1
|
Guo Y, Hua S, Wang B, Wang B, Ding CF, Yan Y. In situ grown magnetic COF@MOF with a phosphoserine anchor for in-depth N-glycopeptide analysis in serum. Analyst 2023; 148:5864-5872. [PMID: 37906056 DOI: 10.1039/d3an01473h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
A hydrophilic phosphoserine-functionalized magnetic organic framework composite (termed Fe3O4@COF@MOF-PS) was synthesized by an in situ growth strategy for effective capture of N-glycopeptides. Fe3O4@COF@MOF-PS exhibited high sensitivity (0.2 fmol μL-1), outstanding exclusion of size capability (1 : 10 000), good selectivity (1 : 2000), and reusability (at least 10 times). It also exhibited remarkable performance in the N-glycopeptide analysis in complex biological samples. Via nano-LC-MS/MS analysis, a total of 223 N-glycopeptides with 161 glycosylation sites assigned to 91 glycoproteins and 331 N-glycopeptides with 243 glycosylation sites assigned to 134 glycoproteins were identified in sera from cervical cancer patients and normal controls, respectively. Biological processes and molecular functional analyses indicate that the captured glycoproteins are of significant relevance to cervical cancer, for example, gene coverage or expression of cell adhesion and extracellular matrix structural constituents. Thus, Fe3O4@COF@MOF-PS not only efficiently captures N-glycopeptides, but also has the possibility of screening potential disease markers and elucidating the process of cervical cancer development.
Collapse
Affiliation(s)
- Yimin Guo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shuwen Hua
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Bing Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Weng G, Wang B, Ye Y, Zhang Q, Yan Y, Chen C, Ding CF. Application of Microscopic Highly Hydrophilic Silica-Based Nanocomposites with High Surface Exposure in the Efficient Identification of Intact N-Glycopeptides. Anal Chem 2023; 95:7735-7742. [PMID: 37146275 DOI: 10.1021/acs.analchem.3c00927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Glycosylation of proteins regulates the life activities of organisms, while abnormalities of glycosylation sites and glycan structures occur in various serious diseases such as cancer. A separation and enrichment procedure is necessary to realize the analysis of the glycoproteins/peptides by mass spectrometry, for which the surface hydrophilicity of the material is an important factor for the separation and enrichment performance. In the present work, under the premise of an obvious increase of the surface silicon exposure (79.6%), the amount of surface polar silanol is remarkably generated accompanying the introduction of the active amino groups on the surface of silica. The microscopic hydrophilicity, which is determined with water physical-adsorption measurements and can directly reflect the interaction of water molecules and the intrinsic surface of the material, maximally increases by 44%. This microscopically highly hydrophilic material shows excellent enrichment ability for glycopeptides, such as extremely low detection limits (0.01 fmol μL-1), remarkable selectivity (1:8000), and size exclusion effects (1:8000). A total of 677 quantifiable intact N-glycopeptides were identified from the serum of patients with cervical cancer, and the glycosylation site and glycan structure were analyzed in depth, indicating that this novel material can show a broad practical application in cervical cancer diagnosis.
