1
|
Suryaletha K, Narendrakumar L, John J, Radhakrishnan MP, George S, Thomas S. Decoding the proteomic changes involved in the biofilm formation of Enterococcus faecalis SK460 to elucidate potential biofilm determinants. BMC Microbiol 2019; 19:146. [PMID: 31253082 PMCID: PMC6599329 DOI: 10.1186/s12866-019-1527-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/20/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Enterococcus faecalis is a major clinically relevant nosocomial bacterial pathogen frequently isolated from polymicrobial infections. The biofilm forming ability of E. faecalis attributes a key role in its virulence and drug resistance. Biofilm cells are phenotypically and metabolically different from their planktonic counterparts and many aspects involved in E. faecalis biofilm formation are yet to be elucidated. The strain E. faecalis SK460 used in the present study is esp (Enterococcal surface protein) and fsr (two-component signal transduction system) negative non-gelatinase producing strong biofilm former isolated from a chronic diabetic foot ulcer patient. We executed a label-free quantitative proteomic approach to elucidate the differential protein expression pattern at planktonic and biofilm stages of SK460 to come up with potential determinants associated with Enterococcal biofilm formation. RESULTS The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of proteomic data revealed that biofilm cells expressed higher levels of proteins which are associated with glycolysis, amino acid biosynthesis, biosynthesis of secondary metabolites, microbial metabolism in diverse environments and stress response factors. Besides these basic survival pathways, LuxS-mediated quorum sensing, arginine metabolism, rhamnose biosynthesis, pheromone and adhesion associated proteins were found to be upregulated during the biofilm transit from planktonic stages. The selected subsets were validated by quantitative real-time PCR. In silico functional interaction analysis revealed that the genes involved in upregulated pathways pose a close molecular interaction thereby coordinating the regulatory network to thrive as a biofilm community. CONCLUSIONS The present study describes the first report of the quantitative proteome analysis of an esp and fsr negative non gelatinase producing E. faecalis. Proteome analysis evidenced enhanced expression of glycolytic pathways, stress response factors, LuxS quorum signaling system, rhamnopolysaccharide synthesis and pheromone associated proteins in biofilm phenotype. We also pointed out the relevance of LuxS quorum sensing and pheromone associated proteins in the biofilm development of E. faecalis which lacks the Fsr quorum signaling system. These validated biofilm determinants can act as potential inhibiting targets in Enterococcal infections.
Collapse
Affiliation(s)
- Karthika Suryaletha
- Cholera and Biofilm Research Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, (National Institute under the Department of Biotechnology, Government of India), Trivandrum, Kerala, 695014, India
| | - Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, (National Institute under the Department of Biotechnology, Government of India), Trivandrum, Kerala, 695014, India
| | - Joby John
- Department of Surgery, Government Medical College Hospital, Trivandrum, Kerala, 695011, India
| | - Megha Periyappilly Radhakrishnan
- Cholera and Biofilm Research Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, (National Institute under the Department of Biotechnology, Government of India), Trivandrum, Kerala, 695014, India
| | - Sanil George
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, 695014, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Pathogen Biology, Rajiv Gandhi Centre for Biotechnology, (National Institute under the Department of Biotechnology, Government of India), Trivandrum, Kerala, 695014, India.
