1
|
Haji Begli N, Freund C, Weiss KH, Gotthardt D, Wannhoff A. Comparative proteomics reveals different protein expression in platelets in patients with alcoholic liver cirrhosis. Proteome Sci 2024; 22:3. [PMID: 38279183 PMCID: PMC10811856 DOI: 10.1186/s12953-024-00227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/02/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The role of platelets in disease progression as well as the function of platelets as part of the haemostatic and immunological system in patients with liver cirrhosis is only incompletely understood. This is partly due to difficulties in assessing platelet function. Proteome analyses of platelets have been used to further investigate the role of platelets in other diseases. AIM To assess possible changes in the platelet proteome during different stages of alcohol induced liver cirrhosis compared to healthy donors. PATIENTS AND METHODS A 45 ml blood sample was drawn from 18 participants aged 18-80 years evenly divided into three groups of healthy donors, patients with less advanced alcohol induced liver cirrhosis (Child-Pugh < 7) and patients with advanced liver cirrhosis (Child-Pugh > 10). The blood was processed to isolate platelets and perform subsequent two-dimensional gel-electrophoresis using a SYPRO™ Ruby dye. After computational analysation significantly in- or decreased protein spots (defined as a two-fold abundance change between different study cohorts and ANOVA < 0.05) were identified via liquid chromatography-mass spectrometry (LCMS) and searching against human protein databases. RESULTS The comparative analysis identified four platelet proteins with progressively decreased protein expression in patients with liver cirrhosis. More specifically Ras-related protein Rab-7a (Rab-7a), Ran-specific binding protein 1 (RANBP1), Rho GDP-dissociation inhibitor 1 (RhoGDI1), and 14-3-3 gamma. CONCLUSION There is significant change in protein expression in the platelet proteome throughout the disease progression of alcohol induced liver cirrhosis. The identified proteins are possibly involved in haemostatic and immunoregulatory function of platelets.
Collapse
Affiliation(s)
- Nima Haji Begli
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Cora Freund
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Karl-Heinz Weiss
- Salem Medical Center, Zeppelinstr. 11-33, 69120, Heidelberg, Germany
| | - Daniel Gotthardt
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Andreas Wannhoff
- Department of Internal Medicine IV, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- Department of Internal Medicine and Gastroenterology, Hospital Ludwigsburg, Posilipostrasse 4, 71640, Ludwigsburg, Germany.
| |
Collapse
|
2
|
Masforrol Y, Gil J, García D, Noda J, Ramos Y, Betancourt L, Guirola O, González S, Acevedo B, Besada V, Reyes O, González LJ. A deeper mining on the protein composition of VA-MENGOC-BC®: An OMV-based vaccine against N. meningitidis serogroup B and C. Hum Vaccin Immunother 2017; 13:2548-2560. [PMID: 29083947 DOI: 10.1080/21645515.2017.1356961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protein composition of an Outer Membrane Vesicle (OMV) preparation that constitutes the active pharmaceutical ingredient of VA-MENGOC-BC®, an effective vaccine against Neisseria meningitidis serogroups B, and C is presented. This preparation has a high lipid content and five abundant membrane proteins (FetA, PorA, PorB, RmpM, and Opc), constituting approximately 70% of the total protein mass. The protein composition was determined by combining the use of the Hexapeptide Ligand Library and an orthogonal tandem fractionation of tryptic peptides by reverse-phase chromatography at alkaline and acid pH. This approach equalizes the concentration of tryptic peptides derived from low- and high-abundance proteins as well as considerably simplifying the number of peptides analyzed by LC-MS/MS, enhancing the possibility of identifying low-abundance species. Fifty-one percent of the proteins originally annotated as membrane proteins in the genome of the MC58 strain were identified. One hundred and sixty-eight low-abundance cytosolic proteins presumably occluded within OMV were also identified. Four (NadA, NUbp, GNA2091, and fHbp), out of the five antigens constituting the Bexsero® vaccine, were detected in this OMV preparation. In particular, fHbp is also the active principle of the Trumenba® vaccine developed by Pfizer. The HpuA and HpuB gene products (not annotated in the MC58 genome) were identified in the CU385 strain, a clinical isolate that is used to produce this OMV. Considering the proteins identified here and previous work done by our group, the protein catalogue of this OMV preparation was extended to 266 different protein species.
Collapse
Affiliation(s)
- Yordanka Masforrol
- a Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Jeovanis Gil
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Darien García
- d Vaccine Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Jesús Noda
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Yassel Ramos
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Lázaro Betancourt
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Osmany Guirola
- c Bioinformatics Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Sonia González
- d Vaccine Department, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Boris Acevedo
- e Quality Assurance Departments, Center for Genetic Engineering and Biotechnology, Havana , Cuba
| | - Vladimir Besada
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Osvaldo Reyes
- a Peptide Synthesis Group, Center for Genetic Engineering and Biotechnology , Havana , Cuba
| | - Luis Javier González
- b Mass Spectrometry Laboratory and Department of Proteomics , Center for Genetic Engineering and Biotechnology , Havana , Cuba
| |
Collapse
|
3
|
Comparison of serum fractionation methods by data independent label-free proteomics. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Zhu W, Xu X, Tian J, Zhang L, Komatsu S. Proteomic Analysis of Lonicera japonica Thunb. Immature Flower Buds Using Combinatorial Peptide Ligand Libraries and Polyethylene Glycol Fractionation. J Proteome Res 2015; 15:166-81. [PMID: 26573373 DOI: 10.1021/acs.jproteome.5b00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lonicera japonica Thunb. flower is a well-known medicinal plant that has been widely used for the treatment of human disease. To explore the molecular mechanisms underlying the biological activities of L. japonica immature flower buds, a gel-free/label-free proteomic technique was used in combination with combinatorial peptide ligand libraries (CPLL) and polyethylene glycol (PEG) fractionation for the enrichment of low-abundance proteins and removal of high-abundance proteins, respectively. A total of 177, 614, and 529 proteins were identified in crude protein extraction, CPLL fractions, and PEG fractions, respectively. Among the identified proteins, 283 and 239 proteins were specifically identified by the CPLL and PEG methods, respectively. In particular, proteins related to the oxidative pentose phosphate pathway, signaling, hormone metabolism, and transport were highly enriched by CPLL and PEG fractionation compared to crude protein extraction. A total of 28 secondary metabolism-related proteins and 25 metabolites were identified in L. japonica immature flower buds. To determine the specificity of the identified proteins and metabolites for L. japonica immature flower buds, Cerasus flower buds were used, which resulted in the abundance of hydroxymethylbutenyl 4-diphosphate synthase in L. japonica immature flower buds being 10-fold higher than that in Cerasus flower buds. These results suggest that proteins related to secondary metabolism might be responsible for the biological activities of L. japonica immature flower buds.
