1
|
Hsieh TB, Jin JP. Evolution and function of calponin and transgelin. Front Cell Dev Biol 2023; 11:1206147. [PMID: 37363722 PMCID: PMC10285543 DOI: 10.3389/fcell.2023.1206147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Calponin and transgelin (originally named SM22) are homologous cytoskeleton proteins that regulate actin-activated myosin motor functions in smooth muscle contraction and non-muscle cell motility during adhesion, migration, proliferation, phagocytosis, wound healing, and inflammatory responses. They are abundant cytoskeleton proteins present in multiple cell types whereas their physiological functions remain to be fully established. This focused review summarizes the evolution of genes encoding calponin and transgelin and their isoforms and discusses the structural similarity and divergence in vertebrate and invertebrate species in the context of functions in regulating cell motility. As the first literature review focusing on the evolution of the calponin-transgelin family of proteins in relevance to their structure-function relationship, the goal is to outline a foundation of current knowledge for continued investigations to understand the biological functions of calponin and transgelin in various cell types during physiological and pathological processes.
Collapse
Affiliation(s)
- Tzu-Bou Hsieh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - J.-P. Jin
- Department of Physiology and Biophysics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| |
Collapse
|
2
|
Lu Q, Guo P, Li H, Liu Y, Yuan L, Zhang B, Wu Q, Wang X. Targeting the lncMST-EPRS/HSP90AB1 complex as novel therapeutic strategy for T-2 toxin-induced growth retardation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114243. [PMID: 36332407 DOI: 10.1016/j.ecoenv.2022.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Growth retardation is a global public health problem that is highly prevalent especially in low-and middle-income countries, which is closely related to the consumption of grains contaminated with T-2 toxin, a risk for human and animal health. However, the possible targets that can relieve T-2 toxin-induced growth retardation still need to be explored. In the present study, T-2 toxin was used as an environmental exposure factor to induce growth retardation and further explore the regulatory role of lncRNA in growth retardation. The present study systematically characterised the expression profiles of lncRNAs and identified a lncRNA lncMST that is related to growth retardation in T-2 toxin-administered rats. Functionally, lncMST could alleviate cell cycle arrest and apoptosis in T-2 toxin-treated GH3 cells. Mechanistically, lncMST, serve as an inducible chaperone RNA, involved in the paradigm "Chemical-induced stress related growth retardation", through recruiting the EPRS/HSP90AB1 complex to increase HDAC6 expression, thus further alleviating T-2 toxin-induced growth retardation. These findings for the first time demonstrate that the probable therapeutic relationship between lncMST and growth retardation, providing an explanation and therapeutic targets for the pathogenesis of growth retardation.
Collapse
Affiliation(s)
- Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Houpeng Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Yanan Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Ling Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Boyue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China.
| |
Collapse
|
3
|
Identification of Two Novel CIL-102 Upregulations of ERP29 and FUMH to Inhibit the Migration and Invasiveness of Colorectal Cancer Cells by Using the Proteomic Approach. Biomolecules 2021; 11:biom11091280. [PMID: 34572494 PMCID: PMC8465048 DOI: 10.3390/biom11091280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino) phenyl]ethanone) is a major active agent of Camptotheca acuminata’s alkaloid derivative, and its anti-tumorigenic activity, a valuable biological property of the agent, has been reported in many types of cancer. In this study, we researched the novel CIL-102-induced protein for either the induction of cell apoptosis or the inhibition of cell migration/invasiveness in colorectal cancer cells (CRC) and their molecular mechanism. Firstly, our data showed that CIL-102 treatment not only increased the cytotoxicity of cells and the production of Reactive Oxygen Species (ROS), but it also decreased cell migration and invasiveness in DLD-1 cells. In addition, many cellular death-related proteins (cleavage caspase 9, cleavage caspase 3, Bcl-2, and TNFR1 and TRAIL) and JNK MAPK/p300 pathways were increased in a time-dependent manner. Using the proteomic approach with a MALDI-TOF-TOF analysis, CIL-102-regulated differentially expressed proteins were identified, including eight downregulated and 11 upregulated proteins. Among them, upregulated Endoplasmic Reticulum resident Protein 29 (ERP29) and Fumarate Hydratase (FUMH) by CIL-102 were blocked by the inhibition of ROS production, JNK activity, and p300/CBP (CREB binding protein) signaling pathways. Importantly, the knockdown of ERP29 and FUMH expression by shRNA abolished the inhibition of cell migration and invasion by CIL-102 in DLD-1 cells. Together, our findings demonstrate that ERP29 and FUMH were upregulated by CIL102 via ROS production, JNK activity, and p300/CBP pathways, and that they were involved in the inhibition of the aggressive status of colorectal cancer cells.