| |
Collapse
|
2
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
3
|
Xu CG, Yang YB, Zhou YH, Hao MQ, Ren YZ, Wang XT, Chen JQ, Muhammad I, Wang S, Liu D, Li XB, Li YH. Comparative Proteomic Analysis Provides insight into the Key Proteins as Possible Targets Involved in Aspirin Inhibiting Biofilm Formation of Staphylococcus xylosus. Front Pharmacol 2017; 8:543. [PMID: 28871227 PMCID: PMC5566577 DOI: 10.3389/fphar.2017.00543] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus xylosus is an opportunistic pathogen that causes infection in humans and cow mastitis. And S. xylosus possesses a strong ability to form biofilms in vitro. As biofilm formation facilitates resistance to antimicrobial agents, the discovery of new medicinal properties for classic drugs is highly desired. Aspirin, which is the most common active component of non-steroidal anti-inflammatory compounds, affects the biofilm-forming capacity of various bacterial species. We have found that aspirin effectively inhibits biofilm formation of S. xylosus by Crystal violet (CV) staining and scanning electron microscopy analyses. The present study sought to elucidate possible targets of aspirin in suppressing S. xylosus biofilm formation. Based on an isobaric tag for relative and absolute quantitation (iTRAQ) fold-change of >1.2 or <0.8 (P-value < 0.05), 178 differentially expressed proteins, 111 down-regulated and 67 up-regulated, were identified after application of aspirin to cells at a 1/2 minimal inhibitory concentration. Gene ontology analysis indicated enrichment in metabolic processes for the majority of the differentially expressed proteins. We then used the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database to analyze a large number of differentially expressed proteins and identified genes involved in biosynthesis of amino acids pathway, carbon metabolism (pentose phosphate and glycolytic pathways, tricarboxylic acid cycle) and nitrogen metabolism (histidine metabolism). These novel proteins represent candidate targets in aspirin-mediated inhibition of S. xylosus biofilm formation at sub-MIC levels. The findings lay the foundation for further studies to identify potential aspirin targets.
Collapse
Affiliation(s)
- Chang-Geng Xu
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yan-Bei Yang
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yong-Hui Zhou
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Mei-Qi Hao
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yong-Zhi Ren
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xiao-Ting Wang
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Jian-Qing Chen
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Ishfaq Muhammad
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Shuai Wang
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Di Liu
- Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Xiu-Bo Li
- Feed Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentHarbin, China
| |
Collapse
|
4
|
Couto N, Martins J, Lourenço AM, Pomba C, Varela Coelho A. Identification of vaccine candidate antigens of Staphylococcus pseudintermedius by whole proteome characterization and serological proteomic analyses. J Proteomics 2016; 133:113-124. [DOI: 10.1016/j.jprot.2015.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 01/12/2023]
|
5
|
Khemiri A, Jouenne T, Cosette P. Proteomics dedicated to biofilmology: What have we learned from a decade of research? Med Microbiol Immunol 2015; 205:1-19. [PMID: 26068406 DOI: 10.1007/s00430-015-0423-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 06/03/2015] [Indexed: 12/31/2022]
Abstract
Advances in proteomics techniques over the past decade, closely integrated with genomic and physicochemical approach, have played a great role in developing knowledge of the biofilm lifestyle of bacteria. Despite bacterial proteome versatility, many studies have demonstrated the ability of proteomics approaches to elucidating the biofilm phenotype. Though these investigations have been largely used for biofilm studies in the last decades, they represent, however, a very low percentage of proteomics works performed up to now. Such approaches have offered new targets for combating microbial biofilms by providing a comprehensive quantitative and qualitative overview of their protein cell content. Herein, we summarized the state of the art in knowledge about biofilm physiology after one decade of proteomic analysis. In a second part, we highlighted missing research tracks for the next decade, emphasizing the emergence of posttranslational modifications in proteomic studies stemming from recent advances in mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Arbia Khemiri
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France.
- University of Normandy, UR, Mont-Saint-Aignan, France.
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France.
| | - Thierry Jouenne
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Pascal Cosette
- CNRS, UMR 6270, Laboratory "Polymères, Biopolymères, Surfaces", 76820, Mont-Saint-Aignan, France
- University of Normandy, UR, Mont-Saint-Aignan, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| |
Collapse
|
6
|
Vermassen A, de la Foye A, Loux V, Talon R, Leroy S. Transcriptomic analysis of Staphylococcus xylosus in the presence of nitrate and nitrite in meat reveals its response to nitrosative stress. Front Microbiol 2014; 5:691. [PMID: 25566208 PMCID: PMC4266091 DOI: 10.3389/fmicb.2014.00691] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/22/2014] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus xylosus is one of the major starter cultures used for meat fermentation because of its crucial role in the reduction of nitrate to nitrite which contributes to color and flavor development. Despite longstanding use of these additives, their impact on the physiology of S. xylosus has not yet been explored. We present the first in situ global gene expression profile of S. xylosus in meat supplemented with nitrate and nitrite at the levels used in the meat industry. More than 600 genes of S. xylosus were differentially expressed at 24 or 72 h of incubation. They represent more than 20% of the total genes and let us to suppose that addition of nitrate and nitrite to meat leads to a global change in gene expression. This profile revealed that S. xylosus is subject to nitrosative stress caused by reactive nitrogen species (RNS) generated from nitrate and nitrite. To overcome this stress, S. xylosus has developed several oxidative stress resistance mechanisms, such as modulation of the expression of several genes involved in iron homeostasis and in antioxidant defense. Most of which belong to the Fur and PerR regulons, respectively. S. xylosus has also counteracted this stress by developing DNA and protein repair. Furthermore, it has adapted its metabolic response—carbon and nitrogen metabolism, energy production and cell wall biogenesis—to the alterations produced by nitrosative stress.