Collapse
Affiliation(s)
- Wei Zhu
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan.,College of Biomedical Engineering and Instrument Science, Zhejiang University , Hangzhou 310027, China
| | - Xiaobao Xu
- College of Biomedical Engineering and Instrument Science, Zhejiang University , Hangzhou 310027, China
| | - Jingkui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University , Hangzhou 310027, China
| | - Lin Zhang
- College of Biomedical Engineering and Instrument Science, Zhejiang University , Hangzhou 310027, China
| | - Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization , Tsukuba 305-8518, Japan
| |
Collapse
|
5
|
Candiano G, Santucci L, Petretto A, Lavarello C, Inglese E, Bruschi M, Ghiggeri GM, Boschetti E, Righetti PG. Widening and Diversifying the Proteome Capture by Combinatorial Peptide Ligand Libraries via Alcian Blue Dye Binding. Anal Chem 2015; 87:4814-20. [DOI: 10.1021/acs.analchem.5b00218] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giovanni Candiano
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Laura Santucci
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Andrea Petretto
- Core Facilities—Proteomics
Laboratory, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Chiara Lavarello
- Core Facilities—Proteomics
Laboratory, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Elvira Inglese
- Core Facilities—Proteomics
Laboratory, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Maurizio Bruschi
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | - Gian Marco Ghiggeri
- Nephrology, Dialysis,
Transplantation Unit and Laboratory on Pathophysiology of Uremia, Istituto Giannina Gaslini, Genoa 16148, Italy
| | | | - Pier Giorgio Righetti
- Department
of Chemistry, Materials and Chemical Engineering, “Giulio
Natta”, Politecnico di Milano, Via Mancinelli 7, Milano 20131, Italy
| |
Collapse
|
6
|
Chen L, Zhai L, Li Y, Li N, Zhang C, Ping L, Chang L, Wu J, Li X, Shi D, Xu P. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum. PLoS One 2015; 10:e0115862. [PMID: 25723528 PMCID: PMC4344347 DOI: 10.1371/journal.pone.0115862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa) difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2) from 10 μL serum. Among them, 559 (n = 2) proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.
Collapse
Affiliation(s)
- Lingsheng Chen
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 102206, P. R. China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, P. R. China
| | - Linhui Zhai
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 102206, P. R. China
| | - Yanchang Li
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 102206, P. R. China
| | - Ning Li
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 102206, P. R. China
| | - Chengpu Zhang
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 102206, P. R. China
| | - Lingyan Ping
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 102206, P. R. China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 102206, P. R. China
| | - Junzhu Wu
- Department of Biochemistry, School of Medicine, Wuhan University, Wuhan, 430071, P. R. China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, P. R. China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 102206, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, P. R. China
| |
Collapse
|
7
|
Righetti PG, Boschetti E. Sample treatment methods involving combinatorial peptide ligand libraries for improved proteomes analyses. Methods Mol Biol 2015; 1243:55-82. [PMID: 25384740 DOI: 10.1007/978-1-4939-1872-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
If used in an optimized manner, the technology of combinatorial peptide solid-phase libraries can easily improve the analytical determinations of proteomes by several factors. The discovery of novel species and of early stage biomarkers becomes thus reachable with a simple sample treatment. This report describes the most important point to consider (overloading and full recovery) along with a minimum scientific background and gives then detailed recipes to laboratory technicians. Orientations for optional routes are also given according to the objective of the experimental investigations. This covers different approaches to capture proteins of very low abundance. Total protein harvestings to prevent partial losses are also described such as single exhaustive desorption and fractionated elutions for more detailed analyses. Documented results are also reported demonstrating the capability of the technology well beyond what is the common assumption.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, Milan, 20131, Italy
| | | |
Collapse
|
8
|
Bladergroen MR, van der Burgt YEM. Solid-phase extraction strategies to surmount body fluid sample complexity in high-throughput mass spectrometry-based proteomics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:250131. [PMID: 25692071 PMCID: PMC4322654 DOI: 10.1155/2015/250131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods that involve solid-phase extraction (SPE) including affinity enrichment strategies have been automated. Obtained peptide and protein fractions can be mass analyzed by direct infusion into an electrospray ionization (ESI) source or by means of matrix-assisted laser desorption ionization (MALDI) without further need of time-consuming liquid chromatography (LC) separations.
Collapse
Affiliation(s)
- Marco R. Bladergroen
- Leiden University Medical Center (LUMC), Center for Proteomics and Metabolomics, P.O. Box 9600, 2300 RC Leiden, Netherlands
| | - Yuri E. M. van der Burgt
- Leiden University Medical Center (LUMC), Center for Proteomics and Metabolomics, P.O. Box 9600, 2300 RC Leiden, Netherlands
- *Yuri E. M. van der Burgt:
| |
Collapse
|
9
|
Abstract
One of the main challenges in proteomics investigation, protein biomarker research, and protein purity and contamination analysis is how to efficiently enrich and detect low-abundance proteins in biological samples. One approach that makes the detection of rare species possible is the treatment of biological samples with solid-phase combinatorial peptide ligand libraries, ProteoMiner. This method utilizes hexapeptide bead library with huge diversity to bind and enrich low-abundance proteins but remove most of the high-abundance proteins, therefore compresses the protein abundance range in the samples. This work describes optimized protocols and highlights on the successful application of ProteoMiner to protein identification and analysis.
Collapse
Affiliation(s)
- Lei Li
- Protein Technologies R&D, Life Science Group, Bio-Rad Laboratories, 1000 Alfred Nobel Drive, Hercules, CA, 94547, USA,
| |
Collapse
|
10
|
Matysiak J, Hajduk J, Pietrzak Ł, Schmelzer CEH, Kokot ZJ. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies. Toxicon 2014; 90:255-64. [PMID: 25173076 DOI: 10.1016/j.toxicon.2014.08.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/30/2023]
Abstract
The aim of this study was to explore the honeybee venom proteome applying a shotgun proteomics approach using different enrichment strategies (combinatorial peptide ligand libraries and solid phase extraction). The studies were conducted using nano-LC/MALDI-TOF/TOF-MS system. The MS analysis of peptide profiles (in the range of 900-4500 Da) and virtual gel-image of proteins from Lab-on-Chip assay (in the range of 10-250 kDa) confirm that use of targeted enrichment strategies increase detection of honeybee venom components. The gel-free shotgun strategy and sophisticated instrumentation led to a significant increase of the sensitivity and higher number of identified peptides in honeybee venom samples, comparing with the current literature. Moreover, 11 of 12 known honeybee venom allergens were acknowledged and 4 new, so far uncharacterized proteins were identified. In addition, similarity searches were performed in order to investigate biological relations and homology between newly identified proteins sequences from Apis mellifera and other Hymenoptera.