Collapse
|
4
|
Tsai SCS, Yang KD, Chang KH, Lin FCF, Chou RH, Li MC, Cheng CC, Kao CY, Chen CP, Lin HC, Hsu YC. Umbilical Cord Mesenchymal Stromal Cell-Derived Exosomes Rescue the Loss of Outer Hair Cells and Repair Cochlear Damage in Cisplatin-Injected Mice. Int J Mol Sci 2021; 22:ijms22136664. [PMID: 34206364 PMCID: PMC8267798 DOI: 10.3390/ijms22136664] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022] Open
Abstract
Umbilical cord-derived mesenchymal stromal cells (UCMSCs) have potential applications in regenerative medicine. UCMSCs have been demonstrated to repair tissue damage in many inflammatory and degenerative diseases. We have previously shown that UCMSC exosomes reduce nerve injury-induced pain in rats. In this study, we characterized UCMSC exosomes using RNA sequencing and proteomic analyses and investigated their protective effects on cisplatin-induced hearing loss in mice. Two independent experiments were designed to investigate the protective effects on cisplatin-induced hearing loss in mice: (i) chronic intraperitoneal cisplatin administration (4 mg/kg) once per day for 5 consecutive days and intraperitoneal UCMSC exosome (1.2 μg/μL) injection at the same time point; and (ii) UCMSC exosome (1.2 μg/μL) injection through a round window niche 3 days after chronic cisplatin administration. Our data suggest that UCMSC exosomes exert protective effects in vivo. The post-traumatic administration of UCMSC exosomes significantly improved hearing loss and rescued the loss of cochlear hair cells in mice receiving chronic cisplatin injection. Neuropathological gene panel analyses further revealed the UCMSC exosomes treatment led to beneficial changes in the expression levels of many genes in the cochlear tissues of cisplatin-injected mice. In conclusion, UCMSC exosomes exerted protective effects in treating ototoxicity-induced hearing loss by promoting tissue remodeling and repair.
Collapse
Affiliation(s)
- Stella Chin-Shaw Tsai
- Department of Otolaryngology, Tungs’ Taichung Metroharbor Hospital, Taichung 435, Taiwan;
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 145, Guoguang Rd., South Dist., Taichung City 402, Taiwan
| | - Kuender D. Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan; (K.D.Y.); (C.-P.C.)
- Department of Otolaryngology, Mackay Memorial Hospital, New Taipei City 251, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Taichung 435, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan;
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Frank Cheau-Feng Lin
- Department of Thoracic Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan;
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406, Taiwan
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung 413, Taiwan
| | - Min-Chih Li
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Ching-Chang Cheng
- Laboratory Animal Service Center, Office of Research and Development, China Medical University, Taichung 406, Taiwan;
| | - Chien-Yu Kao
- Medical and Pharmaceutical Industry Technology and Development Center, New Taipei City 248, Taiwan;
| | - Chie-Pein Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan; (K.D.Y.); (C.-P.C.)