Collapse
Affiliation(s)
- Aurore Vermassen
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| | - Anne de la Foye
- Institut National de la Recherche Agronomique, Plateforme d'Exploration du Métabolisme Saint-Genès-Champanelle, France
| | - Valentin Loux
- Institut National de la Recherche Agronomique, UR1077 Mathématique, Informatique et Génome Jouy-en-Josas, France
| | - Régine Talon
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| | - Sabine Leroy
- Institut National de la Recherche Agronomique, UR454 Microbiologie Saint-Genès-Champanelle, France
| |
Collapse
|
7
|
Genome of Staphylococcus xylosus and Comparison with S. aureus and S. epidermidis. J Genet Genomics 2014; 41:413-6. [DOI: 10.1016/j.jgg.2014.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/18/2022]
|
8
|
Siljamäki P, Varmanen P, Kankainen M, Sukura A, Savijoki K, Nyman TA. Comparative exoprotein profiling of different Staphylococcus epidermidis strains reveals potential link between nonclassical protein export and virulence. J Proteome Res 2014; 13:3249-61. [PMID: 24840314 DOI: 10.1021/pr500075j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Staphylococcus epidermidis (SE) includes commensal and pathogenic strains capable of infecting humans and animals. This study reports global exoproteome profiling of bovine mastitis strain PM221 and two human strains, commensal-type ATCC12228 and sepsis-associated RP62A. We identified 451, 395, and 518 proteins from culture supernatants of PM221, ATCC12228, and RP62A, respectively. Comparison of the identified exoproteomes revealed several strain-specific differences related to secreted antigens and adhesins, higher virulence capability for RP62A, and similarities between the PM221 and RP62A exoproteomes. The majority of the identified proteins (∼80%) were predicted to be cytoplasmic, including proteins known to be associated in membrane vesicles (MVs) in Staphylococcus aureus and immunogenic/adhesive moonlighting proteins. Enrichment of MV fractions from culture supernatants and analysis of their protein composition indicated that this nonclassical protein secretion pathway was being exploited under the conditions used and that there are strain-specific differences in nonclassical protein export. In addition, several predicted cell-surface proteins were identified in the culture media. In summary, the present study is the first in-depth exoproteome analysis of SE highlighting strain-specific factors able to contribute to virulence and adaptation.