Collapse
Affiliation(s)
- Jan Matysiak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland.
| | - Joanna Hajduk
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Łukasz Pietrzak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Zenon J Kokot
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
11
|
Righetti PG, Candiano G, Citterio A, Boschetti E. Combinatorial Peptide Ligand Libraries as a “Trojan Horse” in Deep Discovery Proteomics. Anal Chem 2014; 87:293-305. [DOI: 10.1021/ac502171b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Pier Giorgio Righetti
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio
Natta”, Via Mancinelli
7, Milano 20131, Italy
| | - Giovanni Candiano
- Laboratory on Pathophysiology of Uremia
and Department of Nephrology, Istituto Giannina Gaslini, Genova, Italy
| | - Attilio Citterio
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering “Giulio
Natta”, Via Mancinelli
7, Milano 20131, Italy
| | | |
Collapse
|
12
|
Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, Heemskerk JWM, Zahedi RP. What can proteomics tell us about platelets? Circ Res 2014; 114:1204-19. [PMID: 24677239 DOI: 10.1161/circresaha.114.301598] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
More than 130 years ago, it was recognized that platelets are key mediators of hemostasis. Nowadays, it is established that platelets participate in additional physiological processes and contribute to the genesis and progression of cardiovascular diseases. Recent data indicate that the platelet proteome, defined as the complete set of expressed proteins, comprises >5000 proteins and is highly similar between different healthy individuals. Owing to their anucleate nature, platelets have limited protein synthesis. By implication, in patients experiencing platelet disorders, platelet (dys)function is almost completely attributable to alterations in protein expression and dynamic differences in post-translational modifications. Modern platelet proteomics approaches can reveal (1) quantitative changes in the abundance of thousands of proteins, (2) post-translational modifications, (3) protein-protein interactions, and (4) protein localization, while requiring only small blood donations in the range of a few milliliters. Consequently, platelet proteomics will represent an invaluable tool for characterizing the fundamental processes that affect platelet homeostasis and thus determine the roles of platelets in health and disease. In this article we provide a critical overview on the achievements, the current possibilities, and the future perspectives of platelet proteomics to study patients experiencing cardiovascular, inflammatory, and bleeding disorders.
Collapse
Affiliation(s)
- Julia M Burkhart
- From the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (J.M.B., A.S., R.P.Z); Institut für Klinische Biochemie und Pathobiochemie, Universitätsklinikum Würzburg, Würzburg, Germany (S.G.); Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia (S.G.); Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom (S.P.W.); Center for Thrombosis and Hemostasis, Universitätsklinikum der Johannes Gutenberg-Universität Mainz, Mainz, Germany (K.J., U.W.); Medizinisches Proteom Center, Ruhr Universität Bochum, Bochum, Germany (A.S.); Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom (A.S.); and Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands (J.W.M.H.)
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Polkinghorne VR, Standeven KF, Schroeder V, Carter AM. Role of proteomic technologies in understanding risk of arterial thrombosis. Expert Rev Proteomics 2014; 6:539-50. [DOI: 10.1586/epr.09.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Reproducibility of combinatorial peptide ligand libraries for proteome capture evaluated by selected reaction monitoring. J Proteomics 2013; 89:215-26. [DOI: 10.1016/j.jprot.2013.05.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/03/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022]
|
15
|
Wright B, Stanley RG, Kaiser WJ, Gibbins JM. The integration of proteomics and systems approaches to map regulatory mechanisms underpinning platelet function. Proteomics Clin Appl 2013. [DOI: 10.1002/prca.201200095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bernice Wright
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences; University of Reading; Reading; Berkshire; UK
| | - Ronald G. Stanley
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences; University of Reading; Reading; Berkshire; UK
| | - William J. Kaiser
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences; University of Reading; Reading; Berkshire; UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences; University of Reading; Reading; Berkshire; UK
| |
Collapse
|
16
|
Choi YS. Reaching for the deep proteome: recent nano liquid chromatography coupled with tandem mass spectrometry-based studies on the deep proteome. Arch Pharm Res 2012; 35:1861-70. [PMID: 23212627 DOI: 10.1007/s12272-012-1102-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/30/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
Abstract
In the last decade, there has been a dramatic progress in separation techniques, mass spectrometry, and bioinformatics, and this progress has significantly improved the techniques on protein analysis. However, the analysis of low-abundance proteins is still challenging because of the limited performance in the method of choice compared to the complexity and the vast dynamic range of biological samples. Since this issue is a big obstacle in most proteomics investigations, great interest has been paid recently to various techniques, such as multi-dimensional analysis, specific peptide selection, high-abundance protein depletion, ligand library treatment, to address this challenge. Therefore, here, the author reviews recent nano liquid chromatography coupled with tandem mass spectrometry-based studies on the deep proteome, mainly focusing on their methods and perspectives.
Collapse
Affiliation(s)
- Yong Seok Choi
- College of Pharmacy, Dankook University, Cheonan 330-714, Korea.
| |
Collapse
|
17
|
Boschetti E, Righetti PG. Breakfast at Tiffany's? Only with a low-abundance proteomic signature! Electrophoresis 2012; 33:2228-39. [DOI: 10.1002/elps.201200003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Fröhlich A, Gaupels F, Sarioglu H, Holzmeister C, Spannagl M, Durner J, Lindermayr C. Looking deep inside: detection of low-abundance proteins in leaf extracts of Arabidopsis and phloem exudates of pumpkin. PLANT PHYSIOLOGY 2012; 159:902-14. [PMID: 22555880 PMCID: PMC3387715 DOI: 10.1104/pp.112.198077] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/24/2012] [Indexed: 05/20/2023]
Abstract
The field of proteomics suffers from the immense complexity of even small proteomes and the enormous dynamic range of protein concentrations within a given sample. Most protein samples contain a few major proteins, which hamper in-depth proteomic analysis. In the human field, combinatorial hexapeptide ligand libraries (CPLL; such as ProteoMiner) have been used for reduction of the dynamic range of protein concentrations; however, this technique is not established in plant research. In this work, we present the application of CPLL to Arabidopsis (Arabidopsis thaliana) leaf proteins. One- and two-dimensional gel electrophoresis showed a decrease in high-abundance proteins and an enrichment of less abundant proteins in CPLL-treated samples. After optimization of the CPLL protocol, mass spectrometric analyses of leaf extracts led to the identification of 1,192 proteins in control samples and an additional 512 proteins after the application of CPLL. Upon leaf infection with virulent Pseudomonas syringae DC3000, CPLL beads were also used for investigating the bacterial infectome. In total, 312 bacterial proteins could be identified in infected Arabidopsis leaves. Furthermore, phloem exudates of pumpkin (Cucurbita maxima) were analyzed. CPLL prefractionation caused depletion of the major phloem proteins 1 and 2 and improved phloem proteomics, because 67 of 320 identified proteins were detectable only after CPLL treatment. In sum, our results demonstrate that CPLL beads are a time- and cost-effective tool for reducing major proteins, which often interfere with downstream analyses. The concomitant enrichment of less abundant proteins may facilitate a deeper insight into the plant proteome.