Collapse
Affiliation(s)
- Guoying Weng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yicheng Ye
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Qiaohong Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chen Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
3
|
Phetsanthad A, Roycroft C, Li L. Enrichment and fragmentation approaches for enhanced detection and characterization of endogenous glycosylated neuropeptides. Proteomics 2023; 23:e2100375. [PMID: 35906894 PMCID: PMC9884999 DOI: 10.1002/pmic.202100375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023]
Abstract
Glycosylated neuropeptides were recently discovered in crustaceans, a model organism with a well-characterized neuroendocrine system. Several workflows exist to characterize enzymatically digested peptides; however, the unique properties of endogenous neuropeptides require methods to be re-evaluated. We investigate the use of hydrophilic interaction liquid chromatography (HILIC) enrichment and different fragmentation methods to further probe the expression of glycosylated neuropeptides in Callinectes sapidus. During the evaluation of HILIC, we observed the necessity of a less aqueous solvent for endogenous peptide samples. This modification enabled the number of detected neuropeptide glycoforms to increase almost two-fold, from 18 to 36. Product ion-triggered electron-transfer/higher-energy collision dissociation enabled the site-specific detection of 55 intact N- and O-linked glycoforms, while the faster stepped collision energy higher-energy collisional dissociation resulted in detection of 25. Additionally, applying this workflow to five neuronal tissues enabled the characterization of 36 more glycoforms of known neuropeptides and 11 more glycoforms of nine putative novel neuropeptides. Overall, the database of glycosylated neuropeptides in crustaceans was largely expanded from 18 to 136 glycoforms of 40 neuropeptides from 10 neuropeptide families. Both macro- and micro-heterogeneity were observed, demonstrating the chemical diversity of this simple invertebrate, establishing a framework to use crustacean to probe modulatory effects of glycosylation on neuropeptides.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caroline Roycroft
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- College of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Efficient TurboID-based proximity labelling method for identifying terminal sialic acid glycosylation in living cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1841-1853. [PMID: 36789692 PMCID: PMC10157534 DOI: 10.3724/abbs.2022184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TurboID, a proximity labelling method based on mutant biotin ligase, is an efficient new technique for recognizing protein-protein interactions and has been successfully applied to living cells. Sialic acid is typically the terminal monosaccharide attached to many glycoproteins and plays many important roles in many biological processes. However, the lack of enrichment methods for terminal sialic acid glycosylation in vivo hinders the identification and analysis of this glycosylation. Here, we introduce TurboID to identify terminal sialic acid glycosylation in living cells. SpCBM, the carbohydrate-binding domain of sialidase from Streptococcus pneumoniae, is fused with TurboID and overexpressed in HeLa cells. After streptavidin-based purification and detection by mass spectrometry, 31 terminal sialic acid N-glycosylated sites and 1359 putative terminal sialic acid glycosylated proteins are identified, many of which are located in the cytoplasm and nucleus.
Collapse
|
5
|
Rao D, Wang B, Zhong H, Yan Y, Ding CF. Construction of boric acid-functionalized metal-organic frameworks for glycopeptide recognition in the serum of cervical cancer patients. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9314. [PMID: 35445465 DOI: 10.1002/rcm.9314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Cervical cancer is one of the most common malignant tumors in women, and it is essential to explore potential biomarkers such as glycopeptides closely related to cancer in physiological samples of cervical cancer patients. Sample pretreatment is required before direct detection using mass spectrometry because there are certain limitations. Meanwhile, it is still highly desired to promote the functionalization and application of metal-organic framework (MOF)-derived materials. METHODS Using a post-synthesis modification method, a novel type of boric acid-functionalized MOF probe (designated as UiO-66@PEI@Au@B(OH)2 ) is prepared for recognition of glycopeptides. The results are obtained using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-liquid chromarography-tandem mass spectrometry. RESULTS The UiO-66@PEI@Au@B(OH)2 probe exhibits a low detection limit (0.6 fmol μL-1 ), an excellent recovery rate, comparatively good reusability and selectivity (HRP digests:BSA digests = 1:500). When UiO-66@PEI@Au@B(OH)2 is used to selectively capture glycopeptides from the serum of a healthy person and a cervical cancer patient, 101 glycopeptides corresponding to 54 glycoproteins and 108 glycopeptides corresponding to 57 glycoproteins are detected, respectively. CONCLUSIONS The successful preparation of UiO-66@PEI@Au@B(OH)2 provides a path for the investigation of the functionalization of MOF-derived materials. The excellent performance of UiO-66@PEI@Au@B(OH)2 not only demonstrates the huge potential of functionalized MOFs in the glycoproteome, but also opens up new phases of the application of MOF-based materials.
