liver injury in patients with ZZ-AATD. Unfortunately, therapeutic approaches are still limited and liver transplantation represents the only curative treatment option. To overcome this limitation, a better understanding of the molecular basis of ER aggregate formation could provide new strategies for therapeutic intervention. Methods Our functional and omics approaches here based on human hepatocytes from patients with ZZ-AATD have enabled the identification and characterisation of the role of the protein disulfide isomerase (PDI) A4/ERP72 in features of AATD-mediated liver disease. Results We report that 4 members of the PDI family (PDIA4, PDIA3, P4HB, and TXNDC5) are specifically upregulated in ZZ-AATD liver samples from adult patients. Furthermore, we show that only PDIA4 knockdown or alteration of its activity by cysteamine treatment can promote Z-AAT secretion and lead to a marked decrease in Z aggregates. Finally, detailed analysis of the Z-AAT interactome shows that PDIA4 silencing provides a more conducive environment for folding of the Z mutant, accompanied by reduction of Z-AAT-mediated oxidative stress, a feature of AATD-mediated liver disease. Conclusions PDIA4 is involved in AATD-mediated liver disease and thus represents a therapeutic target for inhibition by drugs such as cysteamine. PDI inhibition therefore represents a potential therapeutic approach for treatment of AATD. Lay summary Protein disulfide isomerase (PDI) family members, and particularly PDIA4, are upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. PDI inhibition upon cysteamine treatment leads to improvements in features of AATD and hence represents a therapeutic approach for treatment of AATD-mediated liver disease. PDIA4 is upregulated and involved in alpha 1-antitrypsin deficiency (AATD)-mediated liver disease in adults. Knockdown of PDIA4 by siRNA or inhibition upon cysteamine treatment leads to improvements in features of AATD. RNA interference against PDIA4 or cysteamine represent approaches for treatment of AATD-mediated liver disease.
Collapse
Key Words
- AAT, alpha 1-antitrypsin
- AATD, alpha 1-antitrypsin deficiency
- Alpha 1-antitrypsin deficiency
- CF, cystic fibrosis
- CFTR, cystic fibrosis transmembrane conductance regulator
- Cysteamine
- ER, endoplasmic reticulum
- FFPE, formalin-fixed paraffin-embedded
- FKBP10, FK506-binding protein (FKBP) isoform 10
- HCC, hepatocellular carcinoma
- IHC, immunohistochemistry
- IP, immunoprecipitation
- Liver damage
- NHK, null Hong Kong variant of AAT
- P4HB, prolyl 4-hydroxylase subunit beta/PDIA1
- PDI, protein disulfide isomerase
- PDIA3, protein disulfide isomerase family A member 3/ERP57
- PDIA4
- PDIA4, protein disulfide isomerase family A member 4/ERP70/ERP72
- PDIi, PDI inhibitors
- Protein disulfide isomerase
- ROS, reactive oxygen species
- SURF4, proteins Surfeit 4
- Scr, scramble
- TRX, thioredoxin
- TXNDC5, thioredoxin domain containing 5/PDIA15
- Treatment
- WT, wild-type
- Z-AAT, alpha 1-antitrypsin Z variant
- ZZ, homozygosis for the Z mutant allele
- siRNA, small RNA interference
- ΔF508-CFTR, most common mutation of CFTR, which deletes phenylalanine508
Collapse
Affiliation(s)
- Esra Karatas
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | - Anne-Aurélie Raymond
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Céline Leon
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France
| | | | - Sylvaine Di-Tommaso
- Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | - Nathalie Senant
- Plateforme d'histopathologie, TBM-Core US 005, Bordeaux, France
| | - Sophie Collardeau-Frachon
- Department of Pathology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Lachaux
- Hépatologie, Gastroentérologie et Nutrition pédiatriques, Centre de référence de l'atrésie des voies biliaires et cholestases génétiques, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.,Faculté de Médecine Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Frédéric Saltel
- University of Bordeaux, CNRS, INSERM, BaRITOn, U1053, Bordeaux, France.,Oncoprot, University of Bordeaux, INSERM, TBM-Core, UMS 3427, US 5, Bordeaux, France
| | | |
Collapse
|
4
|
Hu Q, Huang K, Tao C, Zhu X. Protein disulphide isomerase can predict the clinical prognostic value and contribute to malignant progression in gliomas. J Cell Mol Med 2020; 24:5888-5900. [PMID: 32301283 PMCID: PMC7214159 DOI: 10.1111/jcmm.15264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence from structural and functional studies has indicated that protein disulphide isomerase (PDI) has a critical role in the proliferation, survival and metastasis of several types of cancer. However, the molecular mechanisms through which PDI contributes to glioma remain unclear. Here, we aimed to investigate whether the differential expression of 17 PDI family members was closely related to the different clinicopathological features in gliomas from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas data sets. Additionally, four subgroups of gliomas (cluster 1/2/3/4) were identified based on consensus clustering of the PDI gene family. These findings not only demonstrated that a poorer prognosis, higher WHO grade, lower frequency of isocitrate dehydrogenase mutation and higher 1p/19q non‐codeletion status were significantly correlated with cluster 4 compared with the other clusters, but also indicated that the malignant progression of glioma was closely correlated with the expression of PDI family members. Moreover, we also constructed an independent prognostic marker that can predict the clinicopathological features of gliomas. Overall, the results indicated that PDI family members may serve as possible diagnostic markers in gliomas.