Collapse
Affiliation(s)
| | | | - Hakan Sarioglu
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| | - Christian Holzmeister
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| | - Manuel Spannagl
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology (A.F., F.G., C.H., J.D., C.L.), Department of Protein Science (H.S.), and Institute of Bioinformatics and Systems Biology (M.S.), Helmholtz Zentrum München, German Research Center for Environmental Health, D–85764 Neuherberg, Germany
| |
Collapse
|
19
|
Guerrier L, Fortis F, Boschetti E. Solid-phase fractionation strategies applied to proteomics investigations. Methods Mol Biol 2012; 818:11-33. [PMID: 22083813 DOI: 10.1007/978-1-61779-418-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Methods for protein fractionation in the proteomics investigation field are relatively numerous. They apply to the prefractionation of the sample to obtain less complex protein mixtures for an easier analysis; they are also used as a means to evidence specific proteins or protein classes otherwise impossible to detect. They involve depletion of high-abundance proteins suppressing the signal of dilute species; they are also capable to enhance the detectability of low-abundance species while concomitantly decreasing the concentration of abundant proteins such as albumin in serum and hemoglobin in red blood cell lysates. Fractionation of proteomes is also used for the isolation of targeted species that are selected for their different expression under certain pathological conditions and that are detected by mass spectrometry. Two unconventional methods of large interest in proteomics due to the low level of protein redundancy between fractions are also reported.All these methods are reviewed and detailed method given to allow specialists of proteomics investigation to access selected separation methods generally dispersed on different technical reviews or books.
Collapse
Affiliation(s)
- Luc Guerrier
- Bio-Rad Laboratories, Marnes la Coquette, France
| | | | | |
Collapse
|
20
|
Malaud E, Piquer D, Merle D, Molina L, Guerrier L, Boschetti E, Saussine M, Marty-Ané C, Albat B, Fareh J. Carotid atherosclerotic plaques: Proteomics study after a low-abundance protein enrichment step. Electrophoresis 2012; 33:470-82. [DOI: 10.1002/elps.201100395] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Boschetti E, Righetti P. Mixed Beds. ADVANCES IN CHROMATOGRAPHY 2012. [DOI: 10.1201/b11636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Abstract
Platelets pose unique challenges to cell biologists due to their lack of nucleus and low levels of messenger RNA. Platelets cannot be cultured in great abundance or manipulated using common recombinant DNA technologies. As a result, platelet research has lagged behind that of nucleated cells. The advent of mass spectrometry and its application to protein biochemistry brought with it great hopes for the platelet community that are now being realized. This technology is ideally suited for identifying low-abundance proteins, protein-protein interactions, and post-translational modifications in complex protein mixtures. Over the past 10 years, proteomics has delivered in many ways, providing platelet biologists with a comprehensive list of proteins expressed in platelets, information on post-translational modifications, protein interactions and sub-cellular localization. Several novel and important platelet membrane proteins, including CLEC-2, CD148, G6b-B, G6f, and Hsp47, have been identified using proteomics-based approaches. New, more sensitive instrumentation and novel approaches are making it increasingly possible to identify ever lower amounts of proteins. In this chapter we highlight some of the major achievements of platelet proteomics to date, discussing challenges and how they were overcome. We also discuss new frontiers and applications of proteomics to platelets and microparticles in health and disease, as we strive to better understand the molecular mechanisms underlying the platelet response to vascular injury.
Collapse
Affiliation(s)
- Yotis Senis
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
23
|
Depletion of hemoglobin and carbonic anhydrase from erythrocyte cytosolic samples by preparative clear native electrophoresis. Nat Protoc 2011; 7:36-44. [PMID: 22157974 DOI: 10.1038/nprot.2011.427] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Proteomic analysis of red cells is compromised by the presence of high-abundance proteins (hemoglobin and carbonic anhydrase-1), which completely obscure low-abundance species. The depletion method presented here involves performing native gel electrophoresis in a polyacrylamide gel tube using a modified electroelution cell. The electrophoretic run is interrupted intermittently to allow the recovery of at least three different liquid fractions, which can be analyzed by both native PAGE and 2D isoelectric focusing SDS-PAGE, or by shotgun mass spectrometry analysis after trypsin in-solution protein digestion. This low-cost, reproducible technique can be used to process large amounts of sample, and it increases the likelihood of detecting low-abundance proteins, thereby resulting in greater proteome coverage. The separation procedure takes approximately 6-7 h.
Collapse
|
24
|
Hexapeptide library as a universal tool for sample preparation in protein glycosylation analysis. J Proteomics 2011; 75:1515-28. [PMID: 22154983 DOI: 10.1016/j.jprot.2011.11.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022]
Abstract
Recent analytical advancements allow for large-scale glycomics and glycan-biomarker research with N-glycans released from complex protein mixtures of e.g. plasma with a wide range of protein concentrations. Protein enrichment techniques to obtain samples with a better representation of low-abundance proteins are hardy applied. In this study, hexapeptide ligands previously described for enrichment of low-abundance proteins in proteomics are evaluated for glycan analysis. A repeatable on-bead glycan release strategy was developed, and glycans were analyzed using capillary sieving electrophoresis on a DNA analyzer. Binding of proteins to the hexapeptide library occurred via the protein backbone. At neutral pH no discrimination between protein glycoforms was observed. Interestingly, glycan profiles of plasma with and without hexapeptide library enrichment revealed very similar patterns, despite the vast changes in protein concentrations in the samples. The most significant differences in glycosylation profiles were ascribed to a reduction in immunoglobulin-derived glycans. These results suggest that specific and sensitive biomarkers will be hard to access on the full plasma level using protein enrichment in combination with glycan analysis. Instead, fractionation techniques or profiling strategies on the glycopeptide level after enrichment are proposed for in-depth glycoproteomics research.