| | - Hung-Ching Lin
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan;
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City 252, Taiwan;
- Correspondence: ; Tel.: +886-2-26360303 (ext. 1721)
| |
Collapse
|
5
|
Liu J, Zhang Y, Li Q, Wang Y. Transgelins: Cytoskeletal Associated Proteins Implicated in the Metastasis of Colorectal Cancer. Front Cell Dev Biol 2020; 8:573859. [PMID: 33117801 PMCID: PMC7575706 DOI: 10.3389/fcell.2020.573859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
Transgelins, including transgelin-1 (T-1), transgelin-2 (T-2), and transgelin-3 (T-3), are a family of actin-binding proteins (ABPs) that can alter the structure and morphology of the cytoskeleton. These proteins function by regulating migration, proliferation and apoptosis in many different cancers. Several studies have shown that in various types of tumor cells, including colorectal cancer (CRC) cells, and in the tumor microenvironment, the expression and biological effects of transgelins are diverse and may transform during tumor progression. Previous researches have demonstrated that transgelin levels are positively correlated with metastasis in CRC, and down-regulating their expression can inhibit this process. In advanced disease, T-1 is a tumor activator with increasing expression, and T-2 expression increases with the progression of CRC. Finally, T-3 is only expressed in neurons and is not associated with CRC. This evidence suggests that T-1 and T-2 are potential biomarkers and therapeutic targets for CRC metastasis.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingru Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Wu RW, Lian WS, Kuo CW, Chen YS, Ko JY, Wang FS. S100 Calcium Binding Protein A9 Represses Angiogenic Activity and Aggravates Osteonecrosis of the Femoral Head. Int J Mol Sci 2019; 20:ijms20225786. [PMID: 31752076 PMCID: PMC6887714 DOI: 10.3390/ijms20225786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Ischemic damage aggravation of femoral head collapse is a prominent pathologic feature of osteonecrosis of the femoral head (ONFH). In this regard, S100 calcium binding protein A9 (S100A9) is known to deteriorate joint integrity, however, little is understood about which role S100A9 may play in ONFH. In this study, a proteomics analysis has revealed a decrease in the serum S100A9 level in patients with ONFH upon hyperbaric oxygen therapy. Serum S100A9 levels, along with serum vascular endothelial growth factor (VEGF), soluble vascular cell adhesion molecule-1 (sVCAM-1), interleukin-6 (IL-6), and tartrate-resistant acid phosphatase 5b levels were increased in patients with ONFH, whereas serum osteocalcin levels were decreased as compared to healthy controls. Serum S100A9 levels were increased with the Ficat and Arlet stages of ONFH and correlated with the patients with a history of being on glucocorticoid medication and alcohol consumption. Osteonecrotic tissue showed hypovasculature histopathology together with weak immunostaining for vessel marker CD31 and von Willrbrand factor (vWF) as compared to femoral head fracture specimens. Thrombosed vessels, fibrotic tissue, osteocytes, and inflammatory cells displayed strong S100A9 immunoreactivity in osteonecrotic lesion. In vitro, ONFH serum and S100A9 inhibited the tube formation of vessel endothelial cells and vessel outgrowth of rat aortic rings, whereas the antibody blockade of S100A9 improved angiogenic activities. Taken together, increased S100A9 levels are relevant to the development of ONFH. S100A9 appears to provoke avascular damage, ultimately accelerating femoral head deterioration through reducing angiogenesis. This study provides insight into the molecular mechanism underlying the development of ONFH. Here, analysis also highlights that serum S100A9 is a sensitive biochemical indicator of ONFH.
Collapse
Affiliation(s)
- Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
- Department of Medicine; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Wei-Shiung Lian
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chung-Wen Kuo
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Feng-Sheng Wang
- Department of Medicine; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (C.-W.K.); (Y.-S.C.)