Collapse
Affiliation(s)
- Qing Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chuming Tao
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,East China Institute of Digital Medical Engineering, Shangrao, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Generation of endoplasmic reticulum stress and inhibition of autophagy by plitidepsin induces proteotoxic apoptosis in cancer cells. Biochem Pharmacol 2020; 172:113744. [DOI: 10.1016/j.bcp.2019.113744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
|
6
|
Wang Z, Zhang H, Cheng Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed Pharmacother 2020; 122:109688. [PMID: 31794946 DOI: 10.1016/j.biopha.2019.109688] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/07/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Disulfide bond formation is catalyzed by the protein disulfide Isomerases (PDI) family. This is a critical step in protein folding which occurs within the endoplasmic reticulum. PDIA4, as a member of the PDI family, can cause the adjustment of αIIβ 3 affinities which activate platelet and promote thrombosis formation. Endoplasmic reticulum response is triggered by accumulation of abnormal folding proteins concomitant with increasing PDIA4 expression. Besides, current researches indicate that activated platelets and ERS response affect tumor progression. And PDIA4, as previous reported, also participates in tumor progression by affecting cell apoptosis and DNA repair machinery without specific mechanisms revealed.Therefore, PDI inhibitor might possess great potential value in against tumor progression. In this review, we summarize information on PDIA4 including its the basic characteristics and its implication on tumor.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China.
| |
Collapse
|
7
|
Leisch M, Egle A, Greil R. Plitidepsin: a potential new treatment for relapsed/refractory multiple myeloma. Future Oncol 2019; 15:109-120. [DOI: 10.2217/fon-2018-0492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plitidepsin is a marine-derived anticancer compound isolated from the Mediterranean tunicate Applidium albicans. It exerts pleiotropic effects on cancer cells, most likely by binding to the eukaryotic translation eEF1A2. This ultimately leads to cell-cycle arrest, growth inhibition and induction of apoptosis via multiple pathway alterations. Recently, a Phase III randomized trial in patients with relapsed/refractory multiple myeloma reported outcomes for plitidepsin plus dexamethasone compared with dexamethasone. Median progression-free survival was 3.8 months in the plitidepsin arm and 1.9 months in the dexamethasone arm (HR: 0.611; p = 0.0048). Here, we review preclinical data regarding plitidepsins mechanism of action, give an overview of clinical trial results across different tumor types as well as the latest results in multiple myeloma.
Collapse
Affiliation(s)
- Michael Leisch
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology & Rheumatology, Oncologic Center, Salzburg Cancer Research Institute – Laboratory of Immunological & Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| | - Alexander Egle
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology & Rheumatology, Oncologic Center, Salzburg Cancer Research Institute – Laboratory of Immunological & Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology & Rheumatology, Oncologic Center, Salzburg Cancer Research Institute – Laboratory of Immunological & Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| |
Collapse
|
8
|
Mennerich D, Kellokumpu S, Kietzmann T. Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal 2019; 30:113-137. [PMID: 29717631 DOI: 10.1089/ars.2018.7523] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE Eukaryotic cells execute various functions in subcellular compartments or organelles for which cellular redox homeostasis is of importance. Apart from mitochondria, hypoxia and stress-mediated formation of reactive oxygen species (ROS) were shown to modulate endoplasmic reticulum (ER) and Golgi apparatus (GA) functions. Recent Advances: Research during the last decade has improved our understanding of disulfide bond formation, protein glycosylation and secretion, as well as pH and redox homeostasis in the ER and GA. Thus, oxygen (O2) itself, NADPH oxidase (NOX) formed ROS, and pH changes appear to be of importance and indicate the intricate balance of intercompartmental communication. CRITICAL ISSUES Although the interplay between hypoxia, ER stress, and Golgi function is evident, the existence of more than 20 protein disulfide isomerase family members and the relative mild phenotypes of, for example, endoplasmic reticulum oxidoreductin 1 (ERO1)- and NOX4-knockout mice clearly suggest the existence of redundant and alternative pathways, which remain largely elusive. FUTURE DIRECTIONS The identification of these pathways and the key players involved in intercompartmental communication needs suitable animal models, genome-wide association, as well as proteomic studies in humans. The results of those studies will be beneficial for the understanding of the etiology of diseases such as type 2 diabetes, Alzheimer's disease, and cancer, which are associated with ROS, protein aggregation, and glycosylation defects.