Collapse
|
25
|
Griffoni C, Di Molfetta S, Fantozzi L, Zanetti C, Pippia P, Tomasi V, Spisni E. Modification of proteins secreted by endothelial cells during modeled low gravity exposure. J Cell Biochem 2011; 112:265-72. [PMID: 21069737 DOI: 10.1002/jcb.22921] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The exposure of the human body to microgravity, conditions that occurs during space flights, causes significant changes in the cardiovascular system. Many cell types have been involved in these changes, and the endothelium seems to play a major role. In endothelial cells (EC), it has been shown that modeled low gravity impairs nitric oxide synthesis, cell adhesion, extracellular matrix composition, cytoskeleton organization, cytokines, and growth factors secretion. Nevertheless, detailed analysis of EC physiological changes induced by microgravity exposure is still lacking. Secretome analysis is one of the most promising approaches for the identification of biomarkers directly related to the physiopathological cellular state. In this study, we analyzed in details the modifications of EC secretome by using umbilical vein endothelial (HUVE) cells exposed to modeled low gravity conditions. By adopting a two-dimensional (2-D) proteomic approach, in conjunction with a technique for the compression of the dynamic range of proteins, we observed that modeled low gravity exposure of HUVE cells affected the secretion of proteins involved in the regulation of cytoskeleton assembly. Moreover, by using Luminex® suspension array systems, we found that the low gravity condition decreased in ECs the secretion of some key pro-inflammatory cytokines, including IL-1α and IL-8, and of the pro-angiogenic factor bFGF. On the contrary, microgravity increase the secretion of two chemokines (Rantes and Eotaxin), involved in leukocytes recruitment.
Collapse
Affiliation(s)
- Cristiana Griffoni
- Department of Experimental Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Millioni R, Tolin S, Puricelli L, Sbrignadello S, Fadini GP, Tessari P, Arrigoni G. High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity. PLoS One 2011; 6:e19603. [PMID: 21573190 PMCID: PMC3087803 DOI: 10.1371/journal.pone.0019603] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/06/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND To date, the complexity of the plasma proteome exceeds the analytical capacity of conventional approaches to isolate lower abundance proteins that may prove to be informative biomarkers. Only complex multistep separation strategies have been able to detect a substantial number of low abundance proteins (<100 ng/ml). The first step of these protocols is generally the depletion of high abundance proteins by the use of immunoaffinity columns or, alternatively, the enrichment of by the use of solid phase hexapeptides ligand libraries. METHODOLOGY/PRINCIPAL FINDINGS Here we present a direct comparison of these two approaches. Following either approach, the plasma sample was further fractionated by SCX chromatography and analyzed by RP-LC-MS/MS with a Q-TOF mass spectrometer. The depletion of the 20 most abundant plasma proteins allowed the identification of about 25% more proteins than those detectable following low abundance proteins enrichment. The two datasets are partially overlapping and the identified proteins belong to the same order of magnitude in terms of plasma concentration. CONCLUSIONS/SIGNIFICANCE Our results show that the two approaches give complementary results. However, the enrichment of low abundance proteins has the great advantage of obtaining much larger amount of material that can be used for further fractionations and analyses and emerges also as a cheaper and technically simpler approach. Collectively, these data indicate that the enrichment approach seems more suitable as the first stage of a complex multi-step fractionation protocol.
Collapse
Affiliation(s)
- Renato Millioni
- Department of Clinical and Experimental Medicine, Division of Metabolism, University of Padua, Padua, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Boschetti E, Righetti PG. Mixed-bed chromatography as a way to resolve peculiar protein fractionation situations. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:827-35. [DOI: 10.1016/j.jchromb.2011.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 11/26/2022]
|
28
|
Deep insights into the plant proteome by pretreatment with combinatorial hexapeptide ligand libraries. J Proteomics 2011; 74:1182-9. [PMID: 21354349 DOI: 10.1016/j.jprot.2011.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 01/21/2023]
Abstract
Proteome analyses suffer from the large complexity of even small proteomes. Additionally, in many protein samples a few highly abundant proteins are hindering detailed proteomic studies, since they mask low abundant proteins. Recently, a new technology has emerged, which reduces dynamic range of protein concentrations within a given sample using combinatorial hexapeptide ligand libraries (CPLLs). This technique has been widely used in the microbial, animal and human fields and is now going to enter plant research. It can be a useful tool for fractionation of protein samples and might help to get a deeper insight into specific plant proteomes. In this review we describe the CPLL protein fractionation, summarize its possible applications in the plant field and discuss the limitations of this method.
Collapse
|
29
|
Krishnan S, Gaspari M, Corte AD, Bianchi P, Crescente M, Cerletti C, Torella D, Indolfi C, de Gaetano G, Donati MB, Rotilio D, Cuda G. OFFgel-based multidimensional LC-MS/MS approach to the cataloguing of the human platelet proteome for an interactomic profile. Electrophoresis 2011; 32:686-95. [DOI: 10.1002/elps.201000592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/13/2010] [Accepted: 12/26/2010] [Indexed: 11/05/2022]
|
30
|
Liu C, Zhang N, Yu H, Chen Y, Liang Y, Deng H, Zhang Z. Proteomic analysis of human serum for finding pathogenic factors and potential biomarkers in preeclampsia. Placenta 2011; 32:168-74. [PMID: 21145106 PMCID: PMC3039093 DOI: 10.1016/j.placenta.2010.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 11/07/2010] [Accepted: 11/09/2010] [Indexed: 01/03/2023]
Abstract
OBJECTIVE(S) To apply a novel proteomic method to discover potential pathogenic factors and biomarkers of preeclampsia. STUDY DESIGN Sera from five patients complicated with preeclampsia and five healthy pregnant controls were separately pooled. Each pool was treated with peptide ligand library beads (PLLBs) to remove high abundance proteins by affinity and thus enrich low abundance proteins. The proteins from the eluate were analyzed by a combination of 1D Gel-LC-MS/MS. Protein expression levels were quantified using spectral counts and the extracted ion current. RESULTS 1172 unique proteins in preeclampsia and 1149 in healthy controls were identified in the present study. 51 proteins were differentially expressed between preeclampsia and healthy pregnant women including chorionic somatommammptropin hormone (CSH) and fibulin-1. 31 proteins identified were up-regulated and 20 were down-regulated. CONCLUSIONS The results demonstrate that peptide ligand library combining with 1D gel-LC-MS/MS analysis is an efficient method to identify differentially expressed proteins in sera and two biological processes of complement and coagulation activations and lipid metabolism were involved in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Chongdong Liu
- Beijing Chaoyang Hospital affiliated Capital Medical University, Beijing China
| | - Nawei Zhang
- Beijing Chaoyang Hospital affiliated Capital Medical University, Beijing China