Collapse
Affiliation(s)
- Pia Siljamäki
- Department of Food and Environmental Sciences, ‡Institute of Biotechnology, and §Department of Veterinary Biosciences, University of Helsinki , FI-00014 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
9
|
Potter A, Ceotto H, Coelho MLV, Guimarães AJ, Bastos MDCDF. The gene cluster of aureocyclicin 4185: the first cyclic bacteriocin of Staphylococcus aureus. Microbiology (Reading) 2014; 160:917-928. [DOI: 10.1099/mic.0.075689-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus 4185 was previously shown to produce at least two bacteriocins. One of them is encoded by pRJ101. To detect the bacteriocin-encoding gene cluster, an ~9160 kb region of pRJ101 was sequenced. In silico analyses identified 10 genes (aclX, aclB, aclI, aclT, aclC, aclD, aclA, aclF, aclG and aclH) that might be involved in the production of a novel cyclic bacteriocin named aureocyclicin 4185. The organization of these genes was quite similar to that of the gene cluster responsible for carnocyclin A production and immunity. Four putative proteins encoded by these genes (AclT, AclC, AclD and AclA) also exhibited similarity to proteins encoded by cyclic bacteriocin gene clusters. Mutants derived from insertion of Tn917-lac into aclC, aclF, aclH and aclX were affected in bacteriocin production and growth. AclX is a 205 aa putative protein not encoded by the gene clusters of other cyclic bacteriocins. AclX exhibits 50 % similarity to a permease and has five putative membrane-spanning domains. Transcription analyses suggested that aclX is part of the aureocyclicin 4185 gene cluster, encoding a protein required for bacteriocin production. The aclA gene is the structural gene of aureocyclicin 4185, which shows 65 % similarity to garvicin ML. AclA is proposed to be cleaved off, generating a mature peptide with a predicted M
r of 5607 Da (60 aa). By homology modelling, AclA presents four α-helices, like carnocyclin A. AclA could not be found at detectable levels in the culture supernatant of a strain carrying only pRJ101. To our knowledge, this is the first report of a cyclic bacteriocin gene cluster in the genus Staphylococcus.
Collapse
Affiliation(s)
- Amina Potter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Hilana Ceotto
- Instituto Federal de Educação Tecnológica do Estado do Rio de Janeiro, IFRJ, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | - Marcus Lívio Varella Coelho
- Instituto Nacional da Propriedade Industrial, INPI, Rio de Janeiro, Brazil
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
10
|
Abstract
The proteomic approaches have considerably evolved over the past two decades. This opened the doors for larger scale and deeper explorations of cellular physiology. Like for other living organisms, using the tools of proteomics has undoubtedly improved knowledge about the foodborne pathogen Listeria monocytogenes. Among the different technologies and approaches permanently evolving in the field of proteomics, the 2-DE is an analytical separation method of choice to resolve thousands of proteins simultaneously in a single gel, allowing their quantification, the study of their posttranslational modifications and the understanding of their biological function. In this, 2-DE remains a perfectly complementary technique to the new high-throughput techniques such as shotgun proteomics approaches. Moreover, in order to gain in analysis depth and improve knowledge about the target of action and the function of proteins in relation to their subcellular location, it is necessary to explore more specifically the different subcellular proteomes. Thus, the subproteomic analyses became essential and dramatically increased these last years, particularly on proteins secreted into the extracellular milieu, named exoproteome, or on cell envelope proteins (cell wall and membrane proteins) which are involved in the interactions with the surrounding environment. Here, the extraction and separation of L. monocytogenes subproteomes are described based on cell fractionation and 2-DE techniques. This chapter gives a workflow to obtain the exoproteome, the intracellular proteome, the cell wall, and membrane proteomes of the Gram-positive bacterium L. monocytogenes. The different steps of 2-DE technology, composed of a first dimension based on the separation of proteins according to their charge, an equilibration step, then a second dimension based on the separation of proteins according to their mass, and finally the staining of proteins in the gel are detailed. Emerging technologies to extract the exoproteome or the cell surface proteome after enzymatic shaving and to analyze them by shotgun method are also discussed briefly.