- Core Laboratory for Phenomics & Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Abstract
Actin-binding proteins are proteins that could bind to actin or actin fibers. As a member of actin-binding proteins, Transgelin-2 is expressed in smooth muscle cells and non-smooth muscle cells, and its gene, TAGLN2, is differently expressed in all cells and tissues. The deregulation of Transgelin-2 is considered to be correlated with progression of many kinds of diseases, especially the development of malignant tumors, such as invasion, metastasis, and resistance, yet the function and mechanism of action of Transgelin-2 remain elusive. Therefore, we reviewed the basic characteristics and function of Transgelin-2 and its biological role in various types of diseases in order to provide the theoretical basis for further research and new perspectives on cancer development.
Collapse
Affiliation(s)
- Ti Meng
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Leichao Liu
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Ruifang Hao
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Siying Chen
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Current View on Osteogenic Differentiation Potential of Mesenchymal Stromal Cells Derived from Placental Tissues. Stem Cell Rev Rep 2016; 11:570-85. [PMID: 25381565 PMCID: PMC4493719 DOI: 10.1007/s12015-014-9569-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stromal cells (MSC) isolated from human term placental tissues possess unique characteristics, including their peculiar immunomodulatory properties and their multilineage differentiation potential. The osteogenic differentiation capacity of placental MSC has been widely disputed, and continues to be an issue of debate. This review will briefly discuss the different MSC populations which can be obtained from different regions of human term placenta, along with their unique properties, focusing specifically on their osteogenic differentiation potential. We will present the strategies used to enhance osteogenic differentiation potential in vitro, such as through the selection of subpopulations more prone to differentiate, the modification of the components of osteo-inductive medium, and even mechanical stimulation. Accordingly, the applications of three-dimensional environments in vitro and in vivo, such as non-synthetic, polymer-based, and ceramic scaffolds, will also be discussed, along with results obtained from pre-clinical studies of placental MSC for the regeneration of bone defects and treatment of bone-related diseases.
Collapse
|
9
|
Zhang L, Liu YZ, Zeng Y, Zhu W, Zhao YC, Zhang JG, Zhu JQ, He H, Shen H, Tian Q, Deng FY, Papasian CJ, Deng HW. Network-based proteomic analysis for postmenopausal osteoporosis in Caucasian females. Proteomics 2015; 16:12-28. [DOI: 10.1002/pmic.201500005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 09/06/2015] [Accepted: 10/28/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Lan Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Yao-Zhong Liu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Yong Zeng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; Beijing P. R. China
| | - Wei Zhu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Ying-Chun Zhao
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Ji-Gang Zhang
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Jia-Qiang Zhu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Hao He
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Hui Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Qing Tian
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
| | - Fei-Yan Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
- Laboratory of Proteins and Proteomics, Department of Epidemiology; Soochow University School of Public Health; Suzhou P. R. China
| | - Christopher J. Papasian
- Department of Basic Medical Sciences, School of Medicine; University of Missouri - Kansas City; MO USA
| | - Hong-Wen Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine; Tulane University; New Orleans LA USA
- College of Life Sciences and Bioengineering; Beijing Jiaotong University; Beijing P. R. China
| |
Collapse
|
10
|
Klontzas ME, Kenanidis EI, Heliotis M, Tsiridis E, Mantalaris A. Bone and cartilage regeneration with the use of umbilical cord mesenchymal stem cells. Expert Opin Biol Ther 2015; 15:1541-52. [PMID: 26176327 DOI: 10.1517/14712598.2015.1068755] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The production of functional alternatives to bone autografts and the development new treatment strategies for cartilage defects are great challenges that could be addressed by the field of tissue engineering. Umbilical cord mesenchymal stem cells (MSCs) can be used to produce cost-effective, atraumatic and possibly autologous bone and cartilage grafts. AREAS COVERED MSCs can be isolated from umbilical cord Wharton's jelly, perivascular tissue and blood using various techniques. Those cells have been characterized and phenotypic similarities with bone marrow-derived MSCs (BM-MSCs) and embryonic stem cells have been found. Findings on their differentiation into the osteogenic and chondrogenic lineage differ between studies and are not as consistent as for BM-MSCs. EXPERT OPINION MSCs from umbilical cords have to be more extensively studied and the mechanisms underlying their differentiation have to be clarified. To date, they seem to be an attractive alternative to BM-MSCs. However, further research with suitable scaffolds and growth factors as well as with novel scaffold fabrication and culture technology should be conducted before they are introduced to clinical practice and replace BM-MSCs.