Collapse
Affiliation(s)
- Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu , Oulu, Finland
| |
Collapse
|
9
|
Bechtel TJ, Weerapana E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 2017; 17. [PMID: 28044432 DOI: 10.1002/pmic.201600391] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of the functional roles of disulfide bonds and their relevance to human disease. The critical roles of disulfide bonds in protein structure stabilization and redox regulation of protein activity are addressed. Disulfide bonds are essential to the structural stability of many proteins within the secretory pathway and can exist as intramolecular or inter-domain disulfides. The proper formation of these bonds often relies on folding chaperones and oxidases such as members of the protein disulfide isomerase (PDI) family. Many of the PDI family members catalyze disulfide-bond formation, reduction, and isomerization through redox-active disulfides and perturbed PDI activity is characteristic of carcinomas and neurodegenerative diseases. In addition to catalytic function in oxidoreductases, redox-active disulfides are also found on a diverse array of cellular proteins and act to regulate protein activity and localization in response to oxidative changes in the local environment. These redox-active disulfides are either dynamic intramolecular protein disulfides or mixed disulfides with small-molecule thiols generating glutathionylation and cysteinylation adducts. The oxidation and reduction of redox-active disulfides are mediated by cellular reactive oxygen species and activity of reductases, such as glutaredoxin and thioredoxin. Dysregulation of cellular redox conditions and resulting changes in mixed disulfide formation are directly linked to diseases such as cardiovascular disease and Parkinson's disease.
Collapse
Affiliation(s)
- Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
10
|
Protein disulfide isomerase: a promising target for cancer therapy. Drug Discov Today 2014; 19:222-40. [DOI: 10.1016/j.drudis.2013.10.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/12/2013] [Accepted: 10/22/2013] [Indexed: 12/15/2022]
|
11
|
Li Z, Min W, Gou J. Knockdown of cyclophilin A reverses paclitaxel resistance in human endometrial cancer cells via suppression of MAPK kinase pathways. Cancer Chemother Pharmacol 2013; 72:1001-11. [PMID: 24036847 DOI: 10.1007/s00280-013-2285-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/30/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE Paclitaxel resistance remains to be a major obstacle to the chemotherapy of endometrial cancer. Using proteomic-based approach, we used to identify cyclophilin A (CypA) as a potential therapeutic target for endometrial cancer. As a natural continuation, this study aimed to reveal the correlation between CypA and paclitaxel resistance and evaluate the possibility of CypA as a therapeutic target for reversal of resistance. METHODS Two paclitaxel-resistant endometrial cancer cell sublines HEC-1-B/TAX and AN3CA/TAX were generated, and expressions of CypA, P-gp, MRP-2 and survivin were demonstrated by Western blotting. CypA was knocked down by RNA interference, and the subsequent effects on the alteration of paclitaxel resistance were examined by MTT, flow cytometry and migratory/invasive transwell assays. MAPK kinases activities were examined by Western blotting. RESULTS CypA knockdown led to significant inhibition of cell proliferation, induction of apoptosis and suppression of migratory/invasive capacity in HEC-1-B/TAX and AN3CA/TAX cells when exposed to paclitaxel. CypA knockdown led to reductions in total and phosphorylated MAPK kinases, including Akt, ERK1/2, p38 MAPK and JNK, in HEC-1-B/TAX cells. Furthermore, pretreatment with MAPK kinase inhibitors exhibited a synergistic effect in combination with CypA knockdown. CONCLUSIONS These results demonstrated that CypA expression was up-regulated in paclitaxel-resistant cancer cells, and knockdown of CypA could reverse the paclitaxel resistance through, at least partly, suppression of MAPK kinase pathways, presenting a possibility of CypA serving as a therapeutic target to overcome paclitaxel resistance.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China,
| | | | | |
Collapse
|
12
|
c-Jun N-terminal kinase phosphorylation is a biomarker of plitidepsin activity. Mar Drugs 2013; 11:1677-92. [PMID: 23697951 PMCID: PMC3707168 DOI: 10.3390/md11051677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/01/2013] [Accepted: 04/18/2013] [Indexed: 01/30/2023] Open
Abstract
Plitidepsin is an antitumor drug of marine origin currently in Phase III clinical trials in multiple myeloma. In cultured cells, plitidepsin induces cell cycle arrest or an acute apoptotic process in which sustained activation of c-Jun N-terminal kinase (JNK) plays a crucial role. With a view to optimizing clinical use of plitidepsin, we have therefore evaluated the possibility of using JNK activation as an in vivo biomarker of response. In this study, we show that administration of a single plitidepsin dose to mice xenografted with human cancer cells does indeed lead to increased phosphorylation of JNK in tumors at 4 to 12 h. By contrast, no changes were found in other in vitro plitidepsin targets such as the levels of phosphorylated-ERK, -p38MAPK or the protein p27KIP1. Interestingly, plitidepsin also increased JNK phosphorylation in spleens from xenografted mice showing similar kinetics to those seen in tumors, thereby suggesting that normal tissues might be useful for predicting drug activity. Furthermore, plitidepsin administration to rats at plasma concentrations comparable to those achievable in patients also increased JNK phosphorylation in peripheral mononuclear blood cells. These findings suggest that changes in JNK activity provide a reliable biomarker for plitidepsin activity and this could be useful for designing clinical trials and maximizing the efficacy of plitidepsin.