Collapse
Affiliation(s)
- Dongping Rao
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Huizhen Zhong
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Santorelli L, Capitoli G, Chinello C, Piga I, Clerici F, Denti V, Smith A, Grasso A, Raimondo F, Grasso M, Magni F. In-Depth Mapping of the Urinary N-Glycoproteome: Distinct Signatures of ccRCC-related Progression. Cancers (Basel) 2020; 12:E239. [PMID: 31963743 PMCID: PMC7016614 DOI: 10.3390/cancers12010239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Protein N-glycosylation is one of the most important post-translational modifications and is involved in many biological processes, with aberrant changes in protein N-glycosylation patterns being closely associated with several diseases, including the progression and spreading of tumours. In light of this, identifying these aberrant protein glycoforms in tumours could be useful for understanding the molecular mechanism of this multifactorial disease, developing specific biomarkers and finding novel therapeutic targets. We investigated the urinary N-glycoproteome of clear cell renal cell carcinoma (ccRCC) patients at different stages (n = 15 at pT1 and n = 15 at pT3), and of non-ccRCC subjects (n = 15), using an N-glyco-FASP-based method. Using label-free nLC-ESI MS/MS, we identified and quantified several N-glycoproteins with altered expression and abnormal changes affecting the occupancy of the glycosylation site in the urine of RCC patients compared to control. In particular, nine of them had a specific trend that was directly related to the stage progression: CD97, COCH and P3IP1 were up-expressed whilst APOB, FINC, CERU, CFAH, HPT and PLTP were down-expressed in ccRCC patients. Overall, these results expand our knowledge related to the role of this post-translational modification in ccRCC and translation of this information into pre-clinical studies could have a significant impact on the discovery of novel biomarkers and therapeutic target in kidney cancer.
Collapse
Affiliation(s)
- Lucia Santorelli
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Giulia Capitoli
- Centre of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy;
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Francesca Clerici
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Vanna Denti
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Angelica Grasso
- Urology Service, Department of Surgery, EOC Beata Vergine Regional Hospital, 23, 6850 Mendrisio, Switzerland;
| | - Francesca Raimondo
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| | - Marco Grasso
- Urology Unit, S. Gerardo Hospital, 20900 Monza, Italy;
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (C.C.); (I.P.); (F.C.); (V.D.); (A.S.); (F.R.); (F.M.)
| |
Collapse
|
7
|
Turiák L, Sugár S, Ács A, Tóth G, Gömöry Á, Telekes A, Vékey K, Drahos L. Site-specific N-glycosylation of HeLa cell glycoproteins. Sci Rep 2019; 9:14822. [PMID: 31616032 PMCID: PMC6794373 DOI: 10.1038/s41598-019-51428-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/23/2019] [Indexed: 01/28/2023] Open
Abstract
We have characterized site-specific N-glycosylation of the HeLa cell line glycoproteins, using a complex workflow based on high and low energy tandem mass spectrometry of glycopeptides. The objective was to obtain highly reliable data on common glycoforms, so rigorous data evaluation was performed. The analysis revealed the presence of a high amount of bovine serum contaminants originating from the cell culture media - nearly 50% of all glycans were of bovine origin. Unaccounted, the presence of bovine serum components causes major bias in the human cellular glycosylation pattern; as is shown when literature results using released glycan analysis are compared. We have reliably identified 43 (human) glycoproteins, 69 N-glycosylation sites, and 178 glycoforms. HeLa glycoproteins were found to be highly (68.7%) fucosylated. A medium degree of sialylation was observed, on average 46.8% of possible sialylation sites were occupied. High-mannose sugars were expressed in large amounts, as expected in the case of a cancer cell line. Glycosylation in HeLa cells is highly variable. It is markedly different not only on various proteins but also at the different glycosylation sites of the same protein. Our method enabled the detailed characterization of site-specific N-glycosylation of several glycoproteins expressed in HeLa cell line.