| | - Haiqiang Yu
- The Rockefeller University, New York, NY 10065, USA
| | - Yuxuan Chen
- Beijing Chaoyang Hospital affiliated Capital Medical University, Beijing China
| | - Yong Liang
- Taizhou Municipal Hospital affiliated Medical College of Taizhou University, Taizhou, China
| | - Haiteng Deng
- The Rockefeller University, New York, NY 10065, USA
| | - Zhenyu Zhang
- Beijing Chaoyang Hospital affiliated Capital Medical University, Beijing China
| |
Collapse
|
31
|
Liumbruno G, D’Alessandro A, Grazzini G, Zolla L. How has proteomics informed transfusion biology so far? Crit Rev Oncol Hematol 2010; 76:153-72. [DOI: 10.1016/j.critrevonc.2010.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 01/06/2023] Open
|
32
|
Beseme O, Fertin M, Drobecq H, Amouyel P, Pinet F. Combinatorial peptide ligand library plasma treatment: Advantages for accessing low-abundance proteins. Electrophoresis 2010; 31:2697-704. [PMID: 20665525 DOI: 10.1002/elps.201000188] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Depletion of major blood proteins is one of the most promising approaches to accessing low-abundance biomarkers. This study compared the use of combinatorial peptide ligand library (CPLL) and albumin and immunoglobulins (IgGs) depletion technology for accessing these low-abundance proteins in plasma using 2-DE in an acidic restricted pH range (4-7). Compared with native plasma, both techniques enlarge the visibility of other proteins than albumin and IgG, but there were marked differences in their composition. An increase of the number of spots was detected compared with native plasma (157 spots) with 427 and 557 spots, respectively, detected with albumin and IgG depletion, and CPLL treatment. We selected 70 spots to be identified by MALDI-TOF related to their absence in the 2-D gels from native or albumin and IgG-depleted plasma. The 42 spots identified corresponded to 24 different proteins, with more than half of the proteins which did not belong to the major plasma proteins. CPLL treatment allowed the accessibility to proteolytic fragments obtained from major plasma proteins. We found a large superiority of the CPLL approach over the albumin and IgG depletion process. These findings show the utility of depleting major blood proteins to be able to access low-abundance proteins and the potential of CPLL to select and identify candidate biomarkers in clinical studies.
Collapse
|
33
|
Zhang Y, Li Y, Qiu F, Qiu Z. Comprehensive analysis of low-abundance proteins in human urinary exosomes using peptide ligand library technology, peptide OFFGEL fractionation and nanoHPLC-chip-MS/MS. Electrophoresis 2010; 31:3797-807. [DOI: 10.1002/elps.201000401] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Righetti PG, Boschetti E, Kravchuk AV, Fasoli E. The proteome buccaneers: how to unearth your treasure chest via combinatorial peptide ligand libraries. Expert Rev Proteomics 2010; 7:373-85. [PMID: 20536309 DOI: 10.1586/epr.10.25] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The latest advances in combinatorial peptide ligand libraries, with their unique performance in discovering low-abundance species in proteomes, are reviewed here. Explanations of mechanism, potential applications, capture of proteomes at different pH values to enhance the total catch and quantitative elutions, such as boiling in the presence of 5% sodium dodecyl sulfate and 3% dithiothreitol are included. The reproducibility of protein capture among different experiments with the same batch of beads or with different batches is also reported to be very high, with coefficient of variations in the order of 10-20%. Miniaturized operations, consisting of capture with as little as 20 or even 5 microl of peptide beads are reported, thus demonstrating that the described technology could be exploited for routine biomarker discovery in a biomedical environment. Finally, it is shown that the signal of captured proteins is linear over approximately three orders of magnitude, ranging from nM to microM, thus ensuring that differential quantitative proteomics for biomarker discovery can be fully implemented, providing species do not saturate their ligands.
Collapse
Affiliation(s)
- Pier Giorgio Righetti
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Via Mancinelli 7, Politecnico di Milano, Milano, Italy.
| | | | | | | |
Collapse
|
35
|
Fertin M, Beseme O, Duban S, Amouyel P, Bauters C, Pinet F. Deep plasma proteomic analysis of patients with left ventricular remodeling after a first myocardial infarction. Proteomics Clin Appl 2010; 4:654-73. [PMID: 21137084 DOI: 10.1002/prca.200900178] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 02/10/2010] [Accepted: 02/27/2010] [Indexed: 11/10/2022]
Abstract
PURPOSE Depletion of major blood proteins is one of the most promising approaches to accessing low abundance biomarkers for proteomics studies. The use of combinatorial peptide ligand library (CPLL) for accessing these low abundance proteins in plasma from patients with a myocardial infarction (MI) was tested to identify candidate protein biomarkers of left ventricular remodeling (LVR). EXPERIMENTAL DESIGN Serial blood samples of MI patients followed for one year (at inclusion, 1 month, 3 months, and 1 year) were treated with CPLL and analyzed by SELDI-TOF-MS. RESULT The use of CPLL increased resolution, with loss of most abundant plasma proteins, reproducibly and improved the intensity of low-abundance proteins. Longitudinal information allowed us to reduce by 55% the final number of peaks identified as significantly modulated throughout the 1-year follow-up after MI. Interestingly, 19 of the 26 peaks finally selected were detected only in samples treated from CPLL. The 2777 m/z peak, found in less elevated level in high remodeling patients, was identified as being DAHKSEVAHR FKDLGEENFKALVL, the N-terminal peptide (24-48 aa) generated from albumin by pepsin cleavage. CONCLUSIONS AND CLINICAL RELEVANCE This finding shows the potential of CPLL in accessing low-abundance proteins to select and identify candidate biomarkers in patients with LVR.
Collapse
|
36
|
Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate. J Biomed Biotechnol 2010; 2010:107859. [PMID: 20368775 PMCID: PMC2846341 DOI: 10.1155/2010/107859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/06/2009] [Accepted: 11/10/2009] [Indexed: 02/08/2023] Open
Abstract
Proteomic approaches have proven powerful at identifying large numbers of proteins, but there are fewer reports of functional characterization of proteins in biological tissues. Here, we describe an experimental approach that fractionates proteins released from human platelets, linking bioassay activity to identity. We used consecutive orthogonal separation platforms to ensure sensitive detection: (a) ion-exchange of intact proteins, (b) SDS-PAGE separation of ion-exchange fractions and (c) HPLC separation of tryptic digests coupled to electrospray tandem mass spectrometry. Migration of THP-1 monocytes in response to complete or fractionated platelet releasate was assessed and located to just one of the forty-nine ion-exchange fractions. Over 300 proteins were identified in the releasate, with a wide range of annotated biophysical and biochemical properties, in particular platelet activation, adhesion, and wound healing. The presence of PEDF and involucrin, two proteins not previously reported in platelet releasate, was confirmed by western blotting. Proteins identified within the fraction with monocyte promigratory activity and not in other inactive fractions included vimentin, PEDF, and TIMP-1. We conclude that this analytical platform is effective for the characterization of complex bioactive samples.