Collapse
|
13
|
Lage H. Proteomic approaches for investigation of therapy resistance in cancer. Proteomics Clin Appl 2012; 3:883-911. [PMID: 21136994 DOI: 10.1002/prca.200800162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Resistance to anticancer therapy is a major obstacle for successful management of patients in oncology. Although in the past, various biological mechanisms involved in therapy resistance, in particular multidrug resistance, have been identified, cancer patients did not really benefit. The mechanisms include the enhanced activity of drug extrusion pumps, modulation of cellular death pathways, alteration and repair of target molecules and various other mechanisms. Together they build a complex network mediating an individual therapy-resistant phenotype. The improved description of this multifactorial network should be useful for prediction of treatment response and would allow to design an individual-tailored therapy regiment. Proteome analyzing technologies appear as powerful tools for identifying new factors and protein expression profiles associated with anticancer therapy resistance. In the last years, the application of proteomic techniques identified multiple new factors or protein expression signatures in drug-resistant cell models and cancerous tissues. However, the functional role and the clinical impact of these findings are not yet clarified. So far, none of the proteomic data were useful for the development of improved diagnostic tests, for prediction of individual therapy response or for development of updated chemosensitizers. Here, the previous therapy resistance-related proteome data and future perspectives will be discussed.
Collapse
Affiliation(s)
- Hermann Lage
- Institute of Pathology, Charité Campus Mitte, Berlin, Germany.
| |
Collapse
|
14
|
Laurindo FRM, Pescatore LA, Fernandes DDC. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic Biol Med 2012; 52:1954-69. [PMID: 22401853 DOI: 10.1016/j.freeradbiomed.2012.02.037] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 12/16/2022]
Abstract
Thiol proteins may potentially act as redox signaling adaptor proteins, adjusting reactive oxygen species intermediates to specific signals and redox signals to cell homeostasis. In this review, we discuss redox effects of protein disulfide isomerase (PDI), a thioredoxin superfamily oxidoreductase from the endoplasmic reticulum (ER). Abundantly expressed PDI displays ubiquity, interactions with redox and nonredox proteins, versatile effects, and several posttranslational modifications. The PDI family contains >20 members with at least some apparent complementary actions. PDI has oxidoreductase, isomerase, and chaperone effects, the last not directly dependent on its thiols. PDI is a converging hub for pathways of disulfide bond introduction into ER-processed proteins, via hydrogen peroxide-generating mechanisms involving the oxidase Ero1α, as well as hydrogen peroxide-consuming reactions involving peroxiredoxin IV and the novel peroxidases Gpx7/8. PDI is a candidate pathway for coupling ER stress to oxidant generation. Emerging information suggests a convergence between PDI and Nox family NADPH oxidases. PDI silencing prevents Nox responses to angiotensin II and inhibits Akt phosphorylation in vascular cells and parasite phagocytosis in macrophages. PDI overexpression spontaneously enhances Nox activation and expression. In neutrophils, PDI redox-dependently associates with p47phox and supports the respiratory burst. At the cell surface, PDI exerts transnitrosation, thiol reductase, and apparent isomerase activities toward targets including adhesion and matrix proteins and proteases. Such effects mediate redox-dependent adhesion, coagulation/thrombosis, immune functions, and virus internalization. The route of PDI externalization remains elusive. Such multiple redox effects of PDI may contribute to its conspicuous expression and functional role in disease, rendering PDI family members putative redox cell signaling adaptors.
Collapse
Affiliation(s)
- Francisco R M Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, 05403-000 São Paulo, Brazil.
| | | | | |
Collapse
|
15
|
Lincet H, Guével B, Pineau C, Allouche S, Lemoisson E, Poulain L, Gauduchon P. Comparative 2D-DIGE proteomic analysis of ovarian carcinoma cells: Toward a reorientation of biosynthesis pathways associated with acquired platinum resistance. J Proteomics 2012; 75:1157-69. [DOI: 10.1016/j.jprot.2011.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/29/2011] [Accepted: 10/27/2011] [Indexed: 01/08/2023]
|
16
|
Sun QL, Sha HF, Yang XH, Bao GL, Lu J, Xie YY. Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J Cancer Res Clin Oncol 2011; 137:521-32. [PMID: 20499251 DOI: 10.1007/s00432-010-0913-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/05/2010] [Indexed: 01/31/2023]
Abstract
PURPOSE Paclitaxel is used as the first-line chemotherapy for Non-Small Cell Lung Cancer (NSCLC), but acquired resistance becomes a critical problem. Several mechanisms have been proposed in paclitaxel resistance, but they are not sufficient to exhaustively explain this resistance emergence. To better investigate molecular resistance mechanisms, a comparative proteomic approach was carried out to identify differentially expressed proteins between human lung adenocarcinoma A549 cell line (paclitaxel sensitive) and A549-Taxol cell line (acquired resistant). METHODS A paclitaxel-resistant subline (A549-Taxol) derived from the parental-sensitive cell line A549 was established by stepwise selection by paclitaxel. Total proteins in the two cell lines were separated by fluorescent differential gel electrophoresis (DIGE). Image analysis was carried out with the DeCyder 2D 6.5 software. Proteins associated with chemoresistance process were identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Some key molecules were valuated by Western blot. RESULTS Thirty proteins were identified and grouped into eight main functional classes according to the biological processes in which they are likely to participate, i.e. signal transduction, cytoskeleton, redox reaction, energy and metabolism, and so on. Alterations of these processes might be involved in paclitaxel resistance. Most of the proteins showed mitochondrial and cytoplasm location. The up-regulation of CK8, CK18, ALDH1, CAST and ANX I in A549-Taxol cell line was verified by Western blot, in coincidence with the data obtained from proteomic analysis. CONCLUSION For the first time, differentially expressed proteins between paclitaxel-sensitive cell line and paclitaxel-resistant one were explored by comparative proteomic approach in human lung adenocarcinoma. It may be useful for further studying of resistance mechanisms and screening of resistance biomarkers, so as to develop tailored therapeutic strategies.