Collapse
Affiliation(s)
- Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary.
| | - Simon Sugár
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - András Ács
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Semmelweis University, Ph.D. School of Pharmaceutical Sciences, Üllői út 26, H-1085, Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Műegyetem rakpart 3, H-1111, Budapest, Hungary
| | - Ágnes Gömöry
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - András Telekes
- Department of Oncology, St Lazarus County Hospital, Füleki út 54-56, H-3100, Salgótarján, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| |
Collapse
|
8
|
Sun N, Xiong Y, Qing G, Zhao Y, Li X, Liang X. Selective enrichment of sialylated glycopeptides with a d-allose@SiO2 matrix. RSC Adv 2018; 8:38780-38786. [PMID: 35558282 PMCID: PMC9090606 DOI: 10.1039/c8ra07192f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/11/2018] [Indexed: 11/21/2022] Open
Abstract
Abnormal sialylation of glycoprotein is associated with different kinds of cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Na Sun
- Pharmacy College
- Dalian Medical University
- Dalian
- P.R. China
| | - Yuting Xiong
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yanyan Zhao
- Pharmacy College
- Dalian Medical University
- Dalian
- P.R. China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
9
|
Ma W, Xu L, Li X, Shen S, Wu M, Bai Y, Liu H. Cysteine-Functionalized Metal-Organic Framework: Facile Synthesis and High Efficient Enrichment of N-Linked Glycopeptides in Cell Lysate. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19562-19568. [PMID: 28537384 DOI: 10.1021/acsami.7b02853] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cysteine-functionalized metal-organic framework (MOF) was synthesized via a common and facile two-step method of in situ loading of Au nanoparticles on amino-derived MOF followed by l-cysteine (Cys) immobilization. Owing to the large specific surface area and ultrahigh hydrophilicity of this nanocomposite, excellent performance was observed in the enrichment of N-linked glycopeptides in both model glycoprotein and HeLa cell lysate. By using this nanocomposite, 16 and 31 glycopeptides were efficiently extracted from digest of horseradish peroxidase (HRP) and human serum immunoglobulin G (IgG), respectively. The short incubation time (5 min), large binding capacity (150 mg/g, IgG digest to material), good selectivity (1:50, molar ratio of IgG and bovine serum albumin (BSA) digest), high recovery (over 80%), and low detection limit (1 fmol) ensure the effectiveness and robustness of MIL-101(NH2)@Au-Cys in complex HeLa cell lysate. As a result, 1123 N-glycosylation sites corresponding to 1069 N-glycopeptides and 614 N-glycoproteins were identified from the lysate. Compared with those of previously reported hydrophilic methods, to our knowledge, it was the best result. This work paves a new way for fast functionalization of MOF and also provides a novel idea for material design in sample preparation, especially in glycoproteome and related analysis.
Collapse
Affiliation(s)
- Wen Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Linnan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Xianjiang Li
- Division of Metrology in Chemistry and Analytical Science, National Institute of Metrology , Beijing 100029, P. R. China
| | - Sensen Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Mei Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University , Beijing 100871, P. R. China
| |
Collapse
|
10
|
Sequential fragment ion filtering and endoglycosidase-assisted identification of intact glycopeptides. Anal Bioanal Chem 2017; 409:3077-3087. [PMID: 28258464 DOI: 10.1007/s00216-017-0195-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/20/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Detailed characterization of glycoprotein structures requires determining both the sites of glycosylation as well as the glycan structures associated with each site. In this work, we developed an analytical strategy for characterization of intact N-glycopeptides in complex proteome samples. In the first step, tryptic glycopeptides were enriched using ZIC-HILIC. Secondly, a portion of the glycopeptides was treated with endoglycosidase H (Endo H) to remove high-mannose (Man) and hybrid N-linked glycans. Thirdly, a fraction of the Endo H-treated glycopeptides was further subjected to PNGase F treatment in 18O water to remove the remaining complex glycans. The intact glycopeptides and deglycosylated peptides were analyzed by nano-RPLC-MS/MS, and the glycan structures and the peptide sequences were identified by using the Byonic or pFind tools. Sequential digestion by endoglycosidase provided candidate glycosites information and indication of the glycoforms on each glycopeptide, thus helping to confine the database search space and improve the confidence regarding intact glycopeptide identification. We demonstrated the effectiveness of this approach using RNase B and IgG and applied this sequential digestion strategy for the identification of glycopeptides from the HepG2 cell line. We identified 4514 intact glycopeptides coming from 947 glycosites and 1011 unique peptide sequences from HepG2 cells. The intensity of different glycoforms at a specific glycosite was obtained to reach the occupancy ratios of site-specific glycoforms. These results indicate that our method can be used for characterizing site-specific protein glycosylation in complex samples. Graphical abstract Through integrating the information of intact glycopeptide, fragment ions filters and endoglycosidase digestion, the reliability of the identification could be significantly improved. We quantified the site-specific glycoforms occupancy ratios through the MS response signaling of each glycopeptide at the same time.