Collapse
Affiliation(s)
- Michail E Klontzas
- a 1 Imperial College London, Department of Chemical Engineering and Chemical Technology , South Kensington Campus, London, UK
| | - Eustathios I Kenanidis
- b 2 Aristotle University Medical School, Academic Orthopaedic Unit , University Campus 54 124, Thessaloniki, Greece.,c 3 Aristotle University Medical School, "PapaGeorgiou" General Hospital, Academic Orthopaedic Unit , Thessaloniki, Greece
| | | | - Eleftherios Tsiridis
- b 2 Aristotle University Medical School, Academic Orthopaedic Unit , University Campus 54 124, Thessaloniki, Greece.,e 5 Imperial College London, Department of Surgery and Cancer, Division of Surgery , B-block, Hammersmith, Du-Cane Road, London, UK
| | - Athanasios Mantalaris
- f 6 Imperial College London, Department of Chemical Engineering , South Kensington Campus, London, UK
| |
Collapse
|
11
|
Global proteomic analysis of brain tissues in transient ischemia brain damage in rats. Int J Mol Sci 2015; 16:11873-91. [PMID: 26016499 PMCID: PMC4490420 DOI: 10.3390/ijms160611873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 01/22/2023] Open
Abstract
Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER) stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM) and the control rats were separated using two-dimensional gel electrophoresis (2-DE) to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT) and cathepsin D (CATD), which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2) protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia-reperfusion-related neuronal injury.
Collapse
|
12
|
Osteoblastic differentiation of Wharton jelly biopsy specimens and their mesenchymal stromal cells after serum-free culture. Plast Reconstr Surg 2014; 134:59e-69e. [PMID: 25028857 DOI: 10.1097/prs.0000000000000305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cleft lip and cleft palate are increasingly being detected by prenatal ultrasound, which raises the opportunity of using the patient's own osteogenicity from umbilical cord mesenchymal cells for bony repair. The authors address the growth of the cells under a fully defined and regulated protocol. METHODS Wharton jelly-derived mesenchymal stromal cells were isolated and expanded as a monolayer with defined serum-free medium. Osteoblastic differentiation was tested in the cells and in the entire Wharton jelly biopsy specimens. The serum-free-cultured cells were included in hydroxyapatite granule-fibrin constructs and, without predifferentiation, subcutaneously implanted into immunoincompetent mice. RESULTS Isolation and expansion of Wharton jelly-derived mesenchymal stromal cells were consistently successful under serum-free conditions, and the cells expressed standard mesenchymal stromal cell markers. The serum-free-cultivated cells produced a mineralized extracellular matrix under osteogenic differentiation, with a significant increase of osteoblastic lineage gene expression (Hox-A10 and Runx2) and an up-regulation of downstream osteogenic genes (OSX, OCN, ALPL, and BSP2). In vivo, they formed a dense matrix adjacent to the granules after 8 weeks, but no lamellar bone. serum-free-cultivated entire Wharton jelly biopsy specimens produced a mineralized extracellular matrix within the collagen matrix of the Wharton jelly. CONCLUSIONS The osteogenic differentiation potential of Wharton jelly-derived mesenchymal stromal cells was maintained under serum-free isolation and expansion techniques. The cells without predifferentiation form a dense collagen matrix but not bone in vivo. Moreover, entire Wharton jelly biopsy specimens showed periosteal-like mineralization under osteogenic differentiation, which offers new options for autologous bone tissue engineering, including cleft palate surgery.