Collapse
Affiliation(s)
- Qiang-Ling Sun
- Basic Research Laboratory, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200030, China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Cyclophilins (Cyps) belong to a group of proteins that have peptidyl-prolyl cis–trans isomerase (PPIase) and molecular chaperone activities. Originally, Cyps were identified as the intracellular receptors for the immunosuppressive drug cyclosporin A. Cyps are found in all prokaryotes and eukaryotes, and have been structurally conserved throughout evolution, implying their importance in cellular function. There are seven major Cyp isoforms in humans. CypA is up-regulated in many human cancers, and there is a strong correlation between over-expression of the CYPA gene and malignant transformation in some cancers. Moreover, CypA is directly under the transcriptional control of two critical transcription factors for cancer development: p53 and hypoxia inducible factor-1α. This review discusses the general biological functions of Cyps under a variety of stress conditions, and the importance and diverse roles of over-expression of CYP genes in human cancers, with a particular emphasis on CYPA. These oncogenic properties suggest that CypA is a promising target for cancer therapy.
Collapse
Affiliation(s)
- J Lee
- Department of Biomedical Laboratory Science, Dongseo University, Busan, Republic of Korea
| | - SS Kim
- Department of Biochemistry and Molecular Biology, Medical Science and Engineering Research Centre for Bioreaction to Reactive Oxygen Species (BK-21) and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Meehan KL, Rainczuk A, Salamonsen LA, Stephens AN. Proteomics and the search for biomarkers of female reproductive diseases. Reproduction 2010; 140:505-19. [PMID: 20628032 DOI: 10.1530/rep-10-0226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past decade, high-throughput proteomics technologies have evolved considerably and have become increasingly more commonly applied to the investigation of female reproductive diseases. Proteomic approaches facilitate the identification of new disease biomarkers by comparing the abundance of hundreds of proteins simultaneously to find those specific to a particular clinical condition. Some of the best studied areas of female reproductive biology applying proteomics include gynaecological cancers, endometriosis and endometrial infertility. This review will discuss the progress that has been made in these areas and will highlight some of the emerging technologies that promise to contribute to better understanding of the female reproductive disease.
Collapse
Affiliation(s)
- Katie L Meehan
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
19
|
Novel snail1 target proteins in human colon cancer identified by proteomic analysis. PLoS One 2010; 5:e10221. [PMID: 20421926 PMCID: PMC2857666 DOI: 10.1371/journal.pone.0010221] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 03/26/2010] [Indexed: 11/19/2022] Open
Abstract
Background The transcription factor Snail1 induces epithelial-to-mesenchymal transition (EMT), a process responsible for the acquisition of invasiveness during tumorigenesis. Several transcriptomic studies have reported Snail1-regulated genes in different cell types, many of them involved in cell adhesion. However, only a few studies have used proteomics as a tool for the characterization of proteins mediating EMT. Methodology/Principal Findings We identified by proteomic analysis using 2D-DIGE electrophoresis combined with MALDI-TOF-TOF and ESI-linear ion trap mass spectrometry a number of proteins with variable functions whose expression is modulated by Snail1 in SW480-ADH human colon cancer cells. Validation was performed by Western blot and immunofluorescence analyses. Snail1 repressed several members of the 14-3-3 family of phosphoserine/phosphothreonine binding proteins and also the expression of the Proliferation-associated protein 2G4 (PA2G4) that was mainly localized at the nuclear Cajal bodies. In contrast, the expression of two proteins involved in RNA processing, the Cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and the Splicing factor proline/glutamine-rich (SFPQ), was higher in Snail1-expressing cells than in controls. The regulation of 14-3-3ε, 14-3-3τ, 14-3-3ζ and PA2G4 by Snail1 was reproduced in HT29 colon cancer cells. In addition, we found an inverse correlation between 14-3-3σ and Snail1 expression in human colorectal tumors. Conclusions/Significance We have identified a set of novel Snail1 target proteins in colon cancer that expand the cellular processes affected by Snail1 and thus its relevance for cell function and phenotype.
Collapse
|
20
|
Rockwell S, Liu Y. Aplidin as a potential adjunct to radiation therapy: in vitro studies. Int J Radiat Biol 2010; 86:63-70. [PMID: 20070217 DOI: 10.3109/09553000903264531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Aplidin (plitidespin) is a novel cyclic depsipeptide, currently in Phase II clinical trials for solid and hematologic malignancies. We examined the effects of oxygen on the cytotoxicity of Aplidin and the interactions between Aplidin and radiation. These factors will be important if Aplidin is used clinically in combination with radiotherapy. MATERIALS Exponentially-growing EMT6 mouse mammary tumour cells in monolayer cultures were treated with Aplidin and 250 kV X-rays. RESULTS The cytotoxicity of Aplidin was not altered either by incubation in moderate hypoxia before and during a 24 h drug treatment or by incubation in severe hypoxia before and during a 2 h drug treatment. Treatment with Aplidin plus radiation produced cytotoxicities compatible with additive or supraadditive cytotoxicities. Cells treated with 1 microM Aplidin for 24 h then killed by 100 Gy of radiation were toxic to untreated cells co-cultured with them. CONCLUSIONS The cytotoxicity of Aplidin is independent of the oxygenation during treatment. Aplidin, or an active metabolite of Aplidin, is retained in the cells and later released as the radiation-sterilised cells die, producing a Bystander effect that kills neighbouring cells. This Bystander effect could affect the outcome of therapeutic regimens combining Aplidin and radiation.
Collapse
Affiliation(s)
- Sara Rockwell
- Department of Therapeutic Radiology,Yale Comprehensive Cancer Center, Yale University School of Medicine, New, Haven, Connecticut 06520-8040, USA.
| | | |
Collapse
|
21
|
Di Michele M, Marcone S, Cicchillitti L, Della Corte A, Ferlini C, Scambia G, Donati MB, Rotilio D. Glycoproteomics of paclitaxel resistance in human epithelial ovarian cancer cell lines: towards the identification of putative biomarkers. J Proteomics 2009; 73:879-98. [PMID: 19951750 DOI: 10.1016/j.jprot.2009.11.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 12/25/2022]
Abstract
Glycosylation, one of the most common post translational modifications (PTMs) of proteins, is often associated with carcinogenesis and tumor malignancy. Ovarian cancer is the sixth cause of cancer-related death in Western countries. Currently, it is treated by debulking surgery followed by chemotherapy based on paclitaxel, alone or in combination with other drugs. However, chemoresistance represents a major obstacle to positive clinical outcome. We used two approaches, Multiplexed Proteomics (MP) technology and Multilectin Affinity Chromatography (MAC) to characterize the glycoproteome of the human ovarian cancer cell line A2780 and its paclitaxel resistant counterpart A2780TC1. Furthermore proteins were separated by traditional 2DE or DIGE and identified by MS (MALDI TOF or LC MS/MS). Seventy glycoproteins were successfully identified in ovarian cancer cells and 10 were found to be differentially expressed between sensitive and resistant cell lines. We focused on four glycoproteins (tumor rejection antigen (gp96) 1, triose phosphate isomerase, palmitoyl-protein thioesterase 1 precursor and ER-associated DNAJ) which were remarkably upregulated in A2780TC1 compared to A2780 cell line and which may represent biomarkers for paclitaxel resistance in ovarian cancer.
Collapse
Affiliation(s)
- Michela Di Michele
- Research Laboratories, John Paul II Centre for High Technology Research and Education in Biomedical Sciences, Catholic University, Campobasso, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tan KT, Guiu-Rozas E, Bon RS, Guo Z, Delon C, Wetzel S, Arndt S, Alexandrov K, Waldmann H, Goody RS, Wu YW, Blankenfeldt W. Design, Synthesis, and Characterization of Peptide-Based Rab Geranylgeranyl Transferase Inhibitors. J Med Chem 2009; 52:8025-37. [DOI: 10.1021/jm901117d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Kirill Alexandrov
- Department of Physical Biochemistry
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St. Lucia, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
23
|
Cicchillitti L, Di Michele M, Urbani A, Ferlini C, Donat MB, Scambia G, Rotilio D. Comparative proteomic analysis of paclitaxel sensitive A2780 epithelial ovarian cancer cell line and its resistant counterpart A2780TC1 by 2D-DIGE: the role of ERp57. J Proteome Res 2009; 8:1902-12. [PMID: 19714814 DOI: 10.1021/pr800856b] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Epithelial ovarian cancer is the leading cause of gynecological cancer mortality. Despite good response to surgery and initial chemotherapy, chemoresistance occurrence represents a major obstacle to a successful therapy. To better understand biological mechanisms at the basis of paclitaxel resistance, a comparative proteomic approach based on DIGE coupled with mass spectrometry (MALDI-TOF and LC-MS/MS) was applied to the human epithelial ovarian cancer cell lines A2780 and its paclitaxel resistant counterpart A2780TC1. Most of the differentially expressed proteins between the two cell lines belong to the class of stress response (29%), metabolism (21%), and cell cycle and apoptosis (17%). We focused on proteins which were most strongly modulated by paclitaxel resistance and in particular on the disulphide isomerase ERp57, which may represent a chemoresistance biomarker. ERp57 was found to interact with class III beta-tubulin (TUBB3), involved in paclitaxel resistance in ovarian and other cancers. Moreover, we demonstrated a novel localization of this protein in cytoskeleton and described that ERp57/TUBB3 interaction occurs also in the nuclear compartment and in association with a multimeric complex formed by nucleolin, nucleophosmin, hnRNPK, and mortalin. Our data suggest that ERp57 plays an important role in chemoresistance mechanisms in ovarian cancer by modulating the attachment of microtubules to chromosomes following paclitaxel treatment through its interaction with TUBB3.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Department of Oncology, "RE ARTU" Laboratory of Analytical Techniques and Proteomics, "John Paul II" Center for High Technology Research and Education in Biomedical Sciences, Catholic University, Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Di Michele M, Della Corte A, Cicchillitti L, Del Boccio P, Urbani A, Ferlini C, Scambia G, Donati MB, Rotilio D. A proteomic approach to paclitaxel chemoresistance in ovarian cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:225-36. [DOI: 10.1016/j.bbapap.2008.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/29/2008] [Accepted: 09/18/2008] [Indexed: 02/06/2023]
|
25
|
Antonov AV, Dietmann S, Mewes HW. KEGG spider: interpretation of genomics data in the context of the global gene metabolic network. Genome Biol 2008; 9:R179. [PMID: 19094223 PMCID: PMC2646283 DOI: 10.1186/gb-2008-9-12-r179] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 10/28/2008] [Accepted: 12/18/2008] [Indexed: 12/24/2022] Open
Abstract
KEGG spider is a web-based tool for interpretation of experimentally derived gene lists in order to gain understanding of metabolism variations at a genomic level. KEGG spider implements a 'pathway-free' framework that overcomes a major bottleneck of enrichment analyses: it provides global models uniting genes from different metabolic pathways. Analyzing a number of experimentally derived gene lists, we demonstrate that KEGG spider provides deeper insights into metabolism variations in comparison to existing methods.
Collapse
Affiliation(s)
- Alexey V Antonov
- GSF National Research Centre for Environment and Health, Institute for Bioinformatics, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | | | |
Collapse
|
26
|
Kuang YH, Chen X, Su J, Wu LS, Li J, Chang J, Qiu Y, Chen ZS, Kanekura T. Proteome analysis of multidrug resistance of human oral squamous carcinoma cells using CD147 silencing. J Proteome Res 2008; 7:4784-91. [PMID: 18816083 DOI: 10.1021/pr800355b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a correlation between the multidrug-resistance (MDR) of cancer cells and their enhanced invasive or metastatic potential. We studied the expression of CD147, a plasma membrane glycoprotein that plays a key role in tumor metastasis by stimulating the production of matrix metalloproteinases (MMPs), in sensitive human oral squamous KB and MDR derivative KB/V cells. Reverse transcription-PCR and flow cytometric analysis revealed that KB/V cells expressed CD147 at significantly higher levels than their parental KB cells. Using stable RNA interference, we succeeded in establishing a CD147 knock-down KB/V cell line (KB/VsiCD147). MTT colorimetric assay showed an increase in the chemosensitivity to vincristine (VCR), all transretinoic acid (ATRA), taxol, and 5-fluorouracil (5-Fu) of KB/VsiCD147 cells. Proteome analysis of KB, KB/V, and KB/VsiCD147 cell lines identified 21 differently expressed proteins. The enhanced expression of representative active proteins, GRP75 and CyPA, was confirmed by Western blotting and RT-PCR. In addition, pretreatment of KB/V cells with a CyPA-binding immunosuppressive drug, cyclosporine A (CsA), enhanced their chemosensitivity to VCR and 5-Fu. We document an abundance of molecules that interact with CD147 in the MDR of human oral squamous carcinoma cells. Additional studies are needed to investigate these novel target proteins of CD147.
Collapse
Affiliation(s)
- Ye-Hong Kuang
- Department of Dermatology, Xiang Ya Hospital, Central South University, Hunan, 410008, China, Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Alfonso P, Cañamero M, Fernández-Carbonié F, Núñez A, Casal JI. Proteome Analysis of Membrane Fractions in Colorectal Carcinomas by Using 2D-DIGE Saturation Labeling. J Proteome Res 2008; 7:4247-55. [DOI: 10.1021/pr800152u] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Patricia Alfonso
- Protein Technology Unit and Comparative Pathology Unit, Biotechnology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Marta Cañamero
- Protein Technology Unit and Comparative Pathology Unit, Biotechnology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Francisco Fernández-Carbonié
- Protein Technology Unit and Comparative Pathology Unit, Biotechnology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Antonio Núñez
- Protein Technology Unit and Comparative Pathology Unit, Biotechnology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - J. Ignacio Casal
- Protein Technology Unit and Comparative Pathology Unit, Biotechnology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
28
|
Yue QX, Cao ZW, Guan SH, Liu XH, Tao L, Wu WY, Li YX, Yang PY, Liu X, Guo DA. Proteomics Characterization of the Cytotoxicity Mechanism of Ganoderic Acid D and Computer-automated Estimation of the Possible Drug Target Network. Mol Cell Proteomics 2008; 7:949-61. [DOI: 10.1074/mcp.m700259-mcp200] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
29
|
Li Z, Zhao X, Bai S, Wang Z, Chen L, Wei Y, Huang C. Proteomics identification of cyclophilin a as a potential prognostic factor and therapeutic target in endometrial carcinoma. Mol Cell Proteomics 2008; 7:1810-23. [PMID: 18421009 DOI: 10.1074/mcp.m700544-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endometrial carcinoma is one of the most common malignancies of the female genital tract, and there is an urgent need for discovery of novel factors for prognostic assessment and therapeutic targets to endometrial carcinoma. Herein a two-dimensional gel electrophoresis and MALDI-Q-TOF MS/MS-based proteomics approach was used to identify differentially expressed proteins in endometrial carcinoma. Of the 99 proteins identified, cyclophilin A was one of the most significantly altered proteins, and its overexpression was confirmed using RT-PCR and Western blot analyses. Immunohistochemistry suggested a link between cyclophilin A expression and poor differentiation and decreased survival (p < 0.01). Knockdown of cyclophilin A expression by RNA interference led to the significant suppression of the cell growth and the induction of apoptosis in endometrial carcinoma HEC-1-B cells in vitro (p < 0.01) and the inhibition of tumor growth in vivo (p < 0.01). These data suggest that cyclophilin A may serve as a novel prognostic factor and possibly an attractive therapeutic target for endometrial carcinoma.
Collapse
Affiliation(s)
- Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second [corrected] Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Mbeunkui F, Metge BJ, Shevde LA, Pannell LK. Identification of differentially secreted biomarkers using LC-MS/MS in isogenic cell lines representing a progression of breast cancer. J Proteome Res 2007; 6:2993-3002. [PMID: 17608509 PMCID: PMC2584611 DOI: 10.1021/pr060629m] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins secreted (the secretome) from cancer cells are potentially useful as biomarkers of the disease. Using LC-MS/MS, the secreted proteomes from a series of isogenic breast cancer cell lines varying in aggressiveness were analyzed by mass spectrometry: nontumorigenic MCF10A, premalignant/tumorigenic MCF10AT, tumorigenic/locally invasive MCF10 DCIS.com, and tumorigenic/metastatic MCF 10CA cl. D. Proteomes were obtained from conditioned serum-free media, partially fractionated using a small reverse phase C2 column, and digested with trypsin for analysis by LC-MS/MS, using a method previously shown to give highly enriched secreted proteomes (Mbeunkui et al. J. Proteome Res. 2006, 5, 899-906). The search files produced from five analyses (three separate preparations) were combined for database searching (Mascot) which produced a list of over 250 proteins from each cell line. The aim was to discover highly secreted proteins which changed significantly in abundance corresponding with aggressiveness. The most apparent changes were observed for alpha-1-antichymotrypsin and galectin-3-binding protein which were highly secreted proteins from MCF10 DCIS.com and MCF10CA cl. D, yet undetected in the MCF10A and MCF10AT cell lines. Other proteins showing increasing abundance in the more aggressive cell lines included alpha-1-antitrypsin, cathepsin D, and lysyl oxidase. The S100 proteins, often associated with metastasis, showed variable changes in abundance. While the cytosolic proteins were low (e.g., actin and tubulin), there was significant secretion of proteins often associated with the cytoplasm. These proteins were all predicted as products of nonclassical secretion (SecretomeP, Center for Biological Sequence Analysis). The LC-MS/MS results were verified for five selected proteins by western blot analysis, and the relevance of other significant proteins is discussed. Comparisons with two other aggressive breast cancer cell lines are included. The protein with consistent association with aggressiveness in all lines, and in unrelated cancer cells, was the galectin-3-binding protein which has been associated with breast, prostate, and colon cancer earlier, supporting the approach and findings. This analysis of an isogenic series of cell lines suggests the potential usefulness of the secretome for identifying prospective markers for the early detection and aggressiveness/progression of cancer.
Collapse
Affiliation(s)
| | | | - Lalita A. Shevde
- Joint submission by L. Pannell and L. Shevde, Mitchell Cancer Institute, Medical Sciences Building, Room 2015, University of South Alabama, 307 University Blvd, Mobile AL 36688. Tel: (251) 414-8201. Fax: (251) 414-8281. E-mail:
| | - Lewis K. Pannell
- Joint submission by L. Pannell and L. Shevde, Mitchell Cancer Institute, Medical Sciences Building, Room 2015, University of South Alabama, 307 University Blvd, Mobile AL 36688. Tel: (251) 414-8201. Fax: (251) 414-8281. E-mail:
| |
Collapse
|