Collapse
|
11
|
Jiang B, Qu Y, Zhang L, Liang Z, Zhang Y. 4-Mercaptophenylboronic acid functionalized graphene oxide composites: Preparation, characterization and selective enrichment of glycopeptides. Anal Chim Acta 2016; 912:41-8. [DOI: 10.1016/j.aca.2016.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
|
12
|
Ji Y, Xiong Z, Huang G, Liu J, Zhang Z, Liu Z, Ou J, Ye M, Zou H. Efficient enrichment of glycopeptides using metal-organic frameworks by hydrophilic interaction chromatography. Analyst 2015; 139:4987-93. [PMID: 25110774 DOI: 10.1039/c4an00971a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Selective enrichment of glycopeptides from complicated biological samples is critical for glycoproteomics to obtain the structure and glycosylation information of glycoproteins using mass spectrometry (MS), which still remains a great challenge. Hydrophilic interaction chromatography (HILIC)-based strategies have been proposed for selective isolation of glycopeptides via the interactions between the glycan of glycopeptides and the matrices. However, the application of these methods is limited by the medium selectivity of HILIC matrices. In this study, hydrophilic metal-organic frameworks (MOFs) were fabricated and used as a HILIC matrix. The cross-linked CD-MOFs (LCD-MOFs) were facilely prepared with γ-cyclodextrin as ligand and possessed nano-sized cubic structure, superior hydrophilicity, and bio-compatibility. The LCD-MOFs performance for the selective enrichment of glycopeptides from the complex biological samples were investigated with a digested mixture of human immunoglobulin G (IgG) that was used as standard samples. In the selectivity assessment, the non-glycopeptides causing ion suppression to the glycopeptides were effectively removed, the signal of glycopeptides were enhanced significantly by LCD-MOFs, and twenty glycopeptides were identified with 67 fmol of IgG digest. In addition, the resulting LCD-MOFs demonstrated the lower detection limit (3.3 fmol) with a satisfactory recovery yield (84-103%) for glycopeptide enrichment from a digest of IgG. Furthermore, a promising protocol was developed for the selective enrichment of glycopeptides from mouse liver, and 344 unique N-glycosylation sites that mapped to 290 different glycoproteins were identified in a single MS run. The results clearly demonstrated that when used in a HILIC matrix, LCD-MOFs have great potential for identifying and enriching low-abundant glycopeptides in complex biological samples.
Collapse
Affiliation(s)
- Yongsheng Ji
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 1160237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lauber MA, Yu YQ, Brousmiche DW, Hua Z, Koza SM, Magnelli P, Guthrie E, Taron CH, Fountain KJ. Rapid Preparation of Released N-Glycans for HILIC Analysis Using a Labeling Reagent that Facilitates Sensitive Fluorescence and ESI-MS Detection. Anal Chem 2015; 87:5401-9. [PMID: 25927596 DOI: 10.1021/acs.analchem.5b00758] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
N-glycosylation of proteins is now routinely characterized and monitored because of its significance to the detection of disease states and the manufacturing of biopharmaceuticals. At the same time, hydrophilic interaction chromatography (HILIC) has emerged as a powerful technology for N-glycan profiling. Sample preparation techniques for N-glycan HILIC analyses have however tended to be laborious or require compromises in sensitivity. To address these shortcomings, we have developed an N-glycan labeling reagent that provides enhanced fluorescence response and MS sensitivity for glycan detection and have also simplified the process of preparing a sample for analysis. The developed labeling reagent rapidly reacts with glycosylamines upon their release from glycoproteins. Within a 5 min reaction, enzymatically released N-glycans are labeled with this reagent comprised of an NHS-carbamate reactive group, a quinoline fluorophore, and a tertiary amine for enhancing ESI+ MS ionization. To further expedite the released N-glycan sample preparation, rapid tagging has been integrated with a fast PNGase F deglycosylation procedure that achieves complete deglycosylation of a diverse set of glycoproteins in approximately 10 min. Moreover, a technique for HILIC-SPE of the labeled glycans has been developed to provide quantitative recovery and facilitate immediate HILIC analysis of the prepared samples. The described approach makes it possible to quickly prepare N-glycan samples and to incorporate the use of a fluorescence and MS sensitivity enhancing labeling reagent. In demonstration of these new capabilities, we have combined the developed sample preparation techniques with UHPLC HILIC chromatography and high sensitivity mass spectrometry to thoroughly detail the N-glycan profile of a monoclonal antibody.
Collapse
Affiliation(s)
- Matthew A Lauber
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Ying-Qing Yu
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Darryl W Brousmiche
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Zhengmao Hua
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Stephan M Koza
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| | - Paula Magnelli
- ‡New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938-2723, United States
| | - Ellen Guthrie
- ‡New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938-2723, United States
| | - Christopher H Taron
- ‡New England Biolabs, 240 County Road, Ipswich, Massachusetts 01938-2723, United States
| | - Kenneth J Fountain
- †Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757-3696, United States
| |
Collapse
|
14
|
Lynn KS, Chen CC, Lih TM, Cheng CW, Su WC, Chang CH, Cheng CY, Hsu WL, Chen YJ, Sung TY. MAGIC: An Automated N-Linked Glycoprotein Identification Tool Using a Y1-Ion Pattern Matching Algorithm and in Silico MS2 Approach. Anal Chem 2015; 87:2466-73. [DOI: 10.1021/ac5044829] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ke-Shiuan Lynn
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Chun Chen
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - T. Mamie Lih
- Bioinformatics
Program, Taiwan International Graduate Program, Institute of Information
Science, Academia Sinica, Taipei 11529, Taiwan
- Institute
of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan
| | - Cheng-Wei Cheng
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Chih Su
- Institute
of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Hao Chang
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Ying Cheng
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Lian Hsu
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Ju Chen
- Institute
of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yi Sung
- Institute
of Information Science, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
15
|
Lazar IM, Deng J, Ikenishi F, Lazar AC. Exploring the glycoproteomics landscape with advanced MS technologies. Electrophoresis 2014; 36:225-37. [PMID: 25311661 DOI: 10.1002/elps.201400400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022]
Abstract
The advance of glycoproteomic technologies has offered unique insights into the importance of glycosylation in determining the functional roles of a protein within a cell. Biologically active glycoproteins include the categories of enzymes, hormones, proteins involved in cell proliferation, cell membrane proteins involved in cell-cell recognition, and communication events or secreted proteins, just to name a few. The recent progress in analytical instrumentation, methodologies, and computational approaches has enabled a detailed exploration of glycan structure, connectivity, and heterogeneity, underscoring the staggering complexity of the glycome repertoire in a cell. A variety of approaches involving the use of spectroscopy, MS, separation, microfluidic, and microarray technologies have been used alone or in combination to tackle the glycoproteome challenge, the research results of these efforts being captured in an overwhelming number of annual publications. This work is aimed at reviewing the major developments and accomplishments in the field of glycoproteomics, with focus on the most recent advancements (2012-2014) that involve the use of capillary separations and MS detection.
Collapse
Affiliation(s)
- Iulia M Lazar
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
16
|
Huang BY, Yang CK, Liu CP, Liu CY. Stationary phases for the enrichment of glycoproteins and glycopeptides. Electrophoresis 2014; 35:2091-107. [PMID: 24729282 DOI: 10.1002/elps.201400034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/25/2014] [Accepted: 04/04/2014] [Indexed: 12/20/2022]
Abstract
The analysis of protein glycosylation is important for biomedical and biopharmaceutical research. Recent advances in LC-MS analysis have enabled the identification of glycosylation sites, the characterisation of glycan structures and the identification and quantification of glycoproteins and glycopeptides. However, this type of analysis remains challenging due to the low abundance of glycopeptides in complex protein digests, the microheterogeneity at glycosylation sites, ion suppression effects and the competition for ionisation by co-eluting peptides. Specific sample preparation is necessary for comprehensive and site-specific glycosylation analyses using MS. Therefore, researchers continue to pursue new columns to broaden their applications. The current manuscript covers recent literature published from 2008 to 2013. The stationary phases containing various chemical bonding methods or ligands immobilisation strategies on solid supports that selectively enrich N-linked or sialylated N-glycopeptides are categorised with either physical or chemical modes of binding. These categories include lectin affinity, hydrophilic interactions, boronate affinity, titanium dioxide affinity, hydrazide chemistry and other separation techniques. This review should aid in better understanding the syntheses and physicochemical properties of each type of stationary phases for enriching glycoproteins and glycopeptides.
Collapse
Affiliation(s)
- Bao-Yu Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
17
|
Chen W, Smeekens JM, Wu R. A universal chemical enrichment method for mapping the yeast N-glycoproteome by mass spectrometry (MS). Mol Cell Proteomics 2014; 13:1563-72. [PMID: 24692641 DOI: 10.1074/mcp.m113.036251] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylation is one of the most common and important protein modifications in biological systems. Many glycoproteins naturally occur at low abundances, which makes comprehensive analysis extremely difficult. Additionally, glycans are highly heterogeneous, which further complicates analysis in complex samples. Lectin enrichment has been commonly used, but each lectin is inherently specific to one or several carbohydrates, and thus no single or collection of lectin(s) can bind to all glycans. Here we have employed a boronic acid-based chemical method to universally enrich glycopeptides. The reaction between boronic acids and sugars has been extensively investigated, and it is well known that the interaction between boronic acid and diols is one of the strongest reversible covalent bond interactions in an aqueous environment. This strong covalent interaction provides a great opportunity to catch glycopeptides and glycoproteins by boronic acid, whereas the reversible property allows their release without side effects. More importantly, the boronic acid-diol recognition is universal, which provides great capability and potential for comprehensively mapping glycosylation sites in complex biological samples. By combining boronic acid enrichment with PNGase F treatment in heavy-oxygen water and MS, we have identified 816 N-glycosylation sites in 332 yeast proteins, among which 675 sites were well-localized with greater than 99% confidence. The results demonstrated that the boronic acid-based chemical method can effectively enrich glycopeptides for comprehensive analysis of protein glycosylation. A general trend seen within the large data set was that there were fewer glycosylation sites toward the C termini of proteins. Of the 332 glycoproteins identified in yeast, 194 were membrane proteins. Many proteins get glycosylated in the high-mannose N-glycan biosynthetic and GPI anchor biosynthetic pathways. Compared with lectin enrichment, the current method is more cost-efficient, generic, and effective. This method can be extensively applied to different complex samples for the comprehensive analysis of protein glycosylation.