Collapse
|
37
|
D'Alessandro A, Righetti PG, Fasoli E, Zolla L. The egg white and yolk interactomes as gleaned from extensive proteomic data. J Proteomics 2010; 73:1028-42. [DOI: 10.1016/j.jprot.2010.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/23/2009] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
|
38
|
Fasoli E, Sanz L, Wagstaff S, Harrison RA, Righetti PG, Calvete JJ. Exploring the venom proteome of the African puff adder, Bitis arietans, using a combinatorial peptide ligand library approach at different pHs. J Proteomics 2010; 73:932-42. [DOI: 10.1016/j.jprot.2009.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 12/28/2022]
|
39
|
Plucking, pillaging and plundering proteomes with combinatorial peptide ligand libraries. J Chromatogr A 2010; 1217:893-900. [DOI: 10.1016/j.chroma.2009.08.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 08/19/2009] [Accepted: 08/27/2009] [Indexed: 11/23/2022]
|
40
|
Fasoli E, Farinazzo A, Sun CJ, Kravchuk AV, Guerrier L, Fortis F, Boschetti E, Righetti PG. Interaction among proteins and peptide libraries in proteome analysis: pH involvement for a larger capture of species. J Proteomics 2010; 73:733-42. [DOI: 10.1016/j.jprot.2009.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/05/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
41
|
Entry of Spiroplasma citri into Circulifer haematoceps cells involves interaction between spiroplasma phosphoglycerate kinase and leafhopper actin. Appl Environ Microbiol 2010; 76:1879-86. [PMID: 20118377 DOI: 10.1128/aem.02384-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of the phytopathogenic mollicutes, spiroplasmas, and phytoplasmas by their insect vectors mainly depends on their ability to pass through gut cells, to multiply in various tissues, and to traverse the salivary gland cells. The passage of these different barriers suggests molecular interactions between the plant mollicute and the insect vector that regulate transmission. In the present study, we focused on the interaction between Spiroplasma citri and its leafhopper vector, Circulifer haematoceps. An in vitro protein overlay assay identified five significant binding activities between S. citri proteins and insect host proteins from salivary glands. One insect protein involved in one binding activity was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as actin. Confocal microscopy observations of infected salivary glands revealed that spiroplasmas colocated with the host actin filaments. An S. citri actin-binding protein of 44 kDa was isolated by affinity chromatography and identified by LC-MS/MS as phosphoglycerate kinase (PGK). To investigate the role of the PGK-actin interaction, we performed competitive binding and internalization assays on leafhopper cultured cell lines (Ciha-1) in which His(6)-tagged PGK from S. citri or purified PGK from Saccharomyces cerevisiae was added prior to the addition of S. citri inoculum. The results suggested that exogenous PGK has no effect on spiroplasmal attachment to leafhopper cell surfaces but inhibits S. citri internalization, demonstrating that the process leading to internalization of S. citri in eukaryotic cells requires the presence of PGK. PGK, regardless of origin, reduced the entry of spiroplasmas into Ciha-1 cells in a dose-dependent manner.
Collapse
|
42
|
Mouton-Barbosa E, Roux-Dalvai F, Bouyssié D, Berger F, Schmidt E, Righetti PG, Guerrier L, Boschetti E, Burlet-Schiltz O, Monsarrat B, Gonzalez de Peredo A. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Mol Cell Proteomics 2010; 9:1006-21. [PMID: 20093276 DOI: 10.1074/mcp.m900513-mcp200] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cerebrospinal fluid (CSF) is the biological fluid in closest contact with the brain and thus contains proteins of neural cell origin. Hence, CSF is a biochemical window into the brain and is particularly attractive for the search for biomarkers of neurological diseases. However, as in the case of other biological fluids, one of the main analytical challenges in proteomic characterization of the CSF is the very wide concentration range of proteins, largely exceeding the dynamic range of current analytical approaches. Here, we used the combinatorial peptide ligand library technology (ProteoMiner) to reduce the dynamic range of protein concentration in CSF and unmask previously undetected proteins by nano-LC-MS/MS analysis on an LTQ-Orbitrap mass spectrometer. This method was first applied on a large pool of CSF from different sources with the aim to better characterize the protein content of this fluid, especially for the low abundance components. We were able to identify 1212 proteins in CSF, and among these, 745 were only detected after peptide library treatment. However, additional difficulties for clinical studies of CSF are the low protein concentration of this fluid and the low volumes typically obtained after lumbar puncture, precluding the conventional use of ProteoMiner with large volume columns for treatment of patient samples. The method has thus been optimized to be compatible with low volume samples. We could show that the treatment is still efficient with this miniaturized protocol and that the dynamic range of protein concentration is actually reduced even with small amounts of beads, leading to an increase of more than 100% of the number of identified proteins in one LC-MS/MS run. Moreover, using a dedicated bioinformatics analytical work flow, we found that the method is reproducible and applicable for label-free quantification of series of samples processed in parallel.
Collapse
Affiliation(s)
- Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, 205 route de Narbonne, 31077 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Challenges for biomarker discovery in body fluids using SELDI-TOF-MS. J Biomed Biotechnol 2009; 2010:906082. [PMID: 20029632 PMCID: PMC2793423 DOI: 10.1155/2010/906082] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 09/01/2009] [Indexed: 01/17/2023] Open
Abstract
Protein profiling using SELDI-TOF-MS has gained over the past few years an increasing interest in the field of biomarker discovery. The technology presents great potential if some parameters, such as sample handling, SELDI settings, and data analysis, are strictly controlled. Practical considerations to set up a robust and sensitive strategy for biomarker discovery are presented. This paper also reviews biological fluids generally available including a description of their peculiar properties and the preanalytical challenges inherent to sample collection and storage. Finally, some new insights for biomarker identification and validation challenges are provided.