Collapse
Affiliation(s)
- Michel Hébraud
- UR454 Microbiology and proteomic component of the Metabolism Exploration Platform (PFEMcp), INRA, Clermont-Ferrand Research Centre (Theix site), Saint-Genès Champanelle, F-63122, France,
| |
Collapse
|
11
|
Paredi G, Sentandreu MA, Mozzarelli A, Fadda S, Hollung K, de Almeida AM. Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective. J Proteomics 2013; 88:58-82. [DOI: 10.1016/j.jprot.2013.01.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/31/2013] [Indexed: 11/16/2022]
|
12
|
Renier S, Chambon C, Viala D, Chagnot C, Hébraud M, Desvaux M. Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e. J Proteomics 2013; 80:183-95. [PMID: 23291529 DOI: 10.1016/j.jprot.2012.11.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/12/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
Abstract
As part of the Sec translocase, the accessory ATPase SecA2 is present in some pathogenic Gram-positive bacteria. In Listeria monocytogenes, deletion of secA2 results in filamentous cells that form rough colonies and have lower virulence. However, only a few proteins have been identified that are secreted by this pathway. This investigation aims to provide the first exoproteomic analysis of the SecA2-dependent secretion in L. monocytogenes EGD-e. By using media and temperatures relevant to bacterial physiology, we demonstrated that the rough colony and elongated bacterial cell morphotypes are highly dependent on growth conditions. Subsequently, comparative exoproteomic analyses of the ΔsecA2 versus wt strains were performed in chemically defined medium at 20°C and 37°C. Analyzing the proteomic data following the secretomics-based method, part of the proteins appeared routed towards the Sec pathway and exhibited an N-terminal signal peptide. For another significant part, they were primarily cytoplasmic proteins, thus lacking signal peptide and with no predictable secretion pathway. In total, 13 proteins were newly identified as secreted via SecA2, which were essentially associated with cell-wall metabolism, adhesion and/or biofilm formation. From this comparative exoproteomic analysis, new insights into the L. monocytogenes physiology are discussed in relation to its saprophytic and pathogenic lifestyle.
Collapse
Affiliation(s)
- Sandra Renier
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- INRA, Plate-forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Didier Viala
- INRA, Plate-forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Caroline Chagnot
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France; INRA, Plate-forme d'Exploration du Métabolisme, F-63122 Saint-Genès Champanelle, France
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France.
| |
Collapse
|
13
|
Solis N, Cordwell SJ. Current methodologies for proteomics of bacterial surface-exposed and cell envelope proteins. Proteomics 2011; 11:3169-89. [DOI: 10.1002/pmic.201000808] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/16/2011] [Accepted: 04/05/2011] [Indexed: 12/18/2022]
|
14
|
Dreisbach A, Hempel K, Buist G, Hecker M, Becher D, van Dijl JM. Profiling the surfacome of Staphylococcus aureus. Proteomics 2010; 10:3082-96. [PMID: 20662103 DOI: 10.1002/pmic.201000062] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Staphylococcus aureus is a widespread opportunistic pathogen that can cause a wide variety of life-threatening diseases. Especially for the colonization of human tissues and the development of invasiveness, surface-exposed proteins are of major importance. In the present studies, we optimized a proteolytic shaving approach to identify those surface-exposed protein domains - the surfacome - of S. aureus that are accessible to extracellular bio-macromolecules, for example in the host milieu. Subsequently, this approach was applied to define the surfacomes of four strains with different genetic backgrounds. This resulted in the identification of 96 different proteins. Surprisingly, the overlap between the surfacomes of the four different strains was below 10% and each strain displayed its own characteristic set of surface-exposed proteins. The data were also evaluated at the peptide level and here we observed a similar phenomenon. From 190 unique peptides only five were commonly found in the four strains. Besides well known cell wall proteins, we also identified some essential proteins, several yet uncharacterized exported proteins and predicted intracellular proteins. These results show for the first time that the cell surface of different S. aureus strains is not only highly variable, but also that the displayed proteins are very heterogeneous.
Collapse
Affiliation(s)
- Annette Dreisbach
- Department of Medical Microbiology, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
In vitro activities of arylomycin natural-product antibiotics against Staphylococcus epidermidis and other coagulase-negative staphylococci. Antimicrob Agents Chemother 2010; 55:1130-4. [PMID: 21189343 DOI: 10.1128/aac.01459-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The arylomycins are a class of natural-product antibiotics that act via the inhibition of type I signal peptidase (SPase), and we have found in diverse bacteria that their activity is limited by the presence of a resistance-conferring Pro residue in SPase that reduces inhibitor binding. We have also demonstrated that Staphylococcus epidermidis, which lacks this Pro residue, is extremely susceptible to the arylomycins. Here, to further explore the potential utility of the arylomycins, we report an analysis of the activity of a synthetic arylomycin derivative, arylomycin C₁₆, against clinical isolates of S. epidermidis and other coagulase-negative staphylococci (CoNS) from distinct geographical locations. Against many important species of CoNS, including S. epidermidis, S. haemolyticus, S. lugdunensis, and S. hominis, we find that arylomycin C₁₆ exhibits activity equal to or greater than that of vancomycin, the antibiotic most commonly used to treat CoNS infections. While the susceptibility was generally correlated with the absence of the previously identified Pro residue, several cases were identified where additional factors also appear to contribute.