Collapse
Affiliation(s)
- Weixuan Chen
- From the ‡School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Johanna M Smeekens
- From the ‡School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ronghu Wu
- From the ‡School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
18
|
Chen W, Smeekens JM, Wu R. Comprehensive Analysis of Protein N-Glycosylation Sites by Combining Chemical Deglycosylation with LC–MS. J Proteome Res 2014; 13:1466-73. [DOI: 10.1021/pr401000c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weixuan Chen
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Johanna M. Smeekens
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Mathieu-Rivet E, Scholz M, Arias C, Dardelle F, Schulze S, Le Mauff F, Teo G, Hochmal AK, Blanco-Rivero A, Loutelier-Bourhis C, Kiefer-Meyer MC, Fufezan C, Burel C, Lerouge P, Martinez F, Bardor M, Hippler M. Exploring the N-glycosylation pathway in Chlamydomonas reinhardtii unravels novel complex structures. Mol Cell Proteomics 2013; 12:3160-3183. [PMID: 23912651 PMCID: PMC3820931 DOI: 10.1074/mcp.m113.028191] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/01/2013] [Indexed: 01/13/2023] Open
Abstract
Chlamydomonas reinhardtii is a green unicellular eukaryotic model organism for studying relevant biological and biotechnological questions. The availability of genomic resources and the growing interest in C. reinhardtii as an emerging cell factory for the industrial production of biopharmaceuticals require an in-depth analysis of protein N-glycosylation in this organism. Accordingly, we used a comprehensive approach including genomic, glycomic, and glycoproteomic techniques to unravel the N-glycosylation pathway of C. reinhardtii. Using mass-spectrometry-based approaches, we found that both endogenous soluble and membrane-bound proteins carry predominantly oligomannosides ranging from Man-2 to Man-5. In addition, minor complex N-linked glycans were identified as being composed of partially 6-O-methylated Man-3 to Man-5 carrying one or two xylose residues. These findings were supported by results from a glycoproteomic approach that led to the identification of 86 glycoproteins. Here, a combination of in-source collision-induced dissodiation (CID) for glycan fragmentation followed by mass tag-triggered CID for peptide sequencing and PNGase F treatment of glycopeptides in the presence of (18)O-labeled water in conjunction with CID mass spectrometric analyses were employed. In conclusion, our data support the notion that the biosynthesis and maturation of N-linked glycans in the endoplasmic reticulum and Golgi apparatus occur via a GnT I-independent pathway yielding novel complex N-linked glycans that maturate differently from their counterparts in land plants.
Collapse
Affiliation(s)
- Elodie Mathieu-Rivet
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Martin Scholz
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Carolina Arias
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Flavien Dardelle
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Stefan Schulze
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - François Le Mauff
- ‡‡Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668
| | - Gavin Teo
- ‡‡Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668
| | - Ana Karina Hochmal
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Amaya Blanco-Rivero
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Corinne Loutelier-Bourhis
- §§Université de Rouen, Laboratoire COBRA UMR 6014 & FR 3038, INSA de Rouen, 1 Rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Marie-Christine Kiefer-Meyer
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Christian Fufezan
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| | - Carole Burel
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Patrice Lerouge
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Flor Martinez
- ‖Comisión Docente de Fisiología Vegetal, Departamento de Biología, Edificio de Biología Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Muriel Bardor
- From the ‡Université de Rouen, Laboratoire Glyco-MEV, EA 4358, Institut de Recherche et d'Innovation Biomédicale (IRIB), 76821 Mont-Saint-Aignan Cedex, France
| | - Michael Hippler
- ¶Institute of Plant Biology and Biotechnology, Schlossplatz 8, University of Münster, D-48143, Germany
| |
Collapse
|
20
|
Liu M, Zhang L, Xu Y, Yang P, Lu H. Mass spectrometry signal amplification for ultrasensitive glycoprotein detection using gold nanoparticle as mass tag combined with boronic acid based isolation strategy. Anal Chim Acta 2013; 788:129-34. [PMID: 23845491 DOI: 10.1016/j.aca.2013.05.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/22/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
Abstract
We describe a novel method for rapid and ultrasensitive detection of intact glycoproteins without enzymatic pretreatment which was commonly used in proteomic research. This method is based on using gold nanoparticle (AuNP) as signal tag in laser desorption/ionization mass spectrometry (LDI-MS) analysis combined with boronic acid assisted isolation strategy. Briefly speaking, target glycoproteins were firstly isolated from sample solution with boronic acid functionalized magnetic microparticles, and then the surface modified gold nanoparticles were added to covalently bind to the glycoproteins. After that, these AuNP tagged glycoproteins were eluted from magnetic microparticles and applied to LDI-MS analysis. The mass signal of AuNP rather than that of glycoprotein was detected and recorded in this strategy. Through data processing of different standard glycoproteins, we have demonstrated that the signal of AuNP could be used to quantitatively represent glycoprotein. This method allows femtomolar detection of intact glycoproteins. We believe that the successful validation of this method on three different kinds of glycoproteins suggests the potential use for tracking trace amount of target glycoproteins in real biological samples in the near future.
Collapse
Affiliation(s)
- Minbo Liu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|