Collapse
|
44
|
Palmblad M, Drijfhout JW, Deelder AM. High Resolution Mass Spectrometry for Rapid Characterization of Combinatorial Peptide Libraries. ACTA ACUST UNITED AC 2009; 12:65-8. [DOI: 10.1021/cc9001235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magnus Palmblad
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, and Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan W. Drijfhout
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, and Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - André M. Deelder
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, and Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Calvete JJ, Fasoli E, Sanz L, Boschetti E, Righetti PG. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res 2009; 8:3055-67. [PMID: 19371136 DOI: 10.1021/pr900249q] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the proteomic characterization of the venom of the medically important North American western diamondback rattlesnake, Crotalus atrox, using two complementary approaches: snake venomics (to gain an insight of the overall venom proteome), and two solid-phase combinatorial peptide ligand libraries (CPLL), followed by 2D electrophoresis and mass spectrometric characterization of in-gel digested protein bands (to capture and "amplify" low-abundance proteins). The venomics approach revealed approximately 24 distinct proteins belonging to 2 major protein families (snake venom metalloproteinases, SVMP, and serine proteinases), which represent 69.5% of the total venom proteins, 4 medium abundance families (medium-size disintegrin, PLA(2), cysteine-rich secretory protein, and l-amino acid oxidase) amounting to 25.8% of the venom proteins, and 3 minor protein families (vasoactive peptides, endogenous inhibitor of SVMP, and C-type lectin-like). This toxin profile potentially explains the cytotoxic, myotoxic, hemotoxic, and hemorrhagic effects evoked by C. atrox envenomation. Further, our results showing that C. atrox exhibits a similar level of venom variation as Sistrurus miliarius points to a "diversity gain" scenario in the lineage leading to the Sistrurus catenatus taxa. On the other hand, the two combinatorial hexapeptide libraries captured distinct sets of proteins. Although the CPLL-treated samples did not retain a representative venom proteome, protein spots barely, or not at all, detectable in the whole venom were enriched in the two CPLL-treated samples. The amplified low copy number C. atrox venom proteins comprised a C-type lectin-like protein, several PLA(2) molecules, PIII-SVMP isoforms, glutaminyl cyclase isoforms, and a 2-cys peroxiredoxin highly conserved across the animal kingdom. Peroxiredoxin and glutaminyl cyclase may participate, respectively, in redox processes leading to the structural/functional diversification of toxins, and in the N-terminal pyrrolidone carboxylic acid formation required in the maturation of bioactive peptides such as bradykinin-potentiating peptides and endogenous inhibitors of metalloproteases. Our findings underscore the usefulness of combinatorial peptide libraries as powerful tools for mining below the tip of the iceberg, complementing thereby the data gained using the snake venomics protocol toward a complete visualization of the venom proteome.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas (CSIC), Jaume Roig 11, 46010 Valencia, Spain.
| | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The proteome is the pool of proteins expressed at a given time and circumstance. The word 'proteomics' summarizes several technologies for visualization, quantitation and identification of these proteins. Recent advances in these techniques are helping to elucidate platelet processes which are relevant to bleeding and clotting disorders, transfusion medicine and regulation of angiogenesis. RECENT FINDINGS Over 1100 platelet proteins have been identified using proteomic techniques. Various subproteomes have been characterized, including platelet releasates (the 'secretome'), alpha and dense granules, membrane and cytoskeletal proteins, platelet-derived microparticles, and the platelet 'phosphoproteome'. Proteomic data about platelets have become increasingly available in integrated databases. SUMMARY Proteomic experiments in resting and activated platelets have identified novel signaling pathways and secreted proteins which may represent therapeutic targets, as well as potential cancer biomarkers.
Collapse
Affiliation(s)
- Lisa Senzel
- Department of Pathology, State University of New York, Stony Brook, University Hospital, Level 3, Rm 532, Stony Brook, NY 11794-7300, Phone: 631-444-2601, Fax: 631-444-2653
| | - Dmitri V. Gnatenko
- Department of Medicine, State University of New York, Stony Brook, Division of Hematology, HSC T15/030, Stony Brook, N.Y. 11794-8151, Phone: 631-444-1260, FAX: 631-444-7530
| | - Wadie F. Bahou
- Department of Medicine, State University of New York, Stony Brook, Division of Hematology, HSC T15/030, Stony Brook, N.Y. 11794-8151, Phone: 631-444-2059, FAX: 631-444-7530
| |
Collapse
|
47
|
Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. MASS SPECTROMETRY REVIEWS 2009; 28:703-24. [PMID: 18973238 PMCID: PMC2720435 DOI: 10.1002/mas.20205] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Proteome analysis has emerged as a powerful technology to decipher biological processes. One of the main goals is to discover biomarkers for diseases from tissues and body fluids. However, the complexity and wide dynamic range of protein expression present an enormous challenge to separation technologies and mass spectrometry (MS). In this review, we examine the limitations of proteomics, and aim towards the definition of the current key prerequisites. We focus on capillary electrophoresis coupled to mass spectrometry (CE-MS), because this technique continues to show great promise. We discuss CE-MS from an application point of view, and evaluate its merits and vices for biomarker discovery and clinical applications. Finally, we present several examples on the use of CE-MS to determine urinary biomarkers and implications for disease diagnosis, prognosis, and therapy evaluation.
Collapse
Affiliation(s)
- Harald Mischak
- Mosaiques Diagnostics & Therapeutics, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Searching for specific motifs in affinity capture in proteome analysis. J Proteomics 2009; 72:791-802. [DOI: 10.1016/j.jprot.2009.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/20/2009] [Accepted: 04/07/2009] [Indexed: 11/18/2022]
|
49
|
|
50
|
Candiano G, Dimuccio V, Bruschi M, Santucci L, Gusmano R, Boschetti E, Righetti PG, Ghiggeri GM. Combinatorial peptide ligand libraries for urine proteome analysis: investigation of different elution systems. Electrophoresis 2009; 30:2405-11. [PMID: 19593750 DOI: 10.1002/elps.200800762] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proteome treatments with peptide libraries in view of reducing high-abundance proteins and increasing the concentration of rare species involve the adsorption on solid-phase material. Subsequent elution of captured proteins may not be fully effective except when sequences of eluting agents are used. The standard way utilized up to the present has been a three- to four-step, sequential elution system consisting of various agents mixed together such as urea, thiourea, CHAPS, sodium chloride, citric or acetic acid and some polar solvents such as ACN and isopropanol. Elution sequences produce distinct fractions adding to the burden of having to analyze all of them. An alternative, highly effective, single elution to reduce the workload is here reported for the first time, namely elution in boiling 10% SDS added with 3% DTE. This single step elutes almost quantitatively the adsorbed proteins, thus ensuring, for all practical purposes, a full recovery. This high efficiency is believed to be due to the fact that the SDS micelles bury the polypeptide chains within their hydrophobic core, thus shielding them from the surroundings and impeding accidental adsorption to surfaces. Suggestions for selecting the best method to eliminate the excess of SDS for further protein analysis are also evaluated. The merits and limits of this novel system are assessed and discussed.
Collapse
Affiliation(s)
- Giovanni Candiano
- Laboratory on Pathophysiology of Uremia and Department of Nephrology, G. Gaslini Children's Hospital, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|