Collapse
|
13
|
Rody WJ, Holliday LS, McHugh KP, Wallet SM, Spicer V, Krokhin O. Mass spectrometry analysis of gingival crevicular fluid in the presence of external root resorption. Am J Orthod Dentofacial Orthop 2014; 145:787-98. [PMID: 24880850 DOI: 10.1016/j.ajodo.2014.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 03/01/2014] [Accepted: 03/01/2014] [Indexed: 12/18/2022]
Abstract
INTRODUCTION In this study, we used liquid chromatography-mass spectrometry (LC-MS) to investigate the differences in the composition of gingival crevicular fluid between resorbing deciduous molars and nonresorbing permanent teeth. The main goal was to identify novel biomarkers associated with root resorption. METHODS Eleven children (4 boys, 7 girls) in the mixed dentition were selected to participate in this split-mouth design study, in which a deciduous second molar with radiographic evidence of root resorption served as the experimental site, and the permanent first molar on the contralateral quadrant was the control site. Gingival crevicular fluid was collected using absorbing strips. A total of 22 samples (11 root resorption, 11 control) were each analyzed with 1-dimensional LC-MS. The remaining samples were then pooled across the 11 patients and analyzed by 2-dimensional LC-MS. The output files were converted to mascot generic format, which can be used to perform protein identification with conventional search engines. RESULTS The 2-dimensional LC-MS protocol was able to identify 2789 and 2421 proteins in the control and resorption pooled samples, respectively. In this population, we detected significantly upregulated and downregulated proteins in the teeth with root resorption. Interestingly, many of these proteins are characteristically found in exosomes. CONCLUSIONS We identified novel proteins that might prove to be useful biomarkers of root resorption, individually or as part of a panel.
Collapse
Affiliation(s)
- Wellington J Rody
- Assistant professor, Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Fla.
| | - L Shannon Holliday
- Associate professor, Department of Orthodontics, College of Dentistry, and Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Fla
| | - Kevin P McHugh
- Associate professor, Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Fla
| | - Shannon M Wallet
- Associate professor, Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Fla
| | - Victor Spicer
- Bioinformatics specialist, Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Oleg Krokhin
- Assistant professor, Department of Internal Medicine, University of Manitoba; senior scientist, Manitoba Center for Proteomics and Systems Biology, Winnipeg Manitoba, Canada
| |
Collapse
|
14
|
Teng CC, Kuo HC, Sze CI. Quantitative proteomic analysis of the inhibitory effects of CIL-102 on viability and invasiveness in human glioma cells. Toxicol Appl Pharmacol 2013; 272:579-90. [DOI: 10.1016/j.taap.2013.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/26/2013] [Accepted: 07/16/2013] [Indexed: 02/02/2023]
|
15
|
Corotchi MC, Popa MA, Remes A, Sima LE, Gussi I, Lupu Plesu M. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton's jelly-derived mesenchymal stem cells. Stem Cell Res Ther 2013; 4:81. [PMID: 23845279 PMCID: PMC3854854 DOI: 10.1186/scrt232] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/08/2013] [Indexed: 01/08/2023] Open
Abstract
Introduction Human Wharton’s jelly (WJ) has become a preferred source of mesenchymal stem cells (MSCs) whose clinical applications are limited by the use of adequate xeno-free (XF), in vitro manipulation conditions. Therefore, the objective of our study was to characterize WJ-derived MSCs (WJ-MSCs), isolated by different methods and cultured in a commercially available, MSC XF medium, not least of all by investigating their endothelial differentiation capacity. Methods WJ explants and enzymatically dissociated WJ cells were cultured in a defined, XF medium for MSCs. Adherent cells at passages 2 and 5 were characterized as MSCs by flow cytometry, MTT, real-time quantitative reverse transcription PCR, and functional multipotent differentiation assays. The endothelial differentiation capacity of MSCs isolated and expanded until passage 2 in the MSC XF medium, and then subcultured for five passages in a commercially available endothelial growth medium (group A), was assessed over serial passages, as compared to adherent WJ-derived cells isolated and expanded for five consecutive passages in the endothelial medium (group B). Results The MSC phenotype of WJ explant- and pellet-derived cells, isolated and expanded in the MSC XF medium, was proven based on the expression of CD44/CD73/CD90/CD105 surface markers and osteo-/adipo-/chondrogenic multipotent differentiation potential, which differed according to the isolation method and/or passage number. Upon exposure to endothelial differentiation cues, cells belonging to group A did not exhibit endothelial cell characteristics over serial passages; by contrast, WJ pellet-derived cells belonging to group B expressed endothelial characteristics at gene, protein and functional levels, potentially due to culture conditions favoring the isolation of other stem/progenitor cell types than MSCs, able to give rise to an endothelial progeny. Conclusions The use of defined, MSC XF media for isolation and expansion of human WJ-MSCs is a prerequisite for the establishment of their real endothelial differentiation capacity, as candidates for clinical therapy applications. Thus, the standardization of WJ-MSCs isolation and culture expansion techniques in defined, MSC XF media, for their accurate characterization, would be a priority in the stem cell research field.