Collapse
|
16
|
Renier S, Hébraud M, Desvaux M. Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol 2010; 13:835-50. [PMID: 21087384 DOI: 10.1111/j.1462-2920.2010.02378.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The opportunistic and facultative intracellular pathogenic bacterium Listeria monocytogenes causes a rare but severe foodborne disease called listeriosis, the outcome of which can be fatal. The infection cycle and key virulence factors are now well characterized in this species. Nonetheless, this knowledge has not prevented the re-emergence of listeriosis, as recently reported in several European countries. Listeria monocytogenes is particularly problematic in the food industry since it can survive and multiply under conditions frequently used for food preservation. Moreover, this foodborne pathogen also forms biofilms, which increase its persistence and resistance in industrial production lines, leading to contamination of food products. Significant differences have been reported regarding the ability of different isolates to form biofilms, but no clear correlation can be established with serovars or lineages. The architecture of listerial biofilms varies greatly from one strain to another as it ranges from bacterial monolayers to the most recently described network of knitted chains. While the role of polysaccharides as part of the extracellular matrix contributing to listerial biofilm formation remains elusive, the importance of eDNA has been demonstrated. The involvement of flagella in biofilm formation has also been pointed out, but their exact role in the process remains to be clarified because of conflicting results. Two cell-cell communication systems LuxS and Agr have been shown to take part in the regulation of biofilm formation. Several additional molecular determinants have been identified by functional genetic analyses, such as the (p)ppGpp synthetase RelA and more recently BapL. Future directions and questions about the molecular mechanisms of biofilm formation in L. monocytogenes are further discussed, such as correlation between clonal complexes as revealed by MLST and biofilm formation, the swarming over swimming regulation hypothesis regarding the role of the flagella, and the involvement of microbial surface components recognizing adhesive matrix molecules in the colonization of abiotic and biotic surfaces.
Collapse
Affiliation(s)
- Sandra Renier
- INRA, UR454 Microbiology, F-63122 Saint-Genès Champanelle, France
| | | | | |
Collapse
|
17
|
Desvaux M, Dumas E, Chafsey I, Chambon C, Hébraud M. Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. J Proteome Res 2010; 9:5076-92. [PMID: 20839850 DOI: 10.1021/pr1003642] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Defined as proteins actively transported via secretion systems, secreted proteins can have radically different subcellular destinations in monoderm (Gram-positive) bacteria. From degradative enzymes in saprophytes to virulence factors in pathogens, secreted proteins are the main tools used by bacteria to interact with their surroundings. The etiological agent of listeriosis, Listeria monocytogenes, is a Gram-positive facultative intracellular foodborne pathogen, whose ecological niche is the soil and as such should be primarily considered as a ubiquitous saprophyte. Recent advances on protein secretion systems in this species prompted us to investigate the exoproteome. First, an original and rational bioinformatic strategy was developed to mimic the protein exportation steps leading to the extracellular localization of secreted proteins; 79 exoproteins were predicted as secreted via Sec, 1 exoprotein via Tat, 4 bacteriocins via ABC exporters, 3 exoproteins via holins, and 3 exoproteins via the WXG100 system. This bioinformatic analysis allowed for defining a databank of the mature protein set in L. monocytogenes, which was used for generating the theoretical exoproteome and for subsequent protein identification by proteomics. 2-DE proteomic analyses were performed over a wide pI range to experimentally cover the largest protein spectrum possible. A total of 120 spots could be resolved and identified, which corresponded to 50 distinct proteins. These exoproteins were essentially virulence factors, degradative enzymes, and proteins of unknown functions, which exportation would essentially rely on the Sec pathway or nonclassical secretion. This investigation resulted in the first comprehensive appraisal of the exoproteome of L. monocytogenes EGD-e based on theoretical and experimental secretomic analyses, which further provided indications on listerial physiology in relation with its habitat and lifestyle. The novel and rational strategy described here is generic and has been purposely designed for the prediction of proteins localized extracellularly in monoderm bacteria.