Collapse
|
16
|
Fraga JS, Silva NA, Lourenço AS, Gonçalves V, Neves NM, Reis RL, Rodrigues AJ, Manadas B, Sousa N, Salgado AJ. Unveiling the effects of the secretome of mesenchymal progenitors from the umbilical cord in different neuronal cell populations. Biochimie 2013; 95:2297-303. [PMID: 23851197 DOI: 10.1016/j.biochi.2013.06.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 06/19/2013] [Indexed: 12/11/2022]
Abstract
It has been previously shown that the secretome of Human Umbilical Cord Perivascular Cells (HUCPVCs), known for their mesenchymal like stem cell character, is able to increase the metabolic viability and hippocampal neuronal cell densities. However, due to the different micro-environments of the distinct brain regions it is important to study if neurons isolated from different areas have similar, or opposite, reactions when in the presence of HUCPVCs secretome (in the form of conditioned media-CM). In this work we: 1) studied how cortical and cerebellar neuronal primary cultures behaved when incubated with HUCPVCs CM and 2) characterized the differences between CM collected at two different conditioning time points. Primary cultures of cerebellar and cortical neurons were incubated with HUCPVCs CM (obtained 24 and 96 h after three days of culturing). HUCPVCs CM had a higher impact on the metabolic viability and proliferation of cortical cultures, than the cerebellar ones. Regarding neuronal cell densities it was observed that with 24 h CM condition there were higher number MAP-2 positive cells, a marker for fully differentiated neurons; this was, once again, more evident in cortical cultures. In an attempt to characterize the differences between the two conditioning time points a proteomics approach was followed, based on 2D Gel analysis followed by the identification of selected spots by tandem mass spectrometry. Results revealed important differences in proteins that have been previously related with phenomena such as neurl cell viability, proliferation and differentiation, namely 14-3-3, UCHL1, hsp70 and peroxiredoxin-6. In summary, we demonstrated differences on how neurons isolated from different brain regions react to HUCPVCs secretome and we have identified different proteins (14-3-3 and hsp70) in HUCPVCs CM that may explain the above-referred results.
Collapse
Affiliation(s)
- J S Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang WS, Kuo YH, Chin CC, Wang JY, Yu HR, Sheen JM, Tung SY, Shen CH, Chen TC, Sung ML, Liang HF, Kuo HC. Proteomic analysis of the effects of baicalein on colorectal cancer cells. Proteomics 2012; 12:810-9. [DOI: 10.1002/pmic.201100270] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen-Shih Huang
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Chiayi Taiwan
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
| | - Yi-Hung Kuo
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Chiayi Taiwan
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
| | - Chih-Chien Chin
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Chiayi Taiwan
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
| | - Jeng-Yi Wang
- Division of Colon and Rectal Surgery; Department of Surgery; Chang Gung Memorial Hospital; Linkou Taiwan
| | - Hong-Ren Yu
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
- Department of Pediatrics; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - Jiunn-Ming Sheen
- Graduate Institute of Clinical Medical Science; Chang Gung University College of Medicine; Taiwan
- Department of Pediatrics; Kaohsiung Chang Gung Memorial Hospital; Kaohsiung Taiwan
| | - Shui-Yi Tung
- Department of Hepato-Gastroenterological; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Chien-Heng Shen
- Department of Hepato-Gastroenterological; Chang Gung Memorial Hospital; Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Te-Chuan Chen
- Division of Nephrology; Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Kaohsiung Taiwan
| | - Mei-Lan Sung
- Department of Nursing; Chang Gung University of Science and Technology; Taiwan
- Chronic Diseases and Health Promotion Research Center; CGUST; Taiwan
| | - Hwey-Fang Liang
- Department of Nursing; Chang Gung University of Science and Technology; Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing; Chang Gung University of Science and Technology; Taiwan
- Chronic Diseases and Health Promotion Research Center; CGUST; Taiwan
| |
Collapse
|
18
|
Raicevic G, Najar M, Pieters K, De Bruyn C, Meuleman N, Bron D, Toungouz M, Lagneaux L. Inflammation and Toll-like receptor ligation differentially affect the osteogenic potential of human mesenchymal stromal cells depending on their tissue origin. Tissue Eng Part A 2012; 18:1410-8. [PMID: 22429150 DOI: 10.1089/ten.tea.2011.0434] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated not only from bone marrow (BM) but also from other tissues, including adipose tissue (AT) and umbilical cord Wharton's Jelly (WJ). Thanks to their ability to differentiate into various cell types, MSC are considered attractive candidates for cell-based regenerative therapy. In degenerative clinical settings, inflammation or infection is often involved. In the present work, we hypothesized that an inflammatory environment and/or Toll-like receptor (TLR) ligation could affect the MSC differentiation potential. MSC were isolated from BM, AT, and WJ. Inflammation was mimicked by a cytokine cocktail, and TLR activation was induced through TLR3 and TLR4 ligation. Osteogenesis was chosen as a model for differentiation. Osteogenic parameters were evaluated by measuring Ca2+ deposits and alkaline phosphatase (ALP) activity at day 7, 14, and 21 of the culture in an osteogenic medium. Our results show that WJ-MSC exhibit a much lower osteogenic potential than the other two MSC types. However, inflammation was able to strongly increase the osteogenic differentiation of WJ-MSC as calcification, and ALP activity appeared as early as day 7. However, this latter enzymatic activity remained much lower than that disclosed by BM-MSC. TLR3 or TLR4 triggering increased the osteogenesis in AT- and, to lesser extent, in BM-MSC. In conclusion, WJ-MSC constitutively disclose a lower osteogenic potential as compared with BM and AT-MSC, which is not affected by TLR triggering but is strongly increased by inflammation, then reaching the level of BM-MSC. These observations suggest that WJ-MSC could constitute an alternative of BM-MSC for bone regenerative applications, as WJ is an easy access source of large amounts of MSC that can effectively differentiate into osteoblasts in an inflammatory setting.
Collapse
Affiliation(s)
- Gordana Raicevic
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet-ULB, 121 Boulevard de Waterloo, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu HR, Kuo HC, Huang HC, Kuo HC, Chen TY, Huang LT, Tain YL, Chen CC, Sheen JM, Lin IC, Ou CY, Hsu TY, Jheng YJ, Yang KD. Identification of immunodeficient molecules in neonatal mononuclear cells by proteomic differential displays. Proteomics 2011; 11:3491-500. [PMID: 21751377 DOI: 10.1002/pmic.201100123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/03/2011] [Accepted: 06/08/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Baicalein inhibits the migration and invasive properties of human hepatoma cells. Toxicol Appl Pharmacol 2011; 255:316-26. [PMID: 21803068 DOI: 10.1016/j.taap.2011.07.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 07/05/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
Abstract
Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-β. In addition, baicalein reduced the phosphorylation levels of PKCα and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo.
Collapse
|