Collapse
Affiliation(s)
- Mickaël Desvaux
- INRA, UR454 Microbiology, Food Quality and Safety Team, Saint-Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
18
|
Hempel K, Pané-Farré J, Otto A, Sievers S, Hecker M, Becher D. Quantitative Cell Surface Proteome Profiling for SigB-Dependent Protein Expression in the Human Pathogen Staphylococcus aureus via Biotinylation Approach. J Proteome Res 2010; 9:1579-90. [DOI: 10.1021/pr901143a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kristina Hempel
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Jan Pané-Farré
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Andreas Otto
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Michael Hecker
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Beganović J, Guillot A, van de Guchte M, Jouan A, Gitton C, Loux V, Roy K, Huet S, Monod H, Monnet V. Characterization of the Insoluble Proteome of Lactococcus lactis by SDS-PAGE LC-MS/MS Leads to the Identification of New Markers of Adaptation of the Bacteria to the Mouse Digestive Tract. J Proteome Res 2010; 9:677-88. [DOI: 10.1021/pr9000866] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jasna Beganović
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| | - Alain Guillot
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| | - Maarten van de Guchte
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| | - Anne Jouan
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| | - Christophe Gitton
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| | - Valentin Loux
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| | - Karine Roy
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| | - Sylvie Huet
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| | - Hervé Monod
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| | - Véronique Monnet
- INRA, PAPPSO (Plate-Forme d’Analyse Protéomique de Paris Sud-Ouest), UR895 Génétique Microbienne, UR341 Mathématique et Informatique Appliquées, UR477 Biochimie Bactérienne, UR1077 Mathématique, Informatique, Génome, Domaine de Vilvert, F-78352 Jouy en Josas, France
| |
Collapse
|
20
|
Planchon S, Desvaux M, Chafsey I, Chambon C, Leroy S, Hébraud M, Talon R. Comparative subproteome analyses of planktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulase-negative Staphylococcus in biofilm. J Proteome Res 2009; 8:1797-809. [PMID: 19253936 DOI: 10.1021/pr8004056] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Staphylococcus xylosus is a Gram-positive bacterium found on the skin of mammals and frequently isolated from food plants and fermented cheese or meat. To gain further insight in protein determinants involved in biofilm formation by this coagulase-negative Staphylococcus, a comparative proteomic analysis between planktonic and sessile cells was performed. With the use of a protocol previously developed, protein patterns of the cytoplasmic and cell envelope fractions were compared by 2-DE. Following protein identification by MALDI-TOF mass spectrometry and bioinformatic analyses, this study revealed differences in expression levels of 89 distinct proteins with 55 up-expressed and 34 down-expressed proteins in biofilm compared to planktonic cells. Most proteins differentially expressed were related to nitrogen and carbon metabolisms. Besides amino acid biosynthesis and protein translation, protein determinants related to protein secretion were up-expressed in biofilm, suggesting a more active protein trafficking in sessile cells. While up-expression of several enzymes involved in pentose phosphate and glycolytic pathways was observed in biofilm, connections with unexpected metabolic routes were further unravelled. Indeed, this proteomic analysis allowed identifying novel proteins that could be involved in a previously uncovered exopolysaccharide biosynthetic pathway in S. xylosus as well as several enzymes related to polyketide biosynthesis. This findings are particularly relevant considering exopolysaccharide production in S. xylosus is ica-independent contrary to coagulase-negative model strain Staphylococcus epidermidis RP62A.
Collapse
Affiliation(s)
- Stella Planchon
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Penque D. Two-dimensional gel electrophoresis and mass spectrometry for biomarker discovery. Proteomics Clin Appl 2008; 3:155-72. [DOI: 10.1002/prca.200